Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses
Abstract
:IC50 μM (a) | MW g/mole | Blood [Conc. μM] (b) | Ratio: (Blood [Conc μM])/IC50 | Blood [Conc.] Ref. | Additional Notes | |
---|---|---|---|---|---|---|
Lopinavir | 17 | 628.81 | 11.45 | 0.67 | [33] | Cmin 7.2 mg/L, 400 mg twice daily |
Loperamide | 5.9 | 477 | 0.001 | <0.005 | [34] | ~0.5 ng/mL after 4 mg dose |
Chloroquine | 5.2 | 319.9 | 1.56 | 0.30 | [35] | ~0.5 mg/L dose, 450 mg/day |
Hydroxychloroquine | 8.28 | 335.9 | 3.72 | 0.45 | [36] | range of 500–2000 ng/mL, dose maximum of 200–400 mg/day depending on renal function |
Amodiaquine | 6.21 | 355.86 | 0.76 | 0.12 | [37] | ~270 ng/mL, 10 mg/kg single dose; Is rapidly metabolised to desethylamodiaquine – blood level is for metabolite (assumed to be as active as parent) |
Chlorpromazine | 9.15 | 318.86 | 0.52 | 0.06 | [38] | Reference range: 30–300 ng/mL Large volume of distribution [38] |
Promethazine | 11.8 | 284.4 | 0.02 | <0.005 | [39] | ~5 ng/mL peak, 25 mg oral single dose Large volume of distribution [39] |
Fluphenazine | 5.86 | 437.52 | 0.01 | <0.005 | [38] | Reference range: 1–10 ng/mL Large volume of distribution [38] |
Thiothixene | 9.3 | 443.6 | 0.05 | <0.005 | [40] | 3–45 ng/mL, 20 mg dose |
Astemizole | 4.88 | 458.57 | 0.17 | 0.04 | [41] | ~70 μg/L peak, 300 mg single oral dose. Blood level was astemizole + hydroxylated (active) metabolites. Large volume of distribution. |
Triflupromazine | 5.76 | 352.418 | Insufficient data to make assessment | |||
Clomipramine | 9.33 | 314.9 | 1.05 | 0.11 | [38] | Reference range: 230–450 ng/mL Large volume of distribution [38] |
Emetine | 0.01 | 480.64 | 0.08 | 8.32 | [14] | 5 to 73 ng/mL, 11.4 mg oral dose. The blood concentration used was the midpoint in subjects with detectable levels of emetine |
Tamoxifen | 10.12 | 371.5 | 0.32 | 0.03 | [42] | 120 ng/mL, 20 mg daily |
Cycloheximide | 0.19 | Too toxic [43] | ||||
Dasatinib | 5.47 | 488.01 | 0.003 | <0.005 | [44] | Cmin to <3 nmol/l |
Ribavirin (c) | 40.9 | 244.2 | 8.19 | 0.20 | [45] | <30% of patients obtained this concentration 2 mg/l after 24 weeks [45] |
Mycophenolic acid (c) (d) | 0.53 | 320.34 | 6.24 | 11.78 | [46] | The blood concentrations are the troughs; the peaks are substantially higher. Calculated on a trough of 2 μg/mL |
Mycophenolic acid + 12.5 IU/mL interferon beta-1b (d) (e) | 0.187 | 320.34 | 6.24 | 33.39 | [46,47] | The blood concentrations are the troughs; the peaks are substantially higher. Calculated on a trough of 2 μg/mL |
Drug | Antiviral Efficacy |
---|---|
Amiodarone | Filovirus—IC50 0.25–1.38 μg/mL Ebola virus—IC50 5.60 μM HCV—EC50 2.10 μM |
Bepridil | Ebola virus—IC50 3.21–5.08 μM |
Chloroquine and Hydroxychloroquine | CCHFV—IC50 28.00–43.00 μM Filovirus—EC50 4.70–15.00 μM HCoV-OC43—EC50 0.306 μM KSHV—IC50 3.30–5.10 μM MERS-CoV—EC50 3.00–6.28 μM SARS-CoV—EC50 6.54–8.80 μM Dengue virus type 2—EC50 9.70–12.90 μM KSHV—IC50 1.30 μM |
Quinacrine | Dengue virus type 2—EC50 7.09 μM Zika virus—EC50 2.27 μM |
Mefloquine | Dengue virus type 2 – EC50 4.36 μM Zika virus—EC50 3.95 μM |
Chlorpromazine | CCHFV—IC50 10.80–15.70 μM MERS-CoV—EC50 4.90–9.51 μM SARS-CoV—EC50 12.97 μM |
Promethazine | Filovirus—IC50 19.10–19.40 μM |
Sertraline | Ebola virus—IC50 1.44–3.13 μM |
Trimipramine | Filovirus—IC50 10.90–11.10 μM |
Clomiphene | Filovirus—IC50 0.76–11.10 μM HCV—EC50 |
Tamoxifen | HCV—EC50 0.10 μM HSV—IC50 4.89 μM MERS-CoV—EC50 10.12 μM SARS-CoV—EC50 92.89 μM |
Toremifene | Filovirus—IC50 0.03–6.17 μM MERS-CoV—EC50 12.92 μM SARS-CoV—EC50 11.97 μM |
Sunitinib | HCV—IC50 0.05 μM |
Terconazole | Ebola virus—IC50 7.07–8.26 μM |
Triparanol | Ebola virus—IC50 1.92 μM |
