First line Immunotherapy for Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Monoclonal Antibodies Targeting Immune Checkpoints
2.1. Nivolumab
2.2. Pembrolizumab
2.3. Atezolizumab
2.4. Ipilimumab
2.5. Durvalumab
3. Chemotherapeutic Agents Used for Treatment of NSCLC Together with Immunotherapy
3.1. Platinum Based Chemotherapeutic Agents
3.1.1. Cisplatin
3.1.2. Carboplatin
3.2. Taxanes
3.2.1. Paclitaxel
3.2.2. Docetaxel
3.2.3. Nanoparticle Albumin-Bound Paclitaxel
3.3. Gemcitabine
3.4. Pemetrexed
4. Phase 3 Randomized Controlled Trials that Includes Immunotherapy for NSCLC
4.1. Keynote-024
- (1)
- Median OS in this study is 30 months, to our knowledge the longest among first line studies of NSCLC.
- (2)
- Interestingly, females benefited much less than males with pembrolizumab compared to chemotherapy. HR for benefit among men was 0.54, and among women was 0.95. Absolute survival numbers among sexes were not published in the original [33] or updated analysis [32]. This was not a preplanned analysis, and interpretation of the results regarding the patients’ sex should be taken with caution.
- (3)
- Never smokers had less benefit from Pembrolizumab versus chemotherapy (HR 0.9) compared to smokers (HR 0.59).
4.2. Keynote-042
- (1)
- Compared to KEYNOTE-024, OS in KEYNOTE-042 was less even in patients with PD-L1 ≥ 50%.
- (2)
- The similar OS in the initial months of the study between the chemotherapy and Pembrolizumab arms, trending initially to better results with chemotherapy before the curves crosses, indicates that combination therapy could provide better outcomes in a subset of patients.
- (3)
- Female patients had less benefit compared to male patients. HR for benefit among men was 0.71 and among women was 1.01. This is consistent with KEYNOTE-024 that showed no improved survival for women with Pembrolizumab compared to chemotherapy. This was not a preplanned analysis, and interpretation of the results regarding the patients’ sex should be taken with caution.
- (4)
- Never smokers did worse with Pembrolizumab versus chemotherapy, with HR of 1.1, compared to 0.6 and 0.71 in former and current smokers, as reported in the publication supplementary appendix [103].
4.3. Keynote-189 and Keynote-407
4.3.1. Keynote-189
4.3.2. Keynote-407
4.4. IMpower110
4.5. IMpower130
4.6. IMpower150
4.7. Checkmate-227
- Patients who never smoked had OS of 15.3 months with nivolumab plus ipilimumab compared to 16.1 months with chemotherapy alone [111].
- Patients with PD-L1 < 1% and liver metastasis had a statistically significant benefit from nivolumab plus ipilimumab compared to chemotherapy with survival of 11.7 versus 7.8 months, respectively. This significance was not maintained in patients with PD-L1 ≥ 1 and liver metastasis. For patients, regardless of PD-L1, with liver metastasis, survival was 10.3 months with nivolumab plus ipilimumab compared to 10.4 months with chemotherapy [111].
- Nivolumab plus ipilimumab was beneficial compared to chemotherapy in patients above and below the age of 65 years.
4.8. Checkmate-9LA
- (1)
- Clinical benefit for the combination of immunotherapy-chemotherapy was seen over chemotherapy only, regardless of PD-L1 expression.
- (2)
- Never smokers had worse survival outcome with the immunotherapy-chemotherapy combination compared to chemotherapy only, with a median OS of 14.1 versus 17.8 months, respectively.
- (3)
- Patients ≥ 75-year-old did worse with the immunotherapy-chemotherapy compared to chemotherapy only, with median OS of 8.5 versus 11.5 months, respectively.
