Cereus jamacaru D.C. Hydroalcoholic Extract Promotes Anti-Cytotoxic and Antitumor Activity
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Hydroalcoholic Extract
2.4. Phytochemistry Analysis
2.4.1. Preliminary Phytochemistry
2.4.2. Thin Layer Chromatography
2.4.3. Flavonoid Content
2.5. Antioxidant Activity
2.5.1. DPPH
2.5.2. ABTS
2.5.3. Fe2+ Chelation Ions
2.6. In Vitro Cell Assays
2.6.1. Human Lymphocytes
2.6.2. Sarcoma 180
2.6.3. Cell Culturing Methods
2.6.4. MTT Assay
2.7. In Vivo Mice Antitumor
2.7.1. Animals and Sarcoma Induction
2.7.2. Selection of Doses and Treatment Groups
2.7.3. Tumor Inhibition
2.7.4. Macroscopic Analysis of Organs
2.7.5. Micronucleus Test in Mice Peripheral Blood Cells
2.8. Statistical Analysis
3. Results
3.1. Extract Yield and Phytochemistry
3.2. Evaluation of Antioxidant Activity
3.3. Cytotoxicity and Antiproliferative Activity In Vitro
3.4. Anti-Cytotoxic Activity In Vitro
3.5. Antitumor Activity In Vivo
3.6. Weight and Macroscopic Analysis of Organs
3.7. Mutagenicity and Cytotoxicity In Vivo
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, E.F. The Cactus Family; Timber Press: Portland, OR, USA, 2001. [Google Scholar]
- De Lucena, C.M.; Alves, C.A.B.; Pereira, D.D.; Nunes, E.N.; Costa, G.M.; da Silva Costa, G.G.; da Silva Ribeiro, J.E.; da Nóbrega Alves, R.R.; de Lucena, R.F.P.; Carvalho, T.K.N. Use and knowledge of Cactaceae in Northeastern Brazil. J. Ethnobiol. Ethnomed. 2013, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, C.; Seeff, L.D.; Lindor, K.D. Use of herbal supplements for chronic liver disease. Clin. Gastroenterol. Hepatol. 2004, 2, 947–956. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89. [Google Scholar] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davet, A.; Carvalho, J.L.S.; Dadalt, R.C.; Vituoso, S.; Dias, J.F.G.; Miguel, M.D.; Miguel, O.G. Cereus jamacaru: A non buffered LC quantification method to nitrogen compounds. Chromatographia 2009, 69, 245–247. [Google Scholar] [CrossRef]
- De Sousa Araújo, T.A.; Alencar, N.L.; de Amorim, E.L.C.; de Albuquerque, U.P. A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J. Ethnopharmacol. 2008, 120, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Maciel, J.K.S.; Chaves, O.S.; Brito Filho, S.G.; Teles, Y.C.F.; Fernandes, M.G.; Assis, T.S.; Fernandes, P.D.; de Andrade, A.P.; Felix, L.P.; Silva, T. New alcamide and anti-oxidant activity of Pilosocereus gounellei A. Weber ex K. Schum. Bly. ex Rowl.(Cactaceae). Molecules 2015, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- De Alencar, M.V.O.B.; Islam, M.T.; de Castro Rocha, L.M.; Queiroz, J.L.; da Silva, M.B.S.; da Mata, A.M.O.F.; de Carvalho, R.M.; Júnior, A.L.G.; de Moraes, G.P.; Paz, M.F.C.J. Ascorbic Acid Modulates Doxorubicin and Cyclophosphamide-Induced Cytogenetic Damages in Sarcoma 180 Cells. Int. Arch. Med. 2016, 9. [Google Scholar] [CrossRef]
- Belcavello, L.; Vencioneck Dutra, J.C.; de Freitas, J.V.; Aranha, I.P.; Batitucci, M.D.C.P. Mutagenicity of ipriflavone in vivo and in vitro. Food Chem. Toxicol. 2012, 50. [Google Scholar] [CrossRef] [PubMed]
- Holden, H.E.; Majeska, J.B.; Studwell, D. A direct comparison of mouse and rat bone marrow and blood as target tissues in the micronucleus assay. Mutat. Res. Toxicol. Environ. Mutagen. 1997, 391, 87–89. [Google Scholar] [CrossRef]
- Fenech, M. The in vitro micronucleus technique. Mutat. Res. Mol. Mech. Mutagen. 2000, 455, 81–95. [Google Scholar] [CrossRef]
- Marullo, R.; Werner, E.; Degtyareva, N.; Moore, B.; Altavilla, G.; Ramalingam, S.S.; Doetsch, P.W. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 2013, 8, e81162. [Google Scholar] [CrossRef] [PubMed]
- Katalinic, V.; Modun, D.; Music, I.; Boban, M. Gender differences in antioxidant capacity of rat tissues determined by 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 140, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.F. Farmacognosia; Fundação Calouste Gulbekian: Lisboa, Portugal, 1982; Volume 3. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F. Comunicado técnico-metodologia científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Fortaleza Embrapa 2007, 1, 1–4. [Google Scholar]
- Rufino, M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.d.G.; Pérez-Jimenez, J.; Saura-Calixto, F.D. Metodologia científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre ABTSo+. Embrapa Agroindústria Trop. Comun. Técnico 2007, 1, 1–4. [Google Scholar]
- Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2000, 11, 330–338. [Google Scholar] [CrossRef]
- Serpeloni, J.M.; Grotto, D.; Mercadante, A.Z.; Bianchi, M.D.L.P.; Antunes, L.M.G. Lutein improves antioxidant defense in vivo and protects against DNA damage and chromosome instability induced by cisplatin. Arch. Toxicol. 2010, 84, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Souza, I.; Lima, M.C.A.; Melo, U.B.C.; Higino, J.S. Antitumour properties of Cereus jamacaru on an experimental model of cancer in vivo. In Fundamental & Clinical Pharmacology; Wiley-Blackwell Commerce Place: Malden, MA, USA, 2001; Volume 15, p. 148. [Google Scholar]
- Krishna, G.; Hayashi, M. In vivo rodent micronucleus assay: Protocol, conduct and data interpretation. Mutat. Res. Mol. Mech. Mutagen. 2000, 455, 155–166. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Arch. Toxicol. 2014, 88, 1803–1853. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.M.M.; da Paixão, D.; Do Nascimento, A.C.; dos Santos, P.F.P.; Scheinvar, L.A.; Moura, M.R.L.; Tinoco, L.W.; Gomes, L.N.F.; da Silva, J.F.M. Antiradical activity, nutritional potential and flavonoids of the cladodes of Opuntia monacantha (Cactaceae). Food Chem. 2010, 123, 1127–1131. [Google Scholar] [CrossRef]
- Sim, K.S.; Nurestri, A.M.S.; Norhanom, A.W. Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts. Pharmacogn. Mag. 2010, 6, 248. [Google Scholar] [PubMed]
- Sim, K.S.; Sri Nurestri, A.M.; Norhanom, A.W. Phenolic content and antioxidant activity of crude and fractionated extracts of Pereskia bleo (Kunth) DC.(Cactaceae). Af. J. Pharm. Pharmacol. 2010, 4, 193–201. [Google Scholar]
- Suresh, S.N.; Prejeena, V.; Varsha, V. Qualitative Phytochemical analysis of Costus igneus leaf extracts. Int. J. Med. Pharm. Res. 2015, 3, 1235–1237. [Google Scholar]
- Shaheen, F.; Ahmad, M.; Khan, M.T.H.; Jalil, S.; Ejaz, A.; Sultankhodjaev, M.N.; Arfan, M.; Choudhary, M.I. Alkaloids of Aconitum laeve and their anti-inflammatory, antioxidant and tyrosinase inhibition activities. Phytochemistry 2005, 66, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Klimaczewski, C.V.; de Aquino Saraiva, R.; Roos, D.H.; Boligon, A.; Athayde, M.L.; Kamdem, J.P.; Barbosa, N.V.; Rocha, J.B.T. Antioxidant activity of Peumus boldus extract and alkaloid boldine against damage induced by Fe (II)–citrate in rat liver mitochondria in vitro. Ind. Crops Prod. 2014, 54, 240–247. [Google Scholar] [CrossRef]
- Figueroa-Cares, I.; Martínez-Damián, M.T.; Rodríguez-Pérez, E.; Colinas-León, M.T.; Valle-Guadarrama, S.; Ramírez-Ramírez, S.; Gallegos-Vázquez, C. Contenido de pigmentos, otros compuestos y capacidad antioxidante en 12 cultivares de tuna (Opuntia spp.) de México. Agrociencia 2010, 44, 763–771. [Google Scholar]
- Davet, A. Estudo fitoquímico e biológico do cacto-Cereus jamacaru De Candolle, Cactaceae. Master’s Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2005. [Google Scholar]
- Khalil, A. Role of Biotechnology in Alkaloids Production. In Catharanthus Roseus; Springer: Berlin, Germany, 2017; pp. 59–70. [Google Scholar]
- Diaz, G.; Miranda, I.L.; Diaz, M.A.N. Quinolines, Isoquinolines, Angustureine, and Congeneric Alkaloids—Occurrence, Chemistry, and Biological Activity. In Phytochemicals-Isolation, Characterisation and Role in Human Health; InTech: London, UK, 2015. [Google Scholar]
- El-Shaboury, S.R.; Hussein, S.A.; Mohamed, N.A.; El-Sutohy, M.M. Stability-indicating densitometric determination of some angiotensin II receptor antagonists in presence of their degradation products. Acta Chromatogr. 2013, 25, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, F.A.; Saleh, G.A.; El-Shaboury, S.R.; Rageh, A.H. Selective densitometric analysis of cephalosporins using dragendorff’s reagent. Chromatographia 2008, 68, 365–374. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, Y.; Pei, Y.; Matsuda, H.; Yoshikawa, M. Constituents with radical scavenging effect from Opuntia dillenii: Structures of new α-pyrones and flavonol glycoside. Chem. Pharm. Bull. 2002, 50, 1507–1510. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-C.; Kim, H.-R.; Kim, J.; Jang, Y.-S. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J. Agric. Food Chem. 2002, 50, 6490–6496. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.L.; Er, H.M.; Radhakrishnan, A.K. In vitro Anti-Proliferative and Antioxidant Activities of Stem Extracts of Pereskia bleo (Kunth) DC (Cactaceae). Malays. J. Sci. 2009, 28, 225–239. [Google Scholar]
- Eddine, L.S.; Segni, L.; Redha, O.M.; Noureddine, G. Free radical scavenging activity of leaf extract of Rumex vesicarius L. obtained by different methods. Toxicol. Pharmacol. Res. 2015, 7, 140–146. [Google Scholar]
- Deng, W.; Fang, X.; Wu, J. Flavonoids function as antioxidants: By scavenging reactive oxygen species or by chelating iron? Radiat. Phys. Chem. 1997, 50, 271–276. [Google Scholar] [CrossRef]
- Yen, G.-C.; Hsieh, C.-L. Antioxidant effects of dopamine and related compounds. Biosci. Biotechnol. Biochem. 1997, 61, 1646–1649. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993, 303, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Jothiramajayam, M.; Ghosh, M.; Mukherjee, A. Evaluation of toxicity of essential oils palmarosa, citronella, lemongrass and vetiver in human lymphocytes. Food Chem. Toxicol. 2014, 68, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Sagrillo, M.R.; Garcia, L.F.M.; de Souza Filho, O.C.; Duarte, M.M.M.F.; Ribeiro, E.E.; Cadoná, F.C.; da Cruz, I.B.M. Tucuma fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem. 2015, 173, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Patra, K.; Sarkar, S.; Jana, J.; Mukherjee, G.; Bhattacharjee, S.; Mandal, D.P. Antitumorigenic potential of linalool is accompanied by modulation of oxidative stress: An in vivo study in sarcoma-180 solid tumor model. Nutr. Cancer 2014, 66, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Moraes, G.P.; Alencar, M.V.O.B.; Islam, M.T.; Silva Araújo, L.; Sobral, A.L.P.; Conceição Machado, K.; Ferreira, P.M.P. Cytogenotoxic and oxidative status evaluation of Morinda citrifolia. Int. Arch. Med. 2016, 1, 1–9. [Google Scholar]
- Pascoe, J.M.; Roberts, J.J. Interactions between mammalian cell DNA and inorganic platinum compounds—I: DNA interstrand cross-linking and cytotoxic properties of platinum (II) compounds. Biochem. Pharmacol. 1974, 23, 1345–1357. [Google Scholar] [CrossRef]
- Fichtinger-Schepman, A.M.J.; Van der Veer, J.L.; Den Hartog, J.H.J.; Lohman, P.H.M.; Reedijk, J. Adducts of the antitumor drug cis-diamminedichloroplatinum (II) with DNA: Formation, identification, and quantitation. Biochemistry 1985, 24, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Damia, G.; Imperatori, L.; Stefanini, M.; D’Incalci, M. Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents. Int. J. Cancer 1996, 66, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.J.; Benjamin, R.S.; Luna, M.; Feun, L.; Caprioli, R.; Seifert, W.; Loo, T.L. Human tissue distribution of platinum after cis-diamminedichloroplatinum. Cancer Chemother. Pharmacol. 1982, 10, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Olivero, O.A.; Chang, P.K.; Lopez-Larraza, D.M.; Semino-Mora, M.C.; Poirier, M.C. Preferential formation and decreased removal of cisplatin—DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat. Res. Toxicol. Environ. Mutagen. 1997, 391, 79–86. [Google Scholar] [CrossRef]
- Yang, Z.; Schumaker, L.M.; Egorin, M.J.; Zuhowski, E.G.; Guo, Z.; Cullen, K.J. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: Possible role in apoptosis. Clin. Cancer Res. 2006, 12, 5817–5825. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.A.G.; Catao, C.S.; Martins, N.M.; Curti, C.; Bianchi, M.L.P.; Santos, A.C. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch. Toxicol. 2007, 81, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Dehne, N.; Lautermann, J.; Petrat, F.; Rauen, U.; De Groot, H. Cisplatin ototoxicity: Involvement of iron and enhanced formation of superoxide anion radicals. Toxicol. Appl. Pharmacol. 2001, 174, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, C.; Vasko, M.R.; Kelley, M.R. Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons. Cancer Res. 2008, 68, 6425–6434. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.M.; Santos, N.A.G.; Curti, C.; Bianchi, M.L.P.; Santos, A.C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol. 2008, 28, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Santandreu, F.M.; Roca, P.; Oliver, J. Uncoupling protein-2 knockdown mediates the cytotoxic effects of cisplatin. Free Radic. Biol. Med. 2010, 49, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Role of free radicals and catalytic metal ions in human disease: An overview. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1990; Volume 186, pp. 1–85. ISBN 0076-6879. [Google Scholar]
- Baliga, R.; Zhang, Z.; Baliga, M.; Ueda, N.; Shah, S.V. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 1998, 53, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, I.U. De Identificação dos Princípios Ativos Presentes no Extrato Etanólico de Cereus jamacaru e Avaliação em Ratos dos Possíveis Efeitos Tóxicos e/ou Comportamentais da Exposição Prolongada. Master’s Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 2011. [Google Scholar]
- Messias, J.B. Cereus jamacaru DC: Efeito toxicológico sobre o desenvolvimento embrionário de Rattus norvegicus. Ph.D. Thesis, Universidade Federal de Pernambuco, Recife, Brazil, 2010. [Google Scholar]
- Hahn, W.C.; Weinberg, R.A. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2002, 2, 331. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.D.; Leitão, A.; Reina, L.D.C.B.; Montanari, C.A.; Donnici, C.L.; Lopes, M.T.P. Câncer e agentes antineoplásicos ciclo-celular específicos e ciclo-celular não específicos que interagem com o DNA: Uma introdução. Quim Nov. 2005, 28, 118–129. [Google Scholar] [CrossRef]
- Salmonm, S.E. Em Farmacología Básica & Clínica; Katzung, B.G., Ed.; McGraw Hill: New York City, NY, USA, 1998; pp. 629–655. [Google Scholar]
- Murad, A.M.; Katz, A. Oncologia: Bases Clínicas do Tratamento; Guanabara Koogan: Rio de Janeiro, Brazil, 1996; Volume 1, p. 435. [Google Scholar]
- Chabner, B.A.; Calabresi, P.E. As bases farmacológicas da terapéutica; Mc Graw Hill: Rio de Janeiro, Brazil, 1995; pp. 903–949. [Google Scholar]
- de Oliveira, R.B.; Alves, R.J. Bioreductive antineoplastic agents: A new approach to the treatment of solid tumors. Quim. Nova 2002, 25, 976–984. [Google Scholar] [CrossRef]
Treatment | Cell Viability (%) ± SD | |||||||
---|---|---|---|---|---|---|---|---|
24 h of Treatment | 48 h of Treatment | |||||||
Lymphocyte | p | Sarcoma-180 | p | Lymphocyte | p | Sarcoma-180 | p | |
Control | 100.00 ± 2.41 | – | 100.00 ± 0.99 | – | 100.00 ± 4.83 | – | 100.00 ± 3.48 | – |
C. jamacaru 10.0 µg/mL | 81.08 ± 1.16 ****† | <0.0001 | 30.53 ± 3.51 ####† | <0.0001 | 84.40 ± 1.58 ***† | 0.0003 | 16.09 ± 0.17 ####† | <0.0001 |
C. jamacaru 50.0 µg/mL | 88.80 ± 1.34 **† | 0.0043 | 29.84 ± 1.18 ####† | <0.0001 | 95.41 ± 0.80 † | 0.4243 | 17.54 ± 0.44 ####† | <0.0001 |
C. jamacaru 100.0 µg/mL | 122.39 ± 5.47 ****† | <0.0001 | 19.82 ± 1.60 ####† | <0.0001 | 133.95 ± 7.07 ****† | <0.0001 | 22.29 ± 1.10 ####† | <0.0001 |
Treatment | Cell Viability (%) ± SD | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pre-Treatment | p | % Reduction | Simultaneous Treatment | p | % Reduction | Post-Treatment | p | % Reduction | |
Control | 100.00 ± 4.83 * | 0.0182 | – | 100.00 ± 2.4 *** | 0.0006 | – | 100.00 ± 4.83 *** | 0.0008 | – |
Cisplatin | 73.85 ± 6.50 | – | – | 74.52 ± 2.68 | – | – | 73.85 ± 6.50 | – | – |
C. jamacaru 10.0 µg/mL + Cisplatin | 89.44 ± 5.84 * | 0.0201 | 59.62 | 79.15 ± 2.41 | 0.6822 | 20.27 | 76.15 ± 4.42 | 0.9635 | 8.80 |
C. jamacaru 50.0 µg/mL + Cisplatin | 96.79 ± 2.11 * | 0.0367 | 87.72 | 87.65 ± 3.54 * | 0.0421 | 52.77 | 90.82 ± 2.75 * | 0.0147 | 64.89 |
C. jamacaru 100.0 µg/mL + Cisplatin | 127.06 ± 4.83 *** | 0.0001 | >100.00 | 106.57 ± 10.62 *** | 0.0001 | >100.00 | 115.60 ± 8.38 **** | <0.0001 | >100.00 |
Treatment | Tumor Weight (P25–P75) | p | % Tumor Inhibition |
---|---|---|---|
Sarcoma + NaCl (0.9%) | 0.070 (0.038–0.210) | – | – |
Sarcoma + C. jamacaru 5.0 mg/kg b.w. | 0.130 (0.010–0.610) | 0.8571 | – |
Sarcoma + C. jamacaru 10.0 mg/kg b.w. | 0.130 (0.048–0.430) | 0.5606 | – |
Sarcoma + C. jamacaru 20.0 mg/kg b.w. | 0.015 (0.012–0.023) * | 0.0238 | 86.07 |
Treatment | Weight (g) (P25–P75) | |||||||
---|---|---|---|---|---|---|---|---|
Kidney | p | Liver | p | Spleen | p | Heart | p | |
Sarcoma + NaCl (0.9%) | 0.690 (0.628–0.713) | – | 2.510 (2.460–3.043) | – | 0.270 (0.233–0.415) | – | 0.245 (0.228–0.300) | – |
Sarcoma + C. jamacaru 5.0 mg/kg b.w. | 0.575 (0.443–0.655) * | 0.0429 | 2.495 (1.978–2.653) | 0.5619 | 0.260 (0.228–0.353) | 0.8048 | 0.205 (0.140–0.225) * | 0.0286 |
Sarcoma + C. jamacaru 10.0 mg/kg b.w. | 0.530 (0.480–0.570) * | 0.0047 | 2.400 (1.910–2.580) | 0.3625 | 0.250 (0.200–0.310) | 0.4219 | 0.190 (0.150–0.220) ** | 0.0047 |
Sarcoma + C. jamacaru 20.0 mg/kg b.w. | 0.630 (0.535–0.688) | 0.1810 | 2.715 (2.405–2.905) | >0.9999 | 0.285 (0.240–0.335) | 0.8048 | 0.205 (0.190–0.235) | 0.0524 |
Health + NaCl (0.9%) | 0.560 (0.505–0.668) | 0.0762 | 2.290 (1.895–2.663) | 0.1238 | 0.170 (0.108–0.225) * | 0.0381 | 0.170 (0.145–0.240) | 0.1095 |
Treatment | MNNCE/1000 NCE (P25–P75) | PCE/1000 NCE (P25–P75) | ||||||
---|---|---|---|---|---|---|---|---|
0 Day of Treatment | p | 20 Days of Treatment | p | 0 Day of Treatment | p | 20 Days of Treatment | p | |
Sarcoma + NaCl (0.9%) | 5.50 (3.25–6.75) | – | 3.00 (0.25–4.75) | – | 7.50 (4.00–21.75) † | – | 23.50 (16.00–38.00) † | – |
Sarcoma + C. jamacaru 5.0 mg/kg b.w. | 5.50 (3.25–6.75) | >0.9999 | 1.50 (0.25–3.50) | 0.6246 | 7.50 (4.00–21.75) | >0.9999 | 16.50 (4.75–21.75) | 0.0870 |
Sarcoma + C. jamacaru 10.0 mg/kg b.w. | 5.50 (3.25–6.75) | >0.9999 | 4.50 (2.25–5.25) | 0.4272 | 7.50 (4.00–21.75) | >0.9999 | 8.50 (6.25–17.00) # | 0.0263 |
Sarcoma + C. jamacaru 20.0 mg/kg b.w. | 5.50 (3.25–6.75) | >0.9999 | 2.50 (2.00–3.00) | 0.9459 | 7.50 (4.00–21.75) | >0.9999 | 10.00 (4.50–14.25) ## | 0.0093 |
Health + NaCl (0.9%) | 0.00 (0.00–1.75) ** | 0.0031 | 2.50 (1.25–3.75) | 0.7120 | 12.00 (7.75–27.75) | 0.2890 | 9.50 (5.00–13.50) ## | 0.0093 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vencioneck Dutra, J.C.; Moisés Ferreira, J.; Costalonga Pereira, P.R.; Ben-Hur de Oliveira, J.; Vitorino Gervásio, S.; Bernardes Xavier, M.; Mantovanelli da Mota, M.; Luz, A.C.d.; Rodrigues Pretti, I.; Seibert França, H.; et al. Cereus jamacaru D.C. Hydroalcoholic Extract Promotes Anti-Cytotoxic and Antitumor Activity. Pharmaceuticals 2018, 11, 130. https://doi.org/10.3390/ph11040130
Vencioneck Dutra JC, Moisés Ferreira J, Costalonga Pereira PR, Ben-Hur de Oliveira J, Vitorino Gervásio S, Bernardes Xavier M, Mantovanelli da Mota M, Luz ACd, Rodrigues Pretti I, Seibert França H, et al. Cereus jamacaru D.C. Hydroalcoholic Extract Promotes Anti-Cytotoxic and Antitumor Activity. Pharmaceuticals. 2018; 11(4):130. https://doi.org/10.3390/ph11040130
Chicago/Turabian StyleVencioneck Dutra, Jean Carlos, Jean Moisés Ferreira, Paula Roberta Costalonga Pereira, Judá Ben-Hur de Oliveira, Suiany Vitorino Gervásio, Mirieli Bernardes Xavier, Mainã Mantovanelli da Mota, Anny Carolyne da Luz, Irany Rodrigues Pretti, Hildegardo Seibert França, and et al. 2018. "Cereus jamacaru D.C. Hydroalcoholic Extract Promotes Anti-Cytotoxic and Antitumor Activity" Pharmaceuticals 11, no. 4: 130. https://doi.org/10.3390/ph11040130
APA StyleVencioneck Dutra, J. C., Moisés Ferreira, J., Costalonga Pereira, P. R., Ben-Hur de Oliveira, J., Vitorino Gervásio, S., Bernardes Xavier, M., Mantovanelli da Mota, M., Luz, A. C. d., Rodrigues Pretti, I., Seibert França, H., Masrouah Jamal, C., & Pimentel Batitucci, M. d. C. (2018). Cereus jamacaru D.C. Hydroalcoholic Extract Promotes Anti-Cytotoxic and Antitumor Activity. Pharmaceuticals, 11(4), 130. https://doi.org/10.3390/ph11040130