Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Content and Composition
2.2. Antimicrobial Activity
2.2.1. Qualitative and Quantitative Analysis
2.2.2. The Adherence Capacity to the Inert Substrate
2.2.3. The Synergistic Activity with Antibiotics
2.2.4. The Influence of EOs on the QS Genes Expression
2.3. Influence of EO on the Expression of Soluble Enzymatic Virulence Factors
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Plant Material
3.3. Essential Oil Extraction
3.4. Gas Chromatography–Mass Spectrometry
3.5. Antimicrobial Activity
3.5.1. Microbial Strains
3.5.2. Qualitative Assessment
3.5.3. Quantitative Analysis
3.5.4. The Microbial Adherence Capacity to the Inert Substratum
3.5.5. The Influence of EOs on the QS Genes Expression
3.5.6. The Synergistic Activity with Antibiotics
3.6. The Soluble Enzymatic Virulence Factors
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Schnitzler, P.; Astani, A.; Reichling, J. Screening for antiviral activities of isolated compounds from essential oils. Evid.-Based Complement. Altern. Med. 2011, 2011, 253643. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.; Ferreira, S.; Duarte, A.; Mendonça, D.I.; Domingues, F.C. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 2011, 19, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, T.; Dommerich, S.; Pau, H.-W.; Kramp, B. Die mikrobiologische Oberflächenbesiedlung verschiedener Stimmprothesenarten in der Zeitkinetik. Laryngo-Rhino-Otologie 2010, 89, 606–611. [Google Scholar] [CrossRef]
- LaSarre, B.; Federle, M.J. Exploiting Quorum Sensing To Confuse Bacterial Pathogens. Microbiol. Mol. Biol. Rev. 2013, 77, 73–111. [Google Scholar] [CrossRef] [Green Version]
- Milutinović, M.; Dimitrijević-Branković, S.; Rajilić-Stojanović, M. Plant Extracts Rich in Polyphenols as Potent Modulators in the Growth of Probiotic and Pathogenic Intestinal Microorganisms. Front Nutr. 2021, 30, 688843. [Google Scholar] [CrossRef]
- Biradar, B.; Devi, P. Quorum sensing in plaque biofilms: Challenges and future prospects. J. Contemp. Dent. Pract. 2011, 12, 479–485. [Google Scholar] [CrossRef]
- Marinas, I.C.; Oprea, E.; Buleandra, M.; Badea, I.A.; Tihauan, B.M.; Marutescu, L.; Angheloiu, M.; Matei, E.; Chifiriuc, M.C. Chemical Composition, Antipathogenic and Cytotoxic Activity of the Essential Oil Extracted from Amorpha fruticosa Fruits. Molecules 2021, 26, 3146. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Islam, M.T.; Jayasena, V.; Sharma, B.; Sharma, S.; Sharma, P.; Kuča, K.; Bhardwaj, P. Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas. Phyther. Res. 2020, 34, 2889–2910. [Google Scholar] [CrossRef]
- Radulescu, V.; Saviuc, C.; Chifiriuc, C.; Oprea, E.; Ilies, D.C.; Marutescu, L.; Lazar, V. Chemical Composition and Antimicrobial Activity of Essential Oil from Shoots Spruce (Picea abies L). Rev. Chim. 2011, 62, 69–74. [Google Scholar] [CrossRef]
