Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance
Abstract
:1. Introduction
2. Results
2.1. Compound Synthesis
2.2. Inhibition of MNV Replication and the HuNoV GI.1 Replicon
2.3. Compound 6 Inhibits the Replication of MNV and the HuNoV GI.1 Replicon Most Efficiently
2.4. Compound 6 Acts at the Onset of Viral Replication
2.5. Compound 6 Does Not Directly Inhibit the Norovirus Polymerase
2.6. Selection of Compound 6res MNV Variants
3. Discussion
4. Materials and Methods
4.1. Viruses and Cells
4.2. Compounds
4.3. Antiviral and Cytotoxicity Assay
4.4. Virus Yield Assay and RT-qPCR
4.5. Time-of-Drug-Addition Assay (TOA)
4.6. In Vitro Enzymatic Inhibition Assay with MNV RdRp
4.7. Resistance Selection—MNV
4.8. Site Directed Mutagenesis
4.9. Growing of Resistant Virus Stock
4.10. Antiviral Assay with Mutant Viruses
4.11. Chemistry
4.11.1. General Procedure A
4.11.2. General Procedure B
4.11.3. General Procedure C
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, M.M.; Widdowson, M.A.; Glass, R.I.; Akazawa, K.; Vinjé, J.; Parashar, U.D. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis. 2008, 14, 1224–1231. [Google Scholar] [CrossRef]
- Vega, E.; Barclay, L.; Gregoricus, N.; Shirley, S.H.; Lee, D.; Vinje, J. Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013. J. Clin. Microbiol. 2014, 52, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Gatti, V.; Maga, G.; Samuele, A.; Pannecouque, C.; Schols, D.; Balzarini, J.; et al. Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: New cyclic substituents at indole-2-carboxamide. J. Med. Chem. 2011, 54, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Ragno, R.; Artico, M.; De Martino, G.; La Regina, G.; Coluccia, A.; Di Pasquali, A.; Silvestri, R. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives. J. Med. Chem. 2005, 48, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Olspert, A.; Hosmillo, M.; Chaudhry, Y.; Peil, L.; Truve, E.; Goodfellow, I. Protein-RNA linkage and posttranslational modifications of feline calicivirus and murine norovirus VPg proteins. PeerJ 2016, 4, e2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machín, A.; Martín Alonso, J.M.; Parra, F. Identification of the amino acid residue involved in rabbit hemorrhagic disease virus VPg uridylylation. J. Biol. Chem. 2001, 276, 27787–27792. [Google Scholar] [CrossRef] [Green Version]
- Belliot, G.; Sosnovtsev, S.V.; Chang, K.O.; McPhie, P.; Green, K.Y. Nucleotidylylation of the VPg protein of a human norovirus by its proteinase-polymerase precursor protein. Virology 2008, 374, 33–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subba-Reddy, C.V.; Goodfellow, I.; Kao, C.C. VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. J. Virol. 2011, 85, 13027–13037. [Google Scholar] [CrossRef] [Green Version]
- Netzler, N.E.; Enosi Tuipulotu, D.; White, P.A. Norovirus antivirals: Where are we now? Med. Res. Rev. 2019, 39, 860–886. [Google Scholar] [CrossRef]
- Hansman, G.S. Caliciviruses Molecular and Cellular Virology; Caister Academic Press: Poole, UK, 2010; p. 256. [Google Scholar]
- Steitz, T.A. A mechanism for all polymerases. Nature 1998, 391, 231–232. [Google Scholar] [CrossRef]
- Tarantino, D.; Pezzullo, M.; Mastrangelo, E.; Croci, R.; Rohayem, J.; Robel, I.; Bolognesi, M.; Milani, M. Naphthalene-sulfonate inhibitors of human norovirus RNA-dependent RNA-polymerase. Antivir. Res. 2014, 102, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Pereira, J.; Jochmans, D.; Debing, Y.; Verbeken, E.; Nascimento, M.S.; Neyts, J. The viral polymerase inhibitor 2′-C-methylcytidine inhibits Norwalk virus replication and protects against norovirus-induced diarrhea and mortality in a mouse model. J. Virol. 2013, 87, 11798–11805. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Pereira, J.; Jochmans, D.; Dallmeier, K.; Leyssen, P.; Cunha, R.; Costa, I.; Nascimento, M.S.; Neyts, J. Inhibition of norovirus replication by the nucleoside analogue 2′-C-methylcytidine. Biochem. Biophys. Res. Commun. 2012, 427, 796–800. [Google Scholar] [CrossRef]
- Gong, E.Y. Antiviral Methods and Protocols, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Rocha-Pereira, J.; Nascimento, M.S.J. Targeting Norovirus: Strategies for the Discovery of New Antiviral Drugs; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Dycke, J.V.; Rymenants, J.; Neyts, J.; Rocha-Pereira, J. Assessment of the anti-norovirus activity in cell culture using the mouse norovirus: Early mechanistic studies. Antivir. Chem. Chemother. 2021, 29. [Google Scholar] [CrossRef]