Author Contributions
Funding
Conflicts of Interest
References
- Lee, M.R. Ipecacuanha: The South American vomiting root. J. R. Coll. Physicians Edinb. 2008, 38, 6. [Google Scholar]
- Liu, Q.; Xia, S.; Sun, Z.; Wang, Q.; Du, L.; Lu, L.; Jiang, S. Testing of Middle East Respiratory Syndrome coronavirus replication inhibitors for the ability to block viral entry. Antimicrob. Agents Chemother. 2014, 59, 742–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, J.; Coleman, C.; Hart, B.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.; Jahrling, P.B.; Laidlaw, M.; et al. Repurposing of clinically developed drugs for treatment of Middle East Respiratory Syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014, 58, 4885–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedder, E.B. An experimental study of the action of ipecacuanha on amoebae. Far East. Assoc. Trop. Med. Trans. Second Bienn. Congr. Held Hongkong 1912, 87–91. [Google Scholar]
- Yang, W.C.; Dubick, M. Mechanism of emetine cardiotoxicity. Pharmacol. Ther. 1980, 10, 15–26. [Google Scholar] [CrossRef]
- Gilman, A.; Goodman, L.; Goodman, A. (Eds.) Pharmacological Basis Therapeutics, 6th ed.; Macmillan: New York, NY, USA, 1980; ISBN 978-0-02-344720-4. [Google Scholar]
- Scragg, J.N.; Powell, S.J. Emetine hydrochloride and chloroquine in the treatment of children with amoebic liver abscess. Arch. Dis. Child. 1966, 41, 549–550. [Google Scholar] [CrossRef] [Green Version]
- Foy, G. Ipecacuanha and emetine. Lancet 1912, 180, 1242. [Google Scholar] [CrossRef] [Green Version]
- Scharman, E.J.; Hutzler, J.M.; Rosencrance, J.G.; Tracy, T.S. Single dose pharmacokinetics of syrup of ipecac. Ther. Drug Monit. 2000, 22, 566–573. [Google Scholar] [CrossRef]
- Minton, N.; Swift, R.; Lawlor, C.; Mant, T.; Henry, J. Ipecacuanha-induced emesis: A human model for testing antiemetic drug activity. Clin. Pharmacol. Ther. 1993, 54, 53–57. [Google Scholar] [CrossRef]
- Asano, T.; Ishihara, K.; Wakui, Y.; Yanagisawa, T.; Kimura, M.; Kamei, H.; Yoshida, T.; Kuroiwa, Y.; Fujii, Y.; Yamashita, M.; et al. Absorption, distribution and excretion of 3H-labeled cephaeline- and emetine-spiked ipecac syrup in rats. Eur. J. Drug Metab. Pharmacokinet. 2002, 27, 17–27. [Google Scholar] [CrossRef]
- Reynolds, J.E.F.; Parfitt, K.; Parsons, A.; Sweerman, S. (Eds.) Martindale: The Extra Pharmacopoeia, 29th ed.; The Pharmaceutical Press: London, UK, 1989; ISBN 978-0-85369-210-2. [Google Scholar]
- Yang, S.; Xu, M.; Lee, E.M.; Gorshkov, K.; Shiryaev, S.A.; He, S.; Sun, W.; Cheng, Y.-S.; Hu, X.; Tharappel, A.M.; et al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discov. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, D.M.; Crouch, D.J.; Finkle, B.S. Absorption of ipecac alkaloids in emergency patients. Ann. Emerg. Med. 1984, 13, 1100–1102. [Google Scholar] [CrossRef]
- Asano, T.; Watanabe, J.; Sadakane, C.; Ishihara, K.; Hirakura, K.; Wakui, Y.; Yanagisawa, T.; Kimura, M.; Kamei, H.; Yoshida, T.; et al. Biotransformation of the ipecac alkaloids cephaeline and emetine from ipecac syrup in rats. Eur. J. Drug Metab. Pharmacokinet. 2002, 27, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.E.; Herrero, J. Comparative pharmacokinetic studies of dehydroemetine and emetine in guinea pigs using spectrofluorometric and radiometric methods. Am. J. Trop. Med. Hyg. 1965, 14, 78–83. [Google Scholar] [CrossRef]
- Hasegawa, M.; Sasaki, T.; Sadakane, K.; Tabuchi, M.; Takeda, Y.; Kimura, M.; Fujii, Y. Studies for the emetic mechanisms of ipecac syrup (TJN-119) and its active components in ferrets: Involvement of 5-hydroxytryptamine receptors. Jpn. J. Pharmacol. 2002, 89, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Stephen, P.M. Chapter 9: Cardiotoxicity of emetine and analogs. In Principles of Cardiac Toxicology; CRC Press: Boca Raton, FL, USA, 1991; ISBN 978-1-4398-0536-7. [Google Scholar]
- Bansal, D.; Sehgal, R.; Chawla, Y.; Mahajan, R.C.; Malla, N. In vitro activity of antiamoebic drugs against clinical isolates of Entamoeba histolytica and Entamoeba dispar. Ann. Clin. Microbiol. Antimicrob. 2004, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, R.; Roy, S.; Venkatadri, R.; Su, Y.-P.; Ye, W.; Barnaeva, E.; Griner, L.M.; Southall, N.; Hu, X.; Wang, A.Q.; et al. Efficacy and mechanism of action of low dose emetine against human cytomegalovirus. PLOS Pathog. 2016, 12, e1005717. [Google Scholar] [CrossRef] [Green Version]
- Valadão, A.L.C.; Abreu, C.M.; Dias, J.Z.; Arantes, P.R.; Verli, H.; Tanuri, A.; Aguiar, R. Natural plant alkaloid (emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules 2015, 20, 11474–11489. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N.; Deng, Y.; Wang, H.; Ye, F.; Cen, S.; et al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.C.; Dweik, R.; Cohen, M.C. Rapidly reversible cardiomyopathy associated with chronic ipecac ingestion. Clin. Cardiol. 1998, 21, 780–783. [Google Scholar] [CrossRef]
- Adler, A.G.; Walinsky, P.; Krall, R.A.; Cho, S.Y. Death resulting from ipecac syrup poisoning. JAMA 1980, 243, 1927–1928. [Google Scholar] [CrossRef] [PubMed]
- British Pharmacopoeia Omitted-monographs-BP-2000-to-2013—Updated.pdf. Available online: https://www.pharmacopoeia.com/file/monograph%20information/Omitted-monographs-BP-2000-to-2013---updated.pdf (accessed on 21 March 2020).
- USP Reference Standard: Emetine Hydrochloride (300 mg). Available online: https://store.usp.org/OA_HTML/ibeCCtpItmDspRte.jsp?item=18786 (accessed on 25 February 2020).
- WHO. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection is Suspected: Interim Guidance 28 January 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected (accessed on 21 March 2020).
- Akinboye, E.S. Biological activities of emetine. Open Nat. Prod. J. 2011, 4, 8–15. [Google Scholar] [CrossRef]
- Allen, M.R. Skeletal accumulation of bisphosphonates: Implications for osteoporosis treatment. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1371–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Ghamdi, M.; Alghamdi, K.M.; Ghandoora, Y.; Alzahrani, A.; Salah, F.; Alsulami, A.; Bawayan, M.F.; Vaidya, D.; Perl, T.M.; Sood, G. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect. Dis. 2016, 16, 174. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.F.-W.; Yao, Y.; Yeung, M.L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis. 2015, 212, 1904–1913. [Google Scholar] [CrossRef]
- Salata, C.; Calistri, A.; Parolin, C.; Baritussio, A.; Palù, G. Antiviral activity of cationic amphiphilic drugs. Expert Rev. Anti-infective Ther. 2017, 15, 483–492. [Google Scholar] [CrossRef]
- Van Der Lugt, J.; Lange, J.M.A.; Avihingsanon, A.; Andrade, B.B.; Sealoo, S.; Burger, D.; Gorowara, M.; Phanuphak, P.; Ruxrungtham, K. Plasma concentrations of generic lopinavir/ritonavir in HIV type-1-infected individuals. Antivir. Ther. 2009, 14, 1001–1004. [Google Scholar] [CrossRef] [Green Version]
- Kamali, F.; Huang, M.L. Increased systemic availability of loperamide after oral administration of loperamide and loperamide oxide with cotrimoxazole. Br. J. Clin. Pharmacol. 1996, 41, 125–128. [Google Scholar] [CrossRef]
- Karunajeewa, H.A.; Salman, S.; Mueller, I.; Baiwog, F.; Gomorrai, S.; Law, I.; Page-Sharp, M.; Rogerson, S.J.; Siba, P.; Ilett, K.F.; et al. Pharmacokinetics of chloroquine and monodesethylchloroquine in pregnancy. Antimicrob. Agents Chemother. 2010, 54, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Durcan, L.; Clarke, W.; Magder, L.; Petri, M. OP0187 Hydroxychloroquine blood levels in SLE: Clarifying dosing controversies and improving adherence. Ann. Rheum. Dis. 2015, 74, 142–143. [Google Scholar] [CrossRef]
- Orrell, C.; Little, F.; Smith, P.; Folb, P.; Taylor, W.; Olliaro, P.; Barnes, K.I. Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers. Eur. J. Clin. Pharmacol. 2008, 64, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Hiemke, C.; Baumann, P.; Bergemann, N.; Conca, A.; Dietmaier, O.; Egberts, K.; Frič, M.; Gerlach, M.; Greiner, C.; Grunder, G.; et al. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011. Pharmacopsychiatry 2011, 44, 195–235. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.; Houston, J.; Shaffer, J.; Mawer, G. Pharmacokinetics of promethazine and its sulphoxide metabolite after intravenous and oral administration to man. Br. J. Clin. Pharmacol. 1983, 15, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Yesavage, J.A.; Holman, C.A.; Cohn, R. Correlation of thiothixene serum levels and age. Psychopharmacology 1981, 74, 170–172. [Google Scholar] [CrossRef]
- Simons, F.E.; Simons, K.J.; Chung, M.; Yeh, J. The comparative pharmacokinetics of H1-receptor antagonists. Ann. Allergy 1987, 59, 20–24. [Google Scholar]
- Zeneca Pharmaceuticals. Professional Information Brochure: Nolvadex (Tamoxifen Citrate); London, UK, 1998. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/17970.pdf (accessed on 21 March 2020).
- Clemedson, C. ACuteTox: 7-Cycloheximide Revised. Available online: http://www.acutetox.eu/pdf_human_short/7-Cycloheximide%20revised.pdf (accessed on 21 March 2020).
- Talpaz, M.T.; Saglio, G.; Atallah, E.; Rousselot, P. Dasatinib dose management for the treatment of chronic myeloid leukemia. Cancer 2018, 124, 1660–1672. [Google Scholar] [CrossRef]
- Pedersen, C.; Alsiö, Å.; Lagging, M.; Langeland, N.; Färkkilä, M.; Buhl, M.R.; Mørch, K.; Westin, J.; Sangfelt, P.; Norkrans, G.; et al. Ribavirin plasma concentration is a predictor of sustained virological response in patients treated for chronic hepatitis C virus genotype 2/3 infection. J. Viral Hepat. 2011, 18, 245–251. [Google Scholar] [CrossRef]
- Kaplan, B. Mycophenolic acid trough level monitoring in solid organ transplant recipients treated with mycophenolate mofetil: Association with clinical outcome. Curr. Med Res. Opin. 2006, 22, 2355–2364. [Google Scholar] [CrossRef]
- Bayer HealthCare Pharmaceuticals. Betaseron: Highlights of Prescribing Information; Berlin, Germany, 2015. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/103471s5193lbl.pdf (accessed on 21 March 2020).
- Chan, J.F.-W.; Chan, K.-H.; Kao, R.Y.; To, K.K.-W.; Zheng, B.J.; Li, C.P.; Li, P.T.; Dai, J.; Mok, F.K.; Chen, H.; et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J. Infect. 2013, 67, 606–616. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleasel, M.D.; Peterson, G.M. Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses. Pharmaceuticals 2020, 13, 51. https://doi.org/10.3390/ph13030051
Bleasel MD, Peterson GM. Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses. Pharmaceuticals. 2020; 13(3):51. https://doi.org/10.3390/ph13030051
Chicago/Turabian StyleBleasel, Martin D., and Gregory M. Peterson. 2020. "Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses" Pharmaceuticals 13, no. 3: 51. https://doi.org/10.3390/ph13030051
APA StyleBleasel, M. D., & Peterson, G. M. (2020). Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses. Pharmaceuticals, 13(3), 51. https://doi.org/10.3390/ph13030051