- Holubová, V.; Hrdlička, P.; Kubáň, V. Age and space distributions of monoterpenes in fresh needles of Picea abies (L) Karst. determined by gas chromatography-mass spectrometry. Phytochem. Anal. 2001, 12, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kupcinskiene, E.; Stikliene, A.; Judzentiene, A. The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ. Pollut. 2008, 155, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Turtola, S.; Sallas, L.; Holopainen, J.K.; Julkunen-Tiitto, R.; Kainulainen, P. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings. Environ. Pollut. 2006, 144, 166–171. [Google Scholar] [CrossRef]
- Judžentienė, A.; Sližytė, J.; Stiklienė, A.; Kupčinskiene, E. Characteristics of essential oil composition in the needles of young Scots pine (Pinus sylvestris L.) stands growing along an aerial ammonia gradient. Chemija 2006, 17, 67–73. [Google Scholar]
- Lee, J.-H. Comparison of Chemical Compositions and Antimicrobial Activities of Essential Oils from Three Conifer Trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 2009, 19, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metsämuuronen, S.; Siren, H. Antibacterial Compounds in Predominant Trees in Finland: Review. J. Bioprocess. Biotech. 2014, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Snieškienė, V.; Stankevičienė, A.; Varkulevičienė, J. The Effect of The Essential Oils on Micromycetes Isolated from Plants. Zemdirb. Agric. Kėdainių Raj. Liet. Zemdirb. Inst. 2008, 95, 447–452. [Google Scholar]
- Krauze-Baranowska, M.; Mardarowicz, M.; Wiwart, M.; Pobłocka, L.; Dynowska, M. Antifungal Activity of the Essential Oils from Some Species of the Genus Pinus. Z. Naturforsch. C 2002, 57, 478–482. [Google Scholar] [CrossRef]
- Tesevic, V.; Milosavljevic, S.; Vajs, V.; Djordjevic, I.; Sokovic, M.; Lavadinovic, V.; Novakovic, M. Chemical composition and antifungal activity of the essential oil of Douglas fir (Pseudosuga menziesii mirb. Franco) from Serbia. J. Serb. Chem. Soc. 2009, 74, 1035–1040. [Google Scholar] [CrossRef]
- Politeo, O. Chemical composition and evaluation of acetylcholinesterase inhibition and antioxidant activity of essential oil from Dalmatian endemic species Pinus nigra Arnold ssp. dalmatica (Vis.) Franco. J. Med. Plants Res. 2011, 5, 6590–6596. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, H.; Wang, J.; Meng, Q.; Zhang, H.; Yao, L.; Zhang, Y.; Dong, A.; Ma, Y.; Wang, Z.; et al. Chemical Composition And Antioxidant Activity Of Essential Oil Of Pine Cones Of Pinus Armandii From The Southwest Region of China. J. Med. Plants Res. 2010, 4, 1668–1672. [Google Scholar] [CrossRef]
- Kılıç, Ö.; Kocak, A. Essential oil composition of six Pinus L. taxa (Pinaceae) from Canada and their chemotaxonomy. J. Agric. Sci. Technol. 2014, 4, 67–73. [Google Scholar]
- Nikolić, B.; Ristić, M.; Bojović, S.; Marin, P.D. Variability of the Needle Essential Oils of Pinus heldreichii from Different Populations in Montenegro and Serbia. Chem. Biodivers. 2007, 4, 905–916. [Google Scholar] [CrossRef]
- Dob, T.; Berramdane, T.; Dahmane, D.; Chelghoum, C. Chemical Composition of the Needles Oil of Pinus canariensis from Algeria. Chem. Nat. Compd. 2005, 41, 165–167. [Google Scholar] [CrossRef]