- Thibaut, H.J.; De Palma, A.M.; Neyts, J. Combating enterovirus replication: State-of-the-art on antiviral research. Biochem. Pharmacol. 2012, 83, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Vere Hodge, A.; Field, H.J. General Mechanisms of Antiviral Resistance. Genet. Evol. Infect. Dis. 2011, 339–362. [Google Scholar] [CrossRef]
- Medvedev, A.; Viswanathan, P.; May, J.; Korba, B. Regulation of human norovirus VPg nucleotidylylation by ProPol and nucleoside triphosphate binding by its amino terminal sequence in vitro. Virology 2017, 503, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Orta, C.; Ferrero, D.; Verdaguer, N. RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms. Viruses 2015, 7, 4438–4460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha-Pereira, J.; Jochmans, D.; Dallmeier, K.; Leyssen, P.; Nascimento, M.S.; Neyts, J. Favipiravir (T-705) inhibits in vitro norovirus replication. Biochem. Biophys. Res. Commun. 2012, 424, 777–780. [Google Scholar] [CrossRef]
- Van Dycke, J.; Rymenants, J.; Neyts, J.; Rocha-Pereira, J. Assessment of the anti-norovirus activity in cell culture using the mouse norovirus: Identification of active compounds. Antivir. Chem. Chemother. 2021, 29. [Google Scholar] [CrossRef]
- Schul, W.; Liu, W.; Xu, H.Y.; Flamand, M.; Vasudevan, S.G. A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J. Infect. Dis. 2007, 195, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Van Dycke, J.; Ny, A.; Conceição-Neto, N.; Maes, J.; Hosmillo, M.; Cuvry, A.; Goodfellow, I.; Nogueira, T.C.; Verbeken, E.; Matthijnssens, J.; et al. A robust human norovirus replication model in zebrafish larvae. PLoS Pathog. 2019, 15, e1008009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milne, I.; Stephen, G.; Bayer, M.; Cock, P.J.; Pritchard, L.; Cardle, L.; Shaw, P.D.; Marshall, D. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013, 14, 193–202. [Google Scholar] [CrossRef]
- Strong, D.W.; Thackray, L.B.; Smith, T.J.; Virgin, H.W. Protruding domain of capsid protein is necessary and sufficient to determine murine norovirus replication and pathogenesis in vivo. J. Virol. 2012, 86, 2950–2958. [Google Scholar] [CrossRef] [Green Version]
- Orchard, R.C.; Wilen, C.B.; Doench, J.G.; Baldridge, M.T.; McCune, B.T.; Lee, Y.C.; Lee, S.; Pruett-Miller, S.M.; Nelson, C.A.; Fremont, D.H.; et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 2016, 353, 933–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MNV a | MNV | HuNoV Replicon b | ||||
---|---|---|---|---|---|---|
Compd | R1 | R2 | X | CC50 ± SD (µM) c,d | EC50 ± SD (µM) c,e | EC50 ± SD(µM) c,f |
1 | SO2 | >100 | 0.52 ± 0.07 | 2 ± 1.2 | ||
2 | SO2 | >100 | >100 | 3.66 ± 0.66 | ||
3 | SO2 | 88.69 ± 4.75 | >100 | 47.74 ± 3.39 | ||
4 | SO2 | 3.48 ± 1.10 | >100 | 88.28 ± 4.75 | ||
5 | SO2 | 34.85 ± 5.03 | >100 | nd | ||
6 | SO2 | >12.50 | 0.16 ± 0.06 | 1.27 ± 0.76 | ||
7 | CH2 | 9.27 ± 6.60 | 0.84 ± 0.22 | 5.59 ± 2.47 | ||
8 | C=O | 7.97 ± 15.29 | >100 | nd | ||
9 | S | 31.70 ± 8.01 | 4.39 ± 4.78 | 11.78 ±8.40 | ||
10 | SO2 | 25.7 ± 34.94 | 0.63 ± 0.48 | 18.49 ± 16.27 | ||
11 | SO2 | 8.49 ± 8.09 | 35.95 ± 23.28 | 27.50 ± 28.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Dycke, J.; Puxeddu, M.; La Regina, G.; Mastrangelo, E.; Tarantino, D.; Rymenants, J.; Sebastiani, J.; Nalli, M.; Matthijnssens, J.; Neyts, J.; et al. Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance. Pharmaceuticals 2021, 14, 1006. https://doi.org/10.3390/ph14101006
Van Dycke J, Puxeddu M, La Regina G, Mastrangelo E, Tarantino D, Rymenants J, Sebastiani J, Nalli M, Matthijnssens J, Neyts J, et al. Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance. Pharmaceuticals. 2021; 14(10):1006. https://doi.org/10.3390/ph14101006
Chicago/Turabian StyleVan Dycke, Jana, Michela Puxeddu, Giuseppe La Regina, Eloise Mastrangelo, Delia Tarantino, Jasper Rymenants, Jessica Sebastiani, Marianna Nalli, Jelle Matthijnssens, Johan Neyts, and et al. 2021. "Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance" Pharmaceuticals 14, no. 10: 1006. https://doi.org/10.3390/ph14101006
APA StyleVan Dycke, J., Puxeddu, M., La Regina, G., Mastrangelo, E., Tarantino, D., Rymenants, J., Sebastiani, J., Nalli, M., Matthijnssens, J., Neyts, J., Silvestri, R., & Rocha-Pereira, J. (2021). Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance. Pharmaceuticals, 14(10), 1006. https://doi.org/10.3390/ph14101006