5. Discussion
5.1. PD-L1 ≥ 50%
5.2. PD-L1 1–49%
5.3. PD-L1 <1%
5.4. Negative Immunotherapy Studies
5.5. Chemo-Free or Chemo-Light Treatments
5.6. Durvalumab after Chemoradiotherapy in Stage III NSCLC
5.7. Driver Mutations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnis, M.E.; Andrews, L.P.; Vignali, D.A.A. Inhibitory receptors as targets for cancer immunotherapy. Eur. J. Immunol. 2015, 45, 1892–1905. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef]
- Paulsen, E.-E.; Kilvaer, T.K.; Khanehkenari, M.R.; Al-Saad, S.; Hald, S.M.; Andersen, S.; Richardsen, E.; Ness, N.; Busund, L.-T.; Bremnes, R.M.; et al. Assessing PDL-1 and PD-1 in Non–Small Cell Lung Cancer: A Novel Immunoscore Approach. Clin. Lung Cancer 2017, 18, 220–233.e8. [Google Scholar] [CrossRef] [Green Version]
- Poole, R.M. Pembrolizumab: First Global Approval. Drugs 2014, 74, 1973–1981. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Hammers, H.; Lipson, E.J. Nivolumab: Targeting PD-1 to bolster antitumor immunity. Future Oncol. 2015, 11, 1307–1326. [Google Scholar] [CrossRef]
- Lee, H.T.; Lee, J.Y.; Lim, H.; Lee, S.H.; Moon, Y.J.; Pyo, H.J.; Ryu, S.E.; Shin, W.; Heo, Y.-S. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 2017, 7, 5532. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Genova, C.; Rijavec, E.; Barletta, G.; Sini, C.; Dal Bello, M.G.; Truini, M.; Murolo, C.; Pronzato, P.; Grossi, F. Ipilimumab (MDX-010) in the treatment of non-small cell lung cancer. Expert Opin. Biol. Ther. 2012, 12, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.C.; Anang, N.-A.A.S.; Sharma, R.; Andrews, M.C.; Reuben, A.; Levine, J.H.; Cogdill, A.P.; Mancuso, J.J.; Wargo, J.A.; Pe’er, D.; et al. Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc. Natl. Acad. Sci. USA 2019, 116, 22699–22709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007, 448, 561–566. [Google Scholar] [CrossRef]
- Zhou, W.; Ercan, D.; Chen, L.; Yun, C.-H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462, 1070–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; et al. EML4-ALK Mutations in Lung Cancer That Confer Resistance to ALK Inhibitors. N. Engl. J. Med. 2010, 363, 1734–1739. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 378, 113–125. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Bristol Myers Squibb. OPDIVO™ (Nivolumab) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125554s083lbl.pdf (accessed on 9 May 2020).
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef]
- Kobayashi, T.; Iwama, S.; Yasuda, Y.; Okada, N.; Tsunekawa, T.; Onoue, T.; Takagi, H.; Hagiwara, D.; Ito, Y.; Morishita, Y. Patients with antithyroid antibodies are prone to develop destructive thyroiditis by nivolumab: A prospective study. J. Endocr. Soc. 2018, 2, 241–251. [Google Scholar] [CrossRef]
- Yamauchi, I.; Sakane, Y.; Fukuda, Y.; Fujii, T.; Taura, D.; Hirata, M.; Hirota, K.; Ueda, Y.; Kanai, Y.; Yamashita, Y. Clinical features of nivolumab-induced thyroiditis: A case series study. Thyroid 2017, 27, 894–901. [Google Scholar] [CrossRef]
- Jotatsu, T.; Oda, K.; Yamaguchi, Y.; Noguchi, S.; Kawanami, T.; Kido, T.; Satoh, M.; Yatera, K. Immune-mediated thrombocytopenia and hypothyroidism in a lung cancer patient treated with nivolumab. Immunotherapy 2018, 10, 85–91. [Google Scholar] [CrossRef]
- Dudzińska, M.; Szczyrek, M.; Wojas-Krawczyk, K.; Świrska, J.; Chmielewska, I.; Zwolak, A. Endocrine Adverse Events of Nivolumab in Non-Small Cell Lung Cancer Patients—Literature Review. Cancers 2020, 12, 2314. [Google Scholar] [CrossRef]
- Yoshino, K.; Nakayama, T.; Ito, A.; Sato, E.; Kitano, S. Severe colitis after PD-1 blockade with nivolumab in advanced melanoma patients: Potential role of Th1-dominant immune response in immune-related adverse events: Two case reports. BMC Cancer 2019, 19, 1019. [Google Scholar] [CrossRef]
- Mathew Thomas, V.; Bindal, P.; Ann Alexander, S.; McDonald, K. Nivolumab-induced hepatitis: A rare side effect of an immune check point inhibitor. J. Oncol. Pharm. Pract. 2020, 26, 459–461. [Google Scholar] [CrossRef]
- Vandiver, J.W.; Singer, Z.; Harshberger, C. Severe hyponatremia and immune nephritis following an initial infusion of nivolumab. Target. Oncol. 2016, 11, 553–556. [Google Scholar] [CrossRef]
- Merck Sharp & Dohme Corp. KEYTRUDA® (Pembrolizumab) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s084lbl.pdf (accessed on 9 June 2020).
- Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet Lond. Engl. 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Leroy, V.; Templier, C.; Faivre, J.-B.; Scherpereel, A.; Fournier, C.; Mortier, L.; Wemeau-Stervinou, L. Pembrolizumab-induced pneumonitis. ERJ Open Res. 2017, 3, 00081-2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Klionsky, Y.; Treasure, M.E.; Bruno, D.S. Pembrolizumab-induced immune-mediated colitis in a patient with concurrent Clostridium difficile infection. Case Rep. Oncol. 2019, 12, 164–170. [Google Scholar] [CrossRef]
- Ahmed, M.; Francis, G. Pembrolizumab-Induced Microscopic Colitis. Am. J. Gastroenterol. 2018, 113, 629–630. [Google Scholar] [CrossRef]
- Aivazian, K.; Long, G.V.; Sinclair, E.C.; Kench, J.G.; McKenzie, C.A. Histopathology of pembrolizumab-induced hepatitis: A case report. Pathology 2017, 49, 789–792. [Google Scholar] [CrossRef]
- Kobayashi, K.; Nakachi, I.; Mitsuishi, A.; Arai, D.; Sakurai, K.; Masaki, K.; Chiyotani, A.; Takahashi, H.; Tahara, T.; Soejima, K. Successful Retreatment Using Pembrolizumab for Non-small-cell Lung Cancer After Severe Immune-related Hepatitis: A Case Report. Clin. Lung Cancer 2020, 21, e30. [Google Scholar] [CrossRef] [Green Version]
- Kawaji, L.D.R.; Villanueva, M.G.M.; Villa, M.L. SUN-276 Pembrolizumab-Induced Secondary Adrenal Insufficiency Presenting as Severe Hyponatremia in an 80-Year-Old Male. J. Endocr. Soc. 2020, 4, SUN-276. [Google Scholar] [CrossRef]
- Oristrell, G.; Bañeras, J.; Ros, J.; Muñoz, E. Cardiac tamponade and adrenal insufficiency due to pembrolizumab: A case report. Eur. Heart J. Case Rep. 2018, 2, yty038. [Google Scholar] [CrossRef]
- Imblum, B.A.; Baloch, Z.W.; Fraker, D.; LiVolsi, V.A. Pembrolizumab-induced thyroiditis. Endocr. Pathol. 2019, 30, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, N.; Tsuji, K.; Ichihara, E.; Hara, T.; Fukushima, K.; Toma, K.; Kitamura, S.; Inagaki, K.; Sugiyama, H.; Wada, J. Pembrolizumab-induced hypothyroidism caused reversible increased serum creatinine levels: A case report. BMC Nephrol. 2020, 21, 1–5. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Maamari, J.; Yeung, S.-C.J.; Chaftari, P.S. Diabetic ketoacidosis induced by a single dose of pembrolizumab. Am. J. Emerg. Med. 2019, 37, 376.e1–376.e2. [Google Scholar] [CrossRef]
- Chae, Y.K.; Chiec, L.; Mohindra, N.; Gentzler, R.; Patel, J.; Giles, F. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes. Cancer Immunol. Immunother. 2017, 66, 25–32. [Google Scholar] [CrossRef]
- Shirali, A.C.; Perazella, M.A.; Gettinger, S. Association of Acute Interstitial Nephritis With Programmed Cell Death 1 Inhibitor Therapy in Lung Cancer Patients. Am. J. Kidney Dis. 2016, 68, 287–291. [Google Scholar] [CrossRef]
- Taki, T.; Oda, N.; Fujioka, Y.; Mitani, R.; Tokura, T.; Takata, I.; Oshiro, Y.; Takigawa, N. Successful Treatment of Non-small-cell Lung Cancer with Atezolizumab following Tubulointerstitial Nephritis due to Pembrolizumab. Intern. Med. 2020, 29, 1639–1642. [Google Scholar] [CrossRef] [Green Version]
- Genentech Inc. TECENTRIQ® (Atezolizumab) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761034s028lbl.pdf (accessed on 9 June 2020).
- Li, J.; Deng, X.; Wang, B.; Li, W. Fatal outcome of atezolizumab in a patient with immune-mediated pneumonitis, thrombocytopenia, and cardiac dysfunction: A case report. Int. J. Clin. Pharmacol. Ther. 2019, 57, 607–611. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Li, S.-H.; Yang, C.-T. Recurrent Pneumonitis Induced by Atezolizumab (Anti–Programmed Death Ligand 1) in NSCLC Patients Who Previously Experienced Anti-Programmed Death 1 Immunotherapy-Related Pneumonitis. J. Thorac. Oncol. 2018, 13, e227–e230. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S.; Kato, T.; Kenmotsu, H.; Ogura, T.; Iwasawa, S.; Sato, Y.; Harada, T.; Kubota, K.; Tokito, T.; Okamoto, I. A phase II study of atezolizumab for pretreated non-small cell lung cancer with idiopathic interstitial pneumonias. J. Thorac. Oncol. 2020. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 44–59. [Google Scholar] [CrossRef]
- Kanie, K.; Iguchi, G.; Bando, H.; Fujita, Y.; Odake, Y.; Yoshida, K.; Matsumoto, R.; Fukuoka, H.; Ogawa, W.; Takahashi, Y. Two cases of atezolizumab-induced hypophysitis. J. Endocr. Soc. 2018, 2, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. New Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Reuben, A.; Petaccia de Macedo, M.; McQuade, J.; Joon, A.; Ren, Z.; Calderone, T.; Conner, B.; Wani, K.; Cooper, Z.A.; Tawbi, H. Comparative immunologic characterization of autoimmune giant cell myocarditis with ipilimumab. Oncoimmunology 2017, 6, e1361097. [Google Scholar] [CrossRef] [PubMed]
- Bristol Myers Squibb. YERVOY® (Ipilimumab) [Packzage Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125377s111lbl.pdf (accessed on 9 June 2020).