- Almaarri, K.; Alamir, L.; Junaid, Y.; Xie, D.-Y. Volatile compounds from leaf extracts of Juniperus excelsa growing in Syria via gas chromatography mass spectrometry. Anal. Methods 2010, 2, 673. [Google Scholar] [CrossRef]
- Tumen, I.; Hafizoglu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and Constituents of Essential Oil from Cones of Pinaceae spp. Natively Grown in Turkey. Molecules 2010, 15, 5797–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayisoylu, K.S.; Alma, M.H. Chemical analysis of essential oils from cone’s rosin of Cilician fir (Abies cilicica subsp. cilicica). Afr. J. Biotechnol. 2009, 8, 3502–3505. [Google Scholar] [CrossRef]
- Duquesnoy, E.; Castola, V.; Casanova, J. Composition and chemical variability of the twig oil of Abies alba Miller from Corsica. Flavour Fragr. J. 2007, 22, 293–299. [Google Scholar] [CrossRef]
- Amri, I.; Hanana, M.; Jamoussi, B.; Hamrouni, L. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: Chemical composition and study of their herbicidal potential. Arab. J. Chem. 2017, 10, S3877–S3882. [Google Scholar] [CrossRef]
- Rădulescu, V.; Ilies, D.C.; Voiculescu, I.; Biris, I.A.; Craciunescu, A. Determination of ascorbic acid in shoots from different coniferous species by HPLC. Farmacia 2013, 61, 1158–1166. [Google Scholar]
- Saviuc, C.; Cotar, A.I.; Holban, A.M.; Banu, O.; Grumezescu, A.M.; Carmen Chifiriuc, M. Phenotypic and molecular evaluation of Pseudomonas aeruginosa and Staphylococcus aureus virulence patterns in the presence of some essential oils and their major compounds. Lett. Appl. NanoBioSci 2013, 2, 91–96. [Google Scholar]
- Awadh Ali, N.A.; Wurster, M.; Arnold, N.; Teichert, A.; Schmidt, J.; Lindequist, U.; Wessjohan, L. Chemical Composition and Biological Activities of Essential Oils from the Oleogum Resins of Three Endemic Soqotraen Boswellia Species. Rec. Nat. Prod. 2008, 2, 6–12. [Google Scholar]
- Garcia, G.; Garcia, A.; Gibernau, M.; Bighelli, A.; Tomi, F. Chemical compositions of essential oils of five introduced conifers in Corsica. Nat. Prod. Res. 2017, 31, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Mofikoya, O.O.; Mäkinen, M.; Jänis, J. Chemical Fingerprinting of Conifer Needle Essential Oils and Solvent Extracts by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ACS Omega 2020, 5, 10543–10552. [Google Scholar] [CrossRef] [PubMed]
- Runyoro, D.; Ngassapa, O.; Vagionas, K.; Aligiannis, N.; Graikou, K.; Chinou, I. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem. 2010, 119, 311–316. [Google Scholar] [CrossRef]
- Andrews, R.E.; Parks, L.W.; Spence, K.D. Some effects of Douglas fir terpenes on certain microorganisms. Appl. Environ. Microbiol. 1980, 40, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Uribe, S.; Ramirez, J.; Pena, A. on Yeast Membrane Functions. Yeast 1985, 161, 1195–1200. [Google Scholar]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; Von Wright, A. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Magwa, M.L.; Gundidza, M.; Gweru, N.; Humphrey, G. Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. J. Ethnopharmacol. 2006, 103, 85–89. [Google Scholar] [CrossRef]
- Filipowicz, N.; Kaminski, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phyther. Res. 2003, 17, 227–231. [Google Scholar] [CrossRef]
- Chifiriuc, M.C.; Banu, O.; Bleotu, C.; Lazǎr, V. Interaction of bacteria isolated from clinical biofilms with cardiovascular prosthetic devices and eukaryotic cells. Anaerobe 2011, 17, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Lazar, V.; Holban, A.M.; Curutiu, C.; Chifiriuc, M.C. Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens. Front. Microbiol. 2021, 12, 676510. [Google Scholar] [CrossRef] [PubMed]
- Bilcu, M.; Grumezescu, A.M.; Oprea, A.E.; Popescu, R.C.; Mogoșanu, G.D.; Hristu, R.; Stanciu, G.A.; Mihailescu, D.F.; Lazar, V.; Bezirtzoglou, E.; et al. Efficiency of Vanilla, Patchouli and Ylang Ylang Essential Oils Stabilized by Iron Oxide@C14 Nanostructures against Bacterial Adherence and Biofilms Formed by Staphylococcus aureus and Klebsiella pneumoniae Clinical Strains. Molecules 2014, 19, 17943–17956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciubuca, B.-M.; Saviuc, C.-M.; Chifiriuc, M.-C.; Lazar, V. Microbial Resistance to Natural Compounds: Challenges for Developing Novel Alternatives to Antibiotics. Curr. Org. Chem. 2016, 20, 2983–2988. [Google Scholar] [CrossRef] [Green Version]
- Kovač, J.; Šimunović, K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q.; Možina, S.S. Antibiotic Resistance Modulation and Modes of Action of (-)-α-Pinene in Campylobacter jejuni. PLoS ONE 2015, 10, e0122871. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef] [Green Version]
- Miladinović, D.L.; Ilić, B.S.; Kocić, B.D.; Marković, M.S.; Miladinović, L.C. In Vitro Trials of Dittrichia graveolens Essential Oil Combined with Antibiotics. Nat. Prod. Commun. 2016, 11, 865–868. [Google Scholar] [CrossRef] [Green Version]
- Sobieszczańska, N.; Myszka, K.; Szwengiel, A.; Majcher, M.; Grygier, A.; Wolko, Ł. Tarragon essential oil as a source of bioactive compounds with anti-quorum sensing and anti-proteolytic activity against Pseudomonas spp. isolated from fish—In vitro, in silico and in situ approaches. Int. J. Food Microbiol. 2020, 331, 108732. [Google Scholar] [CrossRef]
- Lu, L.; Li, M.; Yi, G.; Liao, L.; Cheng, Q.; Zhu, J.; Zhang, B.; Wang, Y.; Chen, Y.; Zeng, M. Screening Strategies for Quorum Sensing Inhibitors in Combating Bacterial Infection. J. Pharm. Anal. 2021, 1–31. [Google Scholar] [CrossRef]
- Luciardi, M.C.; Blázquez, M.A.; Alberto, M.R.; Cartagena, E.; Arena, M.E. Lemon oils attenuate the pathogenicity of pseudomonas aeruginosa by quorum sensing inhibition. Molecules 2021, 26, 2863. [Google Scholar] [CrossRef]
- Baban Zadeh, P.; Khaledi, A.; Esmaeili, D. Satureja khuzestanica essential oil against quorum sensing of pseudomonas aeroginosa using RT-PCR. Iran. J. Public Health 2019, 48, 1390–1391. [Google Scholar] [CrossRef]
- Li, W.R.; Ma, Y.K.; Xie, X.B.; Shi, Q.S.; Wen, X.; Sun, T.L.; Peng, H. Diallyl disulfide from garlic oil inhibits Pseudomonas aeruginosa quorum sensing systems and corresponding virulence factors. Front. Microbiol. 2019, 10, 3222. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Letsididi, K.S.; Yu, F.; Pei, Z.; Wang, H.; Letsididi, A.R. Inhibitive effect of eugenol and its nanoemulsion on quorum sensing–mediated virulence factors and biofilm formation by Pseudomonas aeruginosa. J. Food Prot. 2019, 82, 379–389. [Google Scholar] [CrossRef]
- Kumar, L.; Chhibber, S.; Kumar, R.; Kumar, M.; Harjai, K. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia 2015, 102, 84–95. [Google Scholar] [CrossRef]
- Kostylev, M.; Kim, D.Y.; Smalley, N.E.; Salukhe, I.; Peter Greenberg, E.; Dandekar, A.A. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc. Natl. Acad. Sci. USA 2019, 116, 7027–7032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, A.A.; Khan, S.; Powell, L.C.; Pritchard, M.F.; Beck, K.; Sadh, H.; Sutton, L.; Cavaliere, A.; Florance, H.; Rye, P.D.; et al. Alginate Oligosaccharide-Induced Modification of the lasI-lasR and rhlI-rhlR Quorum-Sensing Systems in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e02318-17. [Google Scholar] [CrossRef] [Green Version]
- Dickey, S.; Cheung, G.; Otto, M. Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 2017, 16, 457–471. [Google Scholar] [CrossRef]
- Allen, R.C.; Popat, R.; Diggle, S.P.; Brown, S.P. Targeting virulence: Can we make evolution-proof drugs? Nat. Rev. Microbiol. 2014, 12, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 2010, 9, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Sintchenko, V.; Timms, V.; Sim, E.; Rockett, R.; Bachmann, N.; O’Sullivan, M.; Marais, B. Microbial Genomics as a Catalyst for Targeted Antivirulence Therapeutics. Front. Med. 2021, 8, 641260. [Google Scholar] [CrossRef] [PubMed]
- Cotar, A.I.; Chifiriuc, M.C.; Dinu, S.; Pelinescu, D.; Banu, O.; Lazăr, V. Quantitative real-time PCR study of the influence of probiotic culture soluble fraction on the expression of Pseudomonas aeruginosa quorum sensing genes. Roum. Arch. Microbiol. Immunol. 2010, 69, 213–223. [Google Scholar]
- Neguţ, A.C.; Chifiriuc, M.C.; Săndulescu, O.; Streinu-Cercel, A.; Oprea, M.; Drăgulescu, E.C.; Gheorghe, I.; Berciu, I.; Coralia, B.; Popa, M.; et al. Bacteriophage-driven inhibition of biofilm formation in Staphylococcus strains from patients attending a Romanian reference center for infectious diseases. FEMS Microbiol. Lett. 2016, 363, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinas, I.C.; Oprea, E.; Chifiriuc, M.C.; Badea, I.A.; Buleandra, M.; Lazar, V. Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania. Chem. Biodivers. 2015, 12, 1554–1564. [Google Scholar] [CrossRef]
- Commission National Medicines Agency. Romanian Pharmacopoeia, 10th ed.; Medical Publishing: Bucharest, Romania, 1993. [Google Scholar]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: London, UK, 1996. [Google Scholar]
- Acree, T.E.; Arn, H. Flavornet and Human Odor Space. Available online: www.flavornet.org (accessed on 11 April 2021).
- El-Saed, A.M. The Pherobase: Datebase of Pheromones and Semiochemicals. 2019. Available online: www.pherobase.org (accessed on 11 April 2021).
- Lazar, V.; Balotescu, M.C.; Moldovan, L.; Vasilescu, G.; Petrache, L.M.; Bulai, D.; Cernat, R.C. Comparative evaluation of qualitative and quantitative methods used in the study of antifungal and antibacterial activity of hydroalcoholic vegetal extracts. Rom. Biotechnol. Lett. 2005, 10, 2225–2232. [Google Scholar]
- Norouzi, F.; Mansouri, S.; Moradi, M. Comparison of cell surface hydrophobicity and biofilm formation among ESBL-and nonESBL-producing Pseudomonas aeruginosa clinical isolates. Afr. J. Microbiol. Res. 2010, 4, 1143–1147. [Google Scholar]
- Grădinaru, A.C.; Trifan, A.; Şpac, A.; Brebu, M.; Miron, A.; Aprotosoaie, A.C. Antibacterial activity of traditional spices against lower respiratory tract pathogens: Combinatorial effects of Trachyspermum ammi essential oil with conventional antibiotics. Lett. Appl. Microbiol. 2018, 67, 449–457. [Google Scholar] [CrossRef]
- Georgescu, M.; Gheorghe, I.; Curutiu, C.; Lazar, V.; Bleotu, C.; Chifiriuc, M.C. Virulence and resistance features of Pseudomonas aeruginosa strains isolated from chronic leg ulcers. BMC Infect. Dis. 2016, 16, 92. [Google Scholar] [CrossRef] [Green Version]
No. | Compound Name | RI Exp | RI a Lit | Relative Area (%) | |||
---|---|---|---|---|---|---|---|
Pa b | Ld b | Pm b | Pn b | ||||
1 | 4-hexen-1-ol | 872 | 879 | Tr | 0.42 ± 0.03 | 0.10 ± 0.01 | |
2 | santene | 887 | 888 | 3.83 ± 1.10 | |||
3 | tricyclene | 921 | 926 | 1.23 ± 0.23 | 0.10 ± 0.01 | 0.09 ± 0.03 | 0.11 ± 0.01 |
4 | α-thujene | 928 | 931 | Tr | 0.27 ± 0.01 | 0.08 ± 0.04 | |
5 | α-pinene | 934 | 939 | 11.64 ± 1.34 | 26.99 ± 2.57 | 18.42 ± 2.29 | 74.27 ± 2.73 |
6 | camphene | 950 | 952 | 10.70 ± 0.25 | 0.52 ± 0.15 | 0.62 ± 0.10 | 1.24 ± 0.12 |
7 | sabinene | 973 | 973 | 0.15 ± 0.07 | 1.67 ± 0.59 | 0.02 ± 0.01 | |
8 | β-pinene | 976 | 980 | 4.62 ± 1.34 | 8.20 ± 0.83 | 49.84 ± 3.57 | 4.33 ± 0.55 |
9 | β-myrcene | 991 | 991 | 2.26 ± 0.49 | 2.05 ± 0.52 | 1.17 ± 0.12 | 0.70 ± 0.18 |
10 | α-phellandrene | 1003 | 1005 | 0.13 ± 0.07 | 0.32 ± 0.18 | 0.15 ± 0.01 | 0.05 ± 0.01 |
11 | δ-3-carene | 1006 | 1009 | 0.89 ± 0.21 | 5.97 ± 1.19 | 0.66 ± 0.10 | Tr |
12 | α-terpinene | 1016 | 1017 | 0.08 ± 0.03 | 0.38 ± 0.10 | 0.87 ± 0.19 | 0.05 ± 0.01 |
13 | p-cymene | 1024 | 1026 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.36 ± 0.14 | 0.04 ± 0.01 |
14 | limonene | 1029 | 1031 | 21.14 ± 2.27 | 6.69 ± 0.93 | 3.58 ± 0.26 | 7.06 ± 0.78 |
15 | 1,8-cineole | 1032 | 1033 | 0.18 ± 0.11 | 0.22 ± 0.01 | ||
16 | (Z)-β-ocimene | 1040 | 1040 | Tr | Tr | Tr | |
17 | (E)-β-ocimene | 1050 | 1050 | 0.05 ± 0.01 | 0.50 ± 0.21 | ||
18 | γ-terpinene | 1060 | 1062 | 0.07 ± 0.02 | 0.48 ± 0.23 | 1.38 ± 0.31 | 0.08 ± 0.06 |
19 | α-terpinolene | 1085 | 1084 | 0.64 ± 0.23 | 1.59 ± 0.54 | 3.71 ± 1.02 | 0.22 ± 0.07 |
20 | linalool | 1100 | 1100 | Tr | 0.07 ± 0.04 | 0.04 ± 0.03 | |
21 | fenchol | 1117 | 1117 | 0.07 ± 0.01 | 0.14 ± 0.10 | ||
22 | α-campholenal | 1126 | 1027 | 0.11 ± 0.03 | 0.10 ± 0.00 | ||
23 | camphor | 1145 | 1145 | 0.06 ± 0.03 | |||
24 | ethyl benzoate | 1169 | 1170 | 0.49 ± 0.01 | |||
25 | β-terpineol | 1154 | 1159 | 0.07 ± 0.02 | |||
26 | borneol | 1171 | 1171 | 0.78 ± 0.06 | 0.09 ± 0.01 | 0.12 ± 0.06 | |
27 | terpinen-4-ol | 1180 | 1179 | 0.08 ± 0.00 | 0.60 ± 0.33 | 2.24 ± 0.18 | 0.04 ± 0.01 |
28 | α-terpineol | 1193 | