An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Constituents and Molecular Modeling of Curatella americana L.
2.2. DPPH Scavenging Assay
2.3. Molecular Modelling
2.3.1. Maps of Molecular Electrostatic Potential (MEP) and Frontier Orbitals (HOMO and LUMO)
2.3.2. Multivariate Analysis PCA and HCA
2.3.3. Theoretical Mechanism to Antioxidant Activity via Electron Abstraction
2.3.4. Molecular Docking Study
3. Materials and Methods
3.1. Plant Material
Preparation of Plant Extract
3.2. DPPH Scavenging Assay
3.3. Molecular Modeling
3.3.1. Maps of Molecular Electrostatic Potential (MEP) and Frontier Orbital’s (HOMO and LUMO)
3.3.2. Multivariate Analysis PCA and HCA
3.3.3. Theoretical Mechanism to the Antioxidant Activity
3.3.4. Molecular Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roy, J.; Galano, J.; Durand, T.; Guennec, J.; Lee, J.C.Y. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 2017, 31, 3729–3745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Pauff, J.M.; Hille, R. Substrate orientation and catalytic specificity in the action of xanthine oxidase the sequential hydroxylation of hypoxanthine to uric acid. J. Biol. Chem. 2010, 285. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.; Upton, Z.; Shooter, G.K. Uric acid and xanthine oxidoreductase in wound healing. Curr. Rheumatol. Rep. 2014, 16, 396–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landmesser, U.; Spiekermann, S.; Dikalov, S.; Tatge, H.; Wilke, R.; Kohler, C.; Harrison, D.G.; Drexler, H. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 2002, 106, 3073–3078. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.; Wang, L.; See, P.; Grayer, R.J.; Chan, S.Y.; Lee, S.T. Phenolic compounds of chromolaena odorata protect cultured skin cells from oxidative damage: Implication for cutaneous wound healing. Biol. Pharm. Bull. 2001, 24, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Thang, P.T.; Teik, L.S.; Yung, C.S. Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine–xanthine oxidase induced damage. Burns 2001, 27, 319–327. [Google Scholar] [CrossRef]
- Wilson, A.J.; Gill, E.K.; Abudalo, R.A.; Edgar, K.S.; Watson, C.J.; Grieve, D.J. Reactive oxygen species signalling in the diabetic heart: Emerging prospect for therapeutic targeting. Heart 2018, 104, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging 2007, 2, 219–236. [Google Scholar] [PubMed]
- Reinisalo, M.; Kårlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med. Cell. Longev. 2015, 2015, 340–520. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. A critical review on polyphenols and health benefits of black soybeans. Nutrients 2017, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhou, R.; Wang, B.; Mi, M.T. Effect of resveratrol on glucose control and insulin sensitivity: A meta-analysis of 11 randomized controlled trials1–3. Am. J. Clin. Nutr. 2014, 99, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Jayathilake, C.; Rizliya, V.; Liyanage, R. Antioxidant and free radical scavenging capacity of extensively used medicinal plants in Sri Lanka. Procedia Food Sci. 2016, 6, 123–126. [Google Scholar] [CrossRef]
- Elisha, I.L.; Dzoyem, J.P.; McGaw, L.J.; Botha, F.S.; Eloff, J.N. The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complement. Altern. Med. 2016, 16, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. FBP 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Lima, C.C.; Lemos, R.P.L.; Conserva, L.M. Dilleniaceae family: An overview of its ethnomedicinal uses, biological and phytochemical profile. J. Pharmacogn. Phytochem. 2014, 3, 181–204. [Google Scholar]
- Ratter, J.A.; Bridgewater, S.; Ribeiro, J.F. Analysis of the floristic composition of the Brazilian cerrado vegetation III: Comparison of the woody vegetation of 376 areas. Edinb. J. Bot. 2003, 60, 57–109. [Google Scholar] [CrossRef]
- Villarroel, D.; Catari, J.C.; Calderon, D.; Mendez, R.; Feldpausch, T. Structure, composition and tree diversity of two areas in the Cerrado sensu stricto in the Chiquitanía (Santa Cruz, Bolivia). Ecol. Boliv. 2010, 45, 116–130. [Google Scholar]
- Amaral, D.D.; Costa-Neto, S.V.; Jardim, M.A.G.; Santos, J.U.M.; Bastos, M.D.N.C. Curatella americana L. (Dilleniaceae): Primeira ocorrência nas restingas do litoral da Amazônia. Rev. Bras. Biocienc. 2016, 14, 257–262. [Google Scholar]
- Barbosa, R.I.; Nascimento, S.P.; Amorim, P.A.F.; Silva, R.F. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira. Acta Bot. Bras. 2005, 19. [Google Scholar] [CrossRef]
- De Medeiros, P.M.; Ladio, H.A.; Albuquerque, P.U. Patterns of medicinal plant use by inhabitants ofBrazilian urban and ruralareas:A macroscale investigation based on available literature. J. Ethnopharmacol. 2012, 150, 729–746. [Google Scholar] [CrossRef] [PubMed]
- Vila Verde, G.M.; Paula, J.R.; Caneiro, D.M. Levantamento etnobotânico das plantas medicinais do cerrado utilizadas pela população de Mossâmedes (GO). Rev. Bras. Farmacogn. 2003, 13, 64–66. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.D.; Felfili, J.M. Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta Bot. Bras. 2006, 20, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Alexandre-Moreira, M.; Piuvezam, M.; Araújo, C.; Thomas, G. Studies on the anti-inflammatory and analgesic activity of Curatella americana L. J. Ethnopharmacol. 1999, 67, 171–177. [Google Scholar] [CrossRef]
- Toledo, C.E.; Britta, E.A.; Ceole, L.F.; Silva, E.R.; de Mello, J.C.; Dias Filho, B.P.; Nakamura, C.V.; Ueda-Nakamura, T. Antimicrobial and cytotoxic activities of medicinal plants of the Brazilian cerrado, using Brazilian cachaca as extractor liquid. J. Ethnopharmacol. 2011, 133, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.F.; Puebla, P.; Carron, R.; Martin, M.L.; Arteaga, L.; Roman, L.S. Assessment of the antihypertensive and vasodilator effects of ethanolic extracts of some Colombian medicinal plants. J. Ethnopharmacol. 2002, 80, 37–42. [Google Scholar] [CrossRef]
- Hiruma-Lima, C.A.; Rodrigues, C.M.; Kushima, H.; Moraes, T.M.; Lolis, S.F.; Feitosa, S.B.; Magri, L.P.; Vilegas, W. The anti-ulcerogenic effects of Curatella americana L. J. Ethnopharmacol. 2009, 121, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.H.O.; Macorini, L.F.B.; Antunes, K.A.; de Toledo Espindola, P.P.; Alfredo, T.M.; da Rocha, P.d.S.; Pereira, Z.F.; dos Santos, E.L.; de Picoli Souza, K. Antioxidant and hypolipidemic activity of the hydroethanolic extract of Curatella americana L. leaves. Oxid Med. Cell. Longev. 2016, 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Cunha, E.L.; Santos, C.F.; Braga, F.S.; Costa, J.S.; Silva, R.C.; Favacho, H.A.S.; Hage-Melim, L.I.S.; Carvalho, J.C.T.; da Silva, C.H.T.P.; Santos, C.B.R. Computational investigation of antifungal compounds using molecular modeling and prediction of ADME/Tox properties. J. Comput. Theor. Nanosci. 2015, 12, 3682–3691. [Google Scholar] [CrossRef]
- El-Azizi, M.M.; Ateya, A.M.; Svoboda, G.H.; Schiff, P.L.; Slatkin, D.J., Jr.; Knapp, J.E. Chemical constituents of Curatella americana (Dilleniaceae). J. Pharm. Sci. 1980, 69, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Gurni, A.A.; Kubitzki, K. Flavonoid chemistry and systematics of the dilleniaceae. Biochem. Syst. Ecol. 1981, 9, 109–114. [Google Scholar] [CrossRef]
- Khlebnikov, A.I.; Schepetkin, I.A.; Domina, N.G.; Kirpotinab, L.N.; Quin, M.T. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg. Med. Chem. 2007, 15, 1749–1770. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.S.R.; Santos, C.F.; Gonçalves, L.K.S.; Braga, F.S.; Almeida, J.R.; Lima, C.S.; Brasil, D.S.B.; Silva, C.H.T.P.; Hage-Melim, L.I.S.; Santos, C.B.R. Molecular modeling of the major compounds of sesquiterpenes class in copaiba oil-resin. Br. J. Pharm. Res. 2015, 7, 247–263. [Google Scholar] [CrossRef]
- Santos, C.B.R.; Lobato, C.C.; Sousa, M.A.C.; Macêdo, W.J.C.; Carvalho, J.C.T. Molecular modeling: Origin, fundamental concepts and applications using structure-activity relationship and quantitative structure-activity relationship. RITS 2014, 2, 91–115. [Google Scholar] [CrossRef]
- Contreras, R.; Domingo, L.R.; Andrés, J.; Pérez, P.; Tapia, O. Nonlocal (Pair site) reactivity from second-order static density response function: Gas- and solution-phase reactivity of the acetaldehyde enolate as a test case. J. Phys. Chem. A 1999, 103, 1367–1375. [Google Scholar] [CrossRef]
- Heaton, C.A.; Miller, A.K.; Powell, R.L. Predicting the reactivity of fluorinated compounds with copper using semi-empirical calculations. J. Fluorine Chem. 2001, 107, 1–3. [Google Scholar] [CrossRef]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Arroio, A.; Honório, K.M.; Silva, A.B.F. Propriedades químico-quânticas empregadas em estudos das relações estrutura atividade. Quim. Nova 2010, 33, 694–699. [Google Scholar] [CrossRef]
- Santos, C.B.R.; Vieira, J.B.; Lobato, C.C.; Hage-Melim, L.I.S.; Souto, R.N.P.; Lima, C.S.; Costa, E.V.M.; Brasil, D.S.B.; Macêdo, W.J.C.; Carvalho, J.C.T. A SAR and QSAR study of new artemisinin compounds with antimalarial activity. Molecules 2014, 19, 367–399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Musgrave, C.B. Comparison of DFT methods for molecular orbital eigenvalue calculations. J. Phys. Chem. A 2007, 111, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.; Pinto, A.; Monteiro, C.; Monteiro, H.; Belo, L.; Fernandes, J.; Bento, A.; Duarte, T.; Garrido, J.; Bahia, M. Protective effect of C. sativa leaf extract against UV mediated-DNA damage in a human keratinocyte cell line. J. Photochem. Photobiol. B Biol. 2015, 144, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Castro, L.; Syed, D.N.; Chamcheu, J.C.; Vilela, F.M.P.; Pérez, A.M.; Vaillant, F.; Miguel, R.; Mukhtar, H. Protective effect of tropical highland blackberry juice (Rubus adenotrichos Schltdl.) against UVB-mediated damage in human epidermal keratinocytes and in a reconstituted skin equivalent model. Photochem. Photobiol. 2013, 89, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Arwa, P.S.; Zeraik, M.L.; Ximenes, V.F.; Fonseca, L.M.; Bolzani, V.S.; Silva, D.H.S. Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. J. Ethnopharmacol. 2015, 174, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Y.; Schramm, D.D.; Gross, H.B.; Holt, R.R.; Kim, S.H.; Yamaguchi, T.; Kwik-Uribe, C.L.; Keen, C.L. Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin. Dev. Immunol. 2005, 12, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Draijer, R.; Graaf, Y.; Slettenaar, M.; Groot, E.; Wright, C.I. Consumption of a polyphenol-rich grape-wine extract lowers ambulatory blood pressure in mildly hypertensive subjects. Nutrients 2015, 7, 3138–3153. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Cao, H.; Cheng, W.X.; Li, C.; Pan, X.-L.; Xie, X.G.; Li, T.H. DFT study on the antioxidant activity of rosmarinic acid. J. Mol. Struct. THEOCHEM 2005, 719, 177–183. [Google Scholar] [CrossRef]
- Wright, J.S.; Johnson, E.R.; Dilabio, G.A. Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Scotti, L.; Scotti, M.T.; Cardoso, C.; Pauletti, P.; Castro-Gamboa, I.; Bolzani, V.S.; Velasco, M.V.R.; Menezes, C.M.S.; Ferreira, E.I. Modelagem molecular aplicada ao desenvolvimento de moléculas com atividade antioxidante visando ao uso cosmético. Braz. J. Pharm. Cienc. 2007, 43, 153–166. [Google Scholar] [CrossRef]
- Mendes, A.P.S.; Borges, R.S.; Neto, A.M.J.C.; Macedo, L.G.M.; Silva, A.B.F. The basic antioxidant structure for flavonoid derivatives. J. Mol. Model. 2012, 18, 4073–4080. [Google Scholar] [CrossRef] [PubMed]
- Amic, D.; Lucic, B. Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids. Biorg. Med. Chem. 2010, 18, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.G.; Nichols, J.A.; Dixon, D.A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef]
- Jursic, B.S. Determining the stability of three-carbon carbocations and carbanions through computing ionization energies, electron affinities and frontier molecular orbital energy gaps for corresponding radicals, cations and anions. J. Mol. Struct. THEOCHEM 2000, 505, 233–240. [Google Scholar] [CrossRef]
- Higgins, P.; Dawson, J.; Lees, K.R.; McArthur, K.; Quinn, T.J.; Walters, M.R. Xanthine oxidase inhibition for the treatment of cardiovascular disease: A systematic review and meta-analysis. Cardiovasc. Ther. 2012, 30, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Malik, U.Z.; Hundley, N.J.; Romero, G.; Radi, R.; Freeman, B.A.; Tarpey, M.M.; Kelley, E.E. Febuxostat inhibition of endothelial-bound XO: Implications for targeting vascular ROS production. Free Radic. Biol. Med. 2011, 51, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, K.; Eger, B.T.; Nishino, T.; Kondo, S.; Pai, E.F.; Nishino, T. An extremely potent inhibitor of xanthine oxidoreductase crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J. Biol. Chem. 2003, 278, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inform. Model. 2009, 49, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.B.R.; Ramos, R.S.; Ortiza, B.L.S.; Silva, G.M.; Giuliatti, S.; Navarrete, J.L.A.; Carvalho, J.C.T. Oil from the fruits of Pterodon emarginatus Vog.: A traditional anti-inflammatory. Study combining in vivo and in silico. J. Ethnopharmacol. 2018, 222, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.V.; Neto, M.F.A.; Silva, L.B.; Ramos, R.d.S.; Costa, J.d.S.; Brasil, D.S.B.; Lobato, C.C.; da Costa, G.V.; Bittencourt, J.D.A.H.M.; da Silva, C.H.T.P.; et al. Identification of novel protein kinase receptor type 2 inhibitors using pharmacophore and structure-based virtual screening. Molecules 2018, 23, 453. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Frenz, C.M.; Li, Z.; Chen, M.; Wang, Y.; Li, F.; Cheng, L.; Sun, J.; Bohlin, L.; Li, Z.; et al. Virtual and in vitro bioassay screening of phytochemical inhibitors from flavonoids and isoflavones against xanthine oxidase and cyclooxygenase-2 for gout treatment. Chem. Biol. Drug. Des. 2013, 81, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Pauff, J.M.; Hille, R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J. Nat. Prod. 2009, 72, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.S.; Costa, K.S.L.; Cruzb, J.V.; Ramos, R.S.; Silva, L.B.; Brasil, D.S.B.; Tomich, C.S.; Rodrigues, C.B.; Macêdo, W.J.C. Virtual screening and statistical analysis in the design of new caffeine analogues molecules with potential epithelial anticancer activity. Curr. Pharm. Des. 2017, 23, 576–594. [Google Scholar] [CrossRef]
- Cao, H.; Pauff, J.M.; Hille, R. Xray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J. Nat. Prod. 2014, 77, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Cefali, L.C.; Cazedey, E.C.L.; Souza-Moreira, T.M.; Correa, M.A.; Salgado, H.R.N.; Isaac, V.L.B. Antioxidant activity and validation of quantification method for lycopene extracted from tomato. J. AOAC Int. 2015, 98, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Pitaro, S.P.; Fiorani, L.V.; Jorge, N. Potencial antioxidante dos extratos de manjericão (Ocimum basilicum Lamiaceae) e orégano (Origanum vulgare Lamiaceae) em óleo de soja. Rev. Bras. Plantas Med. 2012, 14, 686–691. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. GAUSSVIEW 3.07; Gaussian Inc.: Pittsburgh, PA, USA, 1992. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. GAUSSIAN 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Varetto, U. MOLEKEL 4.1; Swiss National Supercomputing Centre: Manno, Switzerland, 2009. [Google Scholar]
- Breneman, C.M.; Wiberg, K.B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 1990, 11, 361–373. [Google Scholar] [CrossRef]
- Singh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129–145. [Google Scholar] [CrossRef]
- Estrada, E.; Molina, E. Novel local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular design. J. Mol. Graph. Mod. 2001, 20, 54–64. [Google Scholar] [CrossRef]
- Santos, C.B.R.; Lobato, C.C.; Braga, F.S.; Costa, J.S.; Favacho, H.A.S.; Carvalho, J.C.T.; Macêdo, W.J.C.; Brasil, D.S.B.; Tomich, C.S.; Hage-Melim, L.I.S. Rational design of antimalarial drugs using molecular modeling and statistical analysis. Curr. Pharm. Des. 2015, 21, 4112–4127. [Google Scholar] [CrossRef] [PubMed]
- CHEMPLUS, Modular Extensions to HyperChem; Version Release 6.02; HuperClub Inc.: Gainesville, FL, USA, 2000.
- PIROUETTE; Version 3.01; Infometrix Inc.: Seattle, WA, USA, 2001.
- Stewart, J.J.P. Optimization of parameters for semi-empirical methods J-method. J. Comput. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlatrion-energy formula into a functional of the eletron density. Phys. Rev. 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Borges, R.S.; Batista, J., Jr.; Viana, R.B.; Baetas, A.C.; Orestes, E.; Andrade, M.A.; Honório, K.M.; Silva, A.B.F. Understanding the molecular aspects of tetrahydrocannabinol and canabidiol as antioxidants. Molecules 2013, 18, 12663–12674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, A.L.; Santos, G.B.; Franco, M.S.; Federico, L.B.; Silva, C.H.; Santos, C.B. Molecular modeling and statistical analysis in the design of derivatives of human dipeptidyl peptidase IV. J. Biomol. Struct. Dyn. 2017, 36, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Padilha, E.C.; Serafim, R.B.; Sarmiento, D.Y.R.; Santos, C.F.; Santos, C.B.; Silva, C.H. New PPARα/γ/δ optimal activator rationally designed by computational methods. Braz. Chem. Soc. 2016, 27, 1636–1647. [Google Scholar] [CrossRef]
Compounds | HE (kcal/mol) | LogP | DMT (Debye) | GAP (eV) | 1/η (eV) |
---|---|---|---|---|---|
1 | −40.230 | −5.100 | 2.1057 | 0.462 | 4.3285 |
2 | −31.530 | −4.010 | 6.6104 | 0.447 | 4.4653 |
3 | −42.990 | −5.480 | 5.7241 | 0.194 | 10.2795 |
4 | −39.770 | −5.100 | 6.6674 | 0.469 | 4.2559 |
5 | −42.959 | −5.480 | 5.6174 | 0.568 | 3.5167 |
6 | −37.220 | −4.690 | 6.3514 | 0.186 | 10.6985 |
7 | −49.340 | −5.910 | 4.8393 | 0.064 | 30.8818 |
8 | 0.250 | 8.090 | 1.5464 | 6.817 | 0.2934 |
9 | −3.510 | 7.260 | 2.3235 | 6.643 | 0.3010 |
10 | −0.640 | 8.030 | 1.5438 | 7.071 | 0.2828 |
11 | −25.049 | −2.090 | 3.7109 | 1.474 | 1.3568 |
12 | −1.060 | 2.530 | 1.7570 | 0.185 | 10.7611 |
Molecules | HOMO (eV) | ENeutro (Kcal/mol) | ECation (Kcal/mol) | IP (Kcal/mol) |
---|---|---|---|---|
7 | −0.0435 | −1340,833.36 | −1340,680.69 | 152.67 |
11 | −1.2327 | −405,680.81 | −405,505.18 | 175.62 |
12 | −0.3429 | −388,768.73 | −388,611.82 | 156.90 |
Amino Acid | Distance (Å) | Type | Binding Free Energy (kcal/mol) | |
---|---|---|---|---|
2 vs. XO | Leu873 | 3.5408 | Pi-Sigma | −6.76 |
4.8720 | Pi-Alkyl | |||
Ser876 | 2.3000 | Conventional Hydrogen Bond | ||
Phe914 | 3.7825 | Pi-Pi Stacked | ||
Thr1010 | 2.0916 | Conventional Hydrogen Bond | ||
Val1011 | 5.2238 | Pi-Alkyl | ||
5.4506 | Pi-Alkyl | |||
Leu1014 | 5.0207 | Pi-Alkyl | ||
2.8423 | Pi-Sigma | |||
11 vs. XO | Phe914 | 3.6159 | Pi-Pi Stacked | −4.4 |
Phe1009 | 5.4325 | Pi-Pi T-shaped | ||
Thr1010 | 2.0504 | Conventional Hydrogen Bond | ||
2.8382 | Conventional Hydrogen Bond | |||
Ala1078 | 4.9487 | Pi-Alkyl | ||
Ala1079 | 3.6445 | Pi-Sigma | ||
Glu1261 | 1.9196 | Conventional Hydrogen Bond | ||
Leu873 | 4.4308 | Alkyl | ||
4.9122 | Alkyl | |||
Phe914 | 3.5349 | Pi-Pi Stacked | ||
12 vs. XO | Phe1009 | 4.8397 | Pi-Pi Stacked | −7.13 |
Val1011 | 4.4798 | Alkyl | ||
Ala1078 | 4.9457 | Pi-Alkyl | ||
4.1350 | Alkyl | |||
Ala1079 | 4.1423 | Pi-Alkyl | ||
HPX vs. XO | Glu802 | 3.2579 | Conventional Hydrogen Bond | −5.65 |
Arg880 | 3.0805 | Conventional Hydrogen Bond | ||
Phe914 | 3.4234 | Pi-Pi Stacked | ||
3.8092 | Pi-Pi Stacked | |||
Phe1009 | 4.7907 | Pi-Pi T-shaped | ||
5.2023 | Pi-Pi T-shaped | |||
Thr1010 | 3.1183 | Conventional Hydrogen Bond | ||
2.8251 | Conventional Hydrogen Bond | |||
Ala1078 | 4.6549 | Pi-Alkyl | ||
Ala1079 | 3.9407 | Pi-Sigma | ||
4.8965 | Pi-Alkyl | |||
FBX vs. XO | Glu802 | 1.9544 | Conventional Hydrogen Bond | −6.1 |
Leu873 | 3.7514 | Pi-Sigma | ||
Ser876 | 2.8449 | Conventional Hydrogen Bond | ||
Phe914 | 3.8848 | Pi-Pi Stacked | ||
Phe1005 | 3.8139 | Pi-Alkyl | ||
4.6647 | Pi-Alkyl | |||
Phe1009 | 4.4818 | Pi-Pi T-shaped | ||
5.5513 | Pi-Sulfur | |||
Val1011 | 4.8667 | Pi-Alkyl | ||
Leu1014 | 4.2479 | Pi-Alkyl | ||
Ala1078 | 4.4684 | Pi-Alkyl | ||
Ala1079 | 4.7224 | Pi-Alkyl | ||
3.7013 | Alkyl |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teles Fujishima, M.A.; Silva, N.D.S.R.d.; Ramos, R.D.S.; Batista Ferreira, E.F.; Santos, K.L.B.d.; Silva, C.H.T.d.P.d.; Silva, J.O.d.; Campos Rosa, J.M.; Santos, C.B.R.d. An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn. Pharmaceuticals 2018, 11, 72. https://doi.org/10.3390/ph11030072
Teles Fujishima MA, Silva NDSRd, Ramos RDS, Batista Ferreira EF, Santos KLBd, Silva CHTdPd, Silva JOd, Campos Rosa JM, Santos CBRd. An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn. Pharmaceuticals. 2018; 11(3):72. https://doi.org/10.3390/ph11030072
Chicago/Turabian StyleTeles Fujishima, Mayara Amoras, Nayara Dos Santos Raulino da Silva, Ryan Da Silva Ramos, Elenilze Figueiredo Batista Ferreira, Kelton Luís Belém dos Santos, Carlos Henrique Tomich de Paula da Silva, Jocivania Oliveira da Silva, Joaquín Maria Campos Rosa, and Cleydson Breno Rodrigues dos Santos. 2018. "An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn" Pharmaceuticals 11, no. 3: 72. https://doi.org/10.3390/ph11030072
APA StyleTeles Fujishima, M. A., Silva, N. D. S. R. d., Ramos, R. D. S., Batista Ferreira, E. F., Santos, K. L. B. d., Silva, C. H. T. d. P. d., Silva, J. O. d., Campos Rosa, J. M., & Santos, C. B. R. d. (2018). An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn. Pharmaceuticals, 11(3), 72. https://doi.org/10.3390/ph11030072