- Lai, K.; Shannon, V.; Bashoura, L.; Faiz, S. Ipilimumab Pneumonitis Treated with Infliximab. In A39. Drug Related Case Reports; American Thoracic Society: New York, NY, USA, 2019; p. A1505. [Google Scholar]
- Witges, K.; Shafer, L.A.; Zarychanski, R.; Abou-Setta, A.M.; Rabbani, R.; Dingwall, O.; Bernstein, C.N. Ipilimumab-Induced Enterocolitis: A Systematic Review and Meta-Analysis. Drug Saf. 2020, 1–12. [Google Scholar] [CrossRef]
- Pagès, C.; Gornet, J.M.; Monsel, G.; Allez, M.; Bertheau, P.; Bagot, M.; Lebbé, C.; Viguier, M. Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Res. 2013, 23, 227–230. [Google Scholar] [CrossRef]
- Izzedine, H.; Gueutin, V.; Gharbi, C.; Mateus, C.; Robert, C.; Routier, E.; Thomas, M.; Baumelou, A.; Rouvier, P. Kidney injuries related to ipilimumab. Investig. New Drugs 2014, 32, 769–773. [Google Scholar] [CrossRef]
- Kidd, J.M.; Gizaw, A.B. Ipilimumab-associated minimal-change disease. Kidney Int. 2016, 89, 720. [Google Scholar] [CrossRef] [Green Version]
- Thajudeen, B.; Madhrira, M.; Bracamonte, E.; Cranmer, L.D. Ipilimumab granulomatous interstitial nephritis. Am. J. Ther. 2015, 22, e84–e87. [Google Scholar] [CrossRef]
- Fadel, F.; Karoui, K.E.; Knebelmann, B. Anti-CTLA4 antibody–induced lupus nephritis. N. Engl. J. Med. 2009, 361, 211–212. [Google Scholar] [CrossRef]
- Ferrari, S.M.; Fallahi, P.; Galetta, F.; Citi, E.; Benvenga, S.; Antonelli, A. Thyroid disorders induced by checkpoint inhibitors. Rev. Endocr. Metab. Disord. 2018, 19, 325–333. [Google Scholar] [CrossRef]
- Gaballa, S.; Hlaing, K.M.; Mahler, N.; Moursy, S.; Ahmed, A. A Rare Case of Immune-Mediated Primary Adrenal Insufficiency With Cytotoxic T-Lymphocyte Antigen-4 Inhibitor Ipilimumab in Metastatic Melanoma of Lung and Neck of Unknown Primary. Cureus 2020, 12, e8602. [Google Scholar] [CrossRef]
- Shiba, M.; Inaba, H.; Ariyasu, H.; Kawai, S.; Inagaki, Y.; Matsuno, S.; Iwakura, H.; Yamamoto, Y.; Nishi, M.; Akamizu, T. Fulminant type 1 diabetes mellitus accompanied by positive conversion of anti-insulin antibody after the administration of anti-CTLA-4 antibody following the discontinuation of anti-PD-1 antibody. Intern. Med. 2018, 57, 2029–2034. [Google Scholar] [CrossRef] [Green Version]
- Tsiogka, A.; Jansky, G.L.; Bauer, J.W.; Koelblinger, P. Fulminant type 1 diabetes after adjuvant ipilimumab therapy in cutaneous melanoma. Melanoma Res. 2017, 27, 524–525. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca Pharmaceuticals L.P. IMFINZI® (Durvalumab) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761069s020lbl.pdf (accessed on 9 July 2020).
- Garassino, M.C.; Cho, B.-C.; Kim, J.-H.; Mazières, J.; Vansteenkiste, J.; Lena, H.; Corral Jaime, J.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 521–536. [Google Scholar] [CrossRef]
- Tonk, E.H.J.; van Lindert, A.S.R.; Verhoeff, J.J.C.; Suijkerbuijk, K.P.M. Acute-Onset Pneumonitis while Administering the First Dose of Durvalumab. Case Rep. Oncol. 2019, 12, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Otsuka, T.; Hayashi, R.; Horita, T.; Ota, M.; Sakurai, N.; Takano, H.; Hayashi, T.; Kumagai, M.; Yamada, S. Durvalumab-Induced Immune-Related Hepatitis in a Patient with Non-small Cell Lung Cancer. Intern. Med. 2020, 59, 2711–2717. [Google Scholar] [CrossRef]
- Yang, H.; Shen, K.; Zhu, C.; Li, Q.; Zhao, Y.; Ma, X. Safety and efficacy of durvalumab (MEDI4736) in various solid tumors. Drug Des. Dev. Ther. 2018, 12, 2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, E.; Ko, C.; Dai, F.; Tomayko, M.M.; Kluger, H.; Leventhal, J.S. Inflammatory eruptions associated with immune checkpoint inhibitor therapy: A single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J. Am. Acad. Dermatol. 2019, 80, 990–997. [Google Scholar] [CrossRef]
- Lin, W.-H.; Lee, K.-Y.; Lee, W.-R.; Shih, Y.-H. Durvalumab-induced de novo annular psoriasiform drug eruption successfully treated with a combination of narrowband ultraviolet B phototherapy and topical treatment. J. Dermatol. 2020, 47, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Gorantla, Y.; Amblee, A.; Lee, Y.L.; Yap, S.E.T. SAT-506 Rare Case of Durvalumab-Induced Thyroiditis, Transient Secondary Adrenal Insufficiency and Autoimmune Diabetes. J. Endocr. Soc. 2020, 4, SAT-506. [Google Scholar] [CrossRef]
- Mengíbar, J.L.; Capel, I.; Bonfill, T.; Mazarico, I.; Espuña, L.C.; Caixàs, A.; Rigla, M. Simultaneous onset of type 1 diabetes mellitus and silent thyroiditis under durvalumab treatment. Endocrinol. Diabetes Metab. Case Rep. 2019. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Chin, V.; Greenfield, J.R. Durvalumab-induced diabetic ketoacidosis followed by hypothyroidism. Endocrinol. Diabetes Metab. Case Rep. 2019, 2019, 98. [Google Scholar] [CrossRef] [Green Version]
- Schiller, J.H.; Harrington, D.; Belani, C.P.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Comparison of Four Chemotherapy Regimens for Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2002, 346, 92–98. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Parikh, P.; von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef]
- Ozkok, A.; Edelstein, C.L. Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 2014, 2014, 967826. [Google Scholar] [CrossRef]
- Rowinsky, E.K.; Donehower, R.C. Paclitaxel (Taxol). N. Engl. J. Med. 1995, 332, 1004–1014. [Google Scholar] [CrossRef]
- Verweij, J.; Clavel, M.; Chevalier, B. Paclitaxel (Taxol) and docetaxel (Taxotere): Not simply two of a kind. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 1994, 5, 495–505. [Google Scholar] [CrossRef]
- Vu, T.; Ellard, S.; Speers, C.H.; Taylor, S.C.M.; de Lemos, M.L.; Hu, F.; Kuik, K.; Olivotto, I.A. Survival outcome and cost-effectiveness with docetaxel and paclitaxel in patients with metastatic breast cancer: A population-based evaluation. Ann. Oncol. 2008, 19, 461–464. [Google Scholar] [CrossRef]
- Jones, S.E.; Erban, J.; Overmoyer, B.; Budd, G.T.; Hutchins, L.; Lower, E.; Laufman, L.; Sundaram, S.; Urba, W.J.; Pritchard, K.I.; et al. Randomized Phase III Study of Docetaxel Compared With Paclitaxel in Metastatic Breast Cancer. J. Clin. Oncol. 2005, 23, 5542–5551. [Google Scholar] [CrossRef]
- Scotté, F.; Tourani, J.-M.; Banu, E.; Peyromaure, M.; Levy, E.; Marsan, S.; Magherini, E.; Fabre-Guillevin, E.; Andrieu, J.-M.; Oudard, S. Multicenter Study of a Frozen Glove to Prevent Docetaxel-Induced Onycholysis and Cutaneous Toxicity of the Hand. J. Clin. Oncol. 2005, 23, 4424–4429. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.; Seguí, M.A.; Antón, A.; Ruiz, A.; Ramos, M.; Adrover, E.; Aranda, I.; Rodríguez-Lescure, A.; Große, R.; Calvo, L.; et al. Adjuvant Docetaxel for High-Risk, Node-Negative Breast Cancer. N. Engl. J. Med. 2010, 363, 2200–2210. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Park, S.; Kang, J.E.; Lee, H.M.; Kim, S.A.; Rhie, S.J. Efficacy and safety of nanoparticle-albumin-bound paclitaxel compared with solvent-based taxanes for metastatic breast cancer: A meta-analysis. Sci. Rep. 2020, 10, 530. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef] [PubMed]
- Eli, L. GEMZAR (Gemcitabine) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020509s082lbl.pdf (accessed on 9 October 2020).
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Sabria-Trias, J.; Bonnaud, F.; Sioniac, M. Severe interstitial pneumonitis related to gemcitabine. Rev. Des Mal. Respir. 2002, 19, 645–647. [Google Scholar]
- Pavlakis, N.; Bell, D.R.; Millward, M.J.; Levi, J.A. Fatal pulmonary toxicity resulting from treatment with gemcitabine. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1997, 80, 286–291. [Google Scholar] [CrossRef]
- De Pas, T.; Curigliano, G.; Franceschelli, L.; Catania, C.; Spaggiari, L.; De Braud, F. Gemcitabine-induced systemic capillary leak syndrome. Ann. Oncol. 2001, 12, 1651–1652. [Google Scholar] [CrossRef]
- Pulkkanen, K.; Kataja, V.; Johansson, R. Systemic capillary leak syndrome resulting from gemcitabine treatment in renal cell carcinoma: A case report. J. Chemother. 2003, 15, 287–289. [Google Scholar] [CrossRef]
- Els, N.J.V.; Miller, V. Successful treatment of gemcitabine toxicity with a brief course of oral corticosteroid therapy. Chest 1998, 114, 1779–1781. [Google Scholar]
- Russell, M.T.; Nassif, A.S.; Cacayorin, E.D.; Awwad, E.; Perman, W.; Dunphy, F. Gemcitabine-associated posterior reversible encephalopathy syndrome: MR imaging and MR spectroscopy findings. Magn. Reson. Imaging 2001, 19, 129–132. [Google Scholar] [CrossRef]
- Kwon, E.J.; Kim, S.W.; Kim, K.K.; Seo, H.S.; Kim, D.Y. A case of gemcitabine and cisplatin associated posterior reversible encephalopathy syndrome. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2009, 41, 53. [Google Scholar] [CrossRef]
- Lilly USA LLC. ALIMTA (Pemetrexed) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/021462s053lbl.pdf (accessed on 13 September 2020).
- Huang, J.-J.; Ma, S.-X.; Hou, X.; Wang, Z.; Zeng, Y.-D.; Qin, T.; Dinglin, X.-X.; Chen, L.-K. Toxic epidermal necrolysis related to AP (pemetrexed plus cisplatin) and gefitinib combination therapy in a patient with metastatic non-small cell lung cancer. Chin. J. Cancer 2015, 34, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheinpflug, K.; Menzel, C.; Koch, A.; Kahl, C.; Achenbach, H.J. Toxic epidermal necrolysis related to cisplatin and pemetrexed for metastatic non-small cell lung cancer. Oncol. Res. Treat. 2012, 35, 600–603. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M.; Hui, R.; Hochmair, M.J.; Clingan, P.; Powell, S.F.; et al. Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Jassem, J.; Herbst, R.S.; de Marinis, F.; Cadranel, J.; Csőszi, T.; Isla, D.; Chen, G.; Syrigos, K.N.; Cortinovis, D.; Hida, T. IMpower110: Clinical Safety in a Phase III Study of Atezolizumab (Atezo) Monotherapy (Mono) vs Platinum-Based Chemotherapy (Chemo) in First-Line Non-Small Cell Lung Cancer (NSCLC); American Society of Clinical Oncology: Alexandria, VA, USA, 2020. [Google Scholar]
- U.S.F.D. Administration. FDA Approves Atezolizumab for First-Line Treatment of Metastatic NSCLC with High PD-L1 Expression. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-atezolizumab-first-line-treatment-metastatic-nsclc-high-pd-l1-expression (accessed on 31 May 2020).
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet. Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- Reck, M.; Wehler, T.; Orlandi, F.; Nogami, N.; Barone, C.; Moro-Sibilot, D.; Shtivelband, M.; González Larriba, J.L.; Rothenstein, J.; Früh, M.; et al. Safety and Patient-Reported Outcomes of Atezolizumab Plus Chemotherapy With or Without Bevacizumab Versus Bevacizumab Plus Chemotherapy in Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Ciuleanu, T.-E.; Dols, M.C.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O. Nivolumab (NIVO)+ Ipilimumab (IPI)+ 2 Cycles of Platinum-Doublet Chemotherapy (Chemo) vs 4 Cycles Chemo as First-Line (1L) Treatment (tx) for Stage IV/Recurrent Non-Small Cell Lung Cancer (NSCLC): CheckMate 9LA; American Society of Clinical Oncology: Alexandria, VA, USA, 2020. [Google Scholar]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef]
- Reck, M.; Kerr, K.M.; Grohé, C.; Manegold, C.; Pavlakis, N.; Paz-Ares, L.; Huber, R.M.; Popat, S.; Thatcher, N.; Park, K.; et al. Defining aggressive or early progressing nononcogene-addicted non-small-cell lung cancer: A separate disease entity? Future Oncol. Lond. Engl. 2019, 15, 1363–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seliger, B. Basis of PD1/PD-L1 Therapies. J. Clin. Med. 2019, 8, 2168. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Argote, J.; Dasanu, C.A. Durvalumab in cancer medicine: A comprehensive review. Expert Opin. Biol. Ther. 2019, 19, 927–935. [Google Scholar] [CrossRef]
- Picardo, S.L.; Doi, J.; Hansen, A.R. Structure and Optimization of Checkpoint Inhibitors. Cancers 2020, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Antonia, S.; Goldberg, S.B.; Balmanoukian, A.; Chaft, J.E.; Sanborn, R.E.; Gupta, A.; Narwal, R.; Steele, K.; Gu, Y.; Karakunnel, J.J.; et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study. Lancet. Oncol. 2016, 17, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, N.A.; Cho, B.C.; Reinmuth, N.; Lee, K.H.; Luft, A.; Ahn, M.J.; van den Heuvel, M.M.; Cobo, M.; Vicente, D.; Smolin, A.; et al. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 661–674. [Google Scholar] [CrossRef] [Green Version]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Gray, J.E.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; Cho, B.C.; et al. Three-Year Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC-Update from PACIFIC. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2020, 15, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Antonia, S.J. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. Reply. N. Engl. J. Med. 2019, 380, 990. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wu, Y.; Zheng, S.; Cheng, G.; He, X.; Bi, N. Durvalumab after concurrent chemoradiotherapy in a patient with chemotherapy-resistant unresectable stage III non-small cell lung cancer: A case report. Ann. Palliat. Med. 2020, 9, 2375–2380. [Google Scholar] [CrossRef]
- Jung, H.A.; Noh, J.M.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Ahn, M.J.; Pyo, H.; Ahn, Y.C.; Park, K. Real world data of durvalumab consolidation after chemoradiotherapy in stage III non-small-cell lung cancer. Lung Cancer Amst. Neth. 2020, 146, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Bozorgmehr, F.; Chung, I.; Christopoulos, P.; Krisam, J.; Schneider, M.A.; Brückner, L.; Mueller, D.W.; Thomas, M.; Rieken, S. Thoracic radiotherapy plus Durvalumab in elderly and/or frail NSCLC stage III patients unfit for chemotherapy—Employing optimized (hypofractionated) radiotherapy to foster durvalumab efficacy: Study protocol of the TRADE-hypo trial. BMC Cancer 2020, 20, 806. [Google Scholar] [CrossRef]
- Yamada, T.; Uchino, J.; Chihara, Y.; Shimamoto, T.; Iwasaku, M.; Tamiya, N.; Kaneko, Y.; Kiyomi, F.; Takayama, K. Rationale and design of a phase II trial of durvalumab treatment in patients with NSCLC ineligible for stage III chemoradiotherapy following radiation monotherapy (SPIRAL-RT study). Ther. Adv. Med Oncol. 2020, 12, 7841. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
- Shaw, A.T.; Kim, D.-W.; Mehra, R.; Tan, D.S.W.; Felip, E.; Chow, L.Q.M.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; et al. Ceritinib in ALK-Rearranged Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2014, 370, 1189–1197. [Google Scholar] [CrossRef] [Green Version]
- Solomon, B.J.; Mok, T.; Kim, D.-W.; Wu, Y.-L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2019, 382, 41–50. [Google Scholar] [CrossRef]
- Cataldo, V.D.; Gibbons, D.L.; Pérez-Soler, R.; Quintás-Cardama, A. Treatment of Non–Small-Cell Lung Cancer with Erlotinib or Gefitinib. N. Engl. J. Med. 2011, 364, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Sequist, L.V.; Yang, J.C.-H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.-M.; Boyer, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 2013, 31, 3327–3334. [Google Scholar] [CrossRef] [Green Version]
- Moro-Sibilot, D.; Cozic, N.; Pérol, M.; Mazières, J.; Otto, J.; Souquet, P.J.; Bahleda, R.; Wislez, M.; Zalcman, G.; Guibert, S.D.; et al. Crizotinib in c-MET- or ROS1-positive NSCLC: Results of the AcSé phase II trial. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2019, 30, 1985–1991. [Google Scholar] [CrossRef]
- Al-Salama, Z.T.; Keam, S.J. Entrectinib: First Global Approval. Drugs 2019, 79, 1477–1483. [Google Scholar] [CrossRef]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M., Jr.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet. Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Souquet, P.J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, J.; Novello, S.; et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet. Oncol. 2016, 17, 984–993. [Google Scholar] [CrossRef] [Green Version]
- Planchard, D.; Kim, T.M.; Mazieres, J.; Quoix, E.; Riely, G.; Barlesi, F.; Souquet, P.J.; Smit, E.F.; Groen, H.J.; Kelly, R.J.; et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: A single-arm, multicentre, open-label, phase 2 trial. Lancet. Oncol. 2016, 17, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Mazieres, J.; Cropet, C.; Montané, L.; Barlesi, F.; Souquet, P.J.; Quantin, X.; Dubos-Arvis, C.; Otto, J.; Favier, L.; Avrillon, V.; et al. Vemurafenib in non-small-cell lung cancer patients with BRAF(V600) and BRAF(nonV600) mutations. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2020, 31, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Wolf, J.; Seto, T.; Han, J.-Y.; Reguart, N.; Garon, E.B.; Groen, H.J.; Tan, D.S.-W.; Hida, T.; De Jonge, M.J.; Orlov, S.V. Capmatinib (INC280) in METΔex14-Mutated Advanced Non-Small Cell Lung Cancer (NSCLC): Efficacy Data From the Phase II GEOMETRY Mono-1 Study; American Society of Clinical Oncology: Alexandria, VA, USA, 2019. [Google Scholar]
- Subbiah, V.; Yang, D.; Velcheti, V.; Drilon, A.; Meric-Bernstam, F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1209–1221. [Google Scholar] [CrossRef]
Generic Name | Brand Name | Antibody Type | Indications and Usage Other than NSCLC | Target | Half-Life (Days) |
---|---|---|---|---|---|
Pembrolizumab | Keytruda | Humanized IgG4 kappa |
| PD-1 | 22 |
Nivolumab | Opdivo | Fully human IgG4 kappa |
| PD-1 | 25 |
Atezolizumab | Tecentriq | Humanized non-glycosylated IgG1 kappa |
| PD-L1 | 27 |
Ipilimumab | Yervoy | Fully human IgG1 kappa |
| CTLA-4 | 15 |
Durvalumab | Imfinzi | Fully human IgG1 kappa |
| PD-L1 | 18 |
Pathology | PDL-1 | Arm I (OS) | Arm II (OS) | HR | |
---|---|---|---|---|---|
KEYNOTE-024 | squamous (18%) and nonsquamous (82%) | ≥50% | Pembrolizumab | Investigator’s choice of platinum-based chemotherapy | |
30 months | 14.2 months | 0.63 | |||
KEYNOTE-042 | squamous (38%) and nonsquamous (62%) | ≥1% | Pembrolizumab | Investigator’s choice of platinum-based chemotherapy doublet | |
16.7 months | 12.1 months | 0.81 | |||
KEYNOTE-189 | nonsquamous | Any level | Pembrolizumab & Pemetrexed + Cisplatin/Carboplatin | Pemetrexed + Cisplatin/Carboplatin | |
22 months | 10.7 month | 0.56 | |||
KEYNOTE-407 | squamous | Any level | Pembrolizumab & Carboplatin + paclitaxel or nab–paclitaxel | Carboplatin + paclitaxel or nab–paclitaxel | |
15.9 months | 11.3 months | 0.64 | |||
CHECKMATE-227 | squamous (28%) and nonsquamous (72%) | Any level ≥1% <1% | Nivolumab and Ipilimumab | Cisplatin/Carboplatin + Gemcitabine (for squamous) or pemetrexed (nonsquamous) | |
17.1 months | 14.9 months | 0.79 | |||
17.2 months | 12.2 months | 0.62 | |||
CHECKMATE 9LA | squamous and nonsquamous | Any level | Nivolumab & Ipilimumab + Cisplatin/Carboplatin + Pemetrexed/Paclitaxel | Cisplatin/Carboplatin + Pemetrexed/Paclitaxel | |
15.6 months | 10.9 months | 0.66 | |||
IMpower110 | squamous (25%) and nonsquamous (75%) | ≥50% | Atezolizumab | Cisplatin/Carboplatin + Gemcitabine (for squamous) or pemetrexed (nonsquamous) | |
20.2 months | 13.1 months | 0.59 | |||
IMpower130 | non-squamous | Any level | Atezolizumab & Carboplatin +nab-paclitaxel | Carboplatin +nab-paclitaxel | |
18.6 months | 13.9 months | 0.79 | |||
IMpower150 | non-squamous | Any level | Atezolizumab + Bevacizumab + Carboplatin, and Paclitaxel | Bevacizumab + Carboplatin, and Paclitaxel | |
19.8 months | 14.9 months | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasser, N.J.; Gorenberg, M.; Agbarya, A. First line Immunotherapy for Non-Small Cell Lung Cancer. Pharmaceuticals 2020, 13, 373. https://doi.org/10.3390/ph13110373
Nasser NJ, Gorenberg M, Agbarya A. First line Immunotherapy for Non-Small Cell Lung Cancer. Pharmaceuticals. 2020; 13(11):373. https://doi.org/10.3390/ph13110373
Chicago/Turabian StyleNasser, Nicola J., Miguel Gorenberg, and Abed Agbarya. 2020. "First line Immunotherapy for Non-Small Cell Lung Cancer" Pharmaceuticals 13, no. 11: 373. https://doi.org/10.3390/ph13110373
APA StyleNasser, N. J., Gorenberg, M., & Agbarya, A. (2020). First line Immunotherapy for Non-Small Cell Lung Cancer. Pharmaceuticals, 13(11), 373. https://doi.org/10.3390/ph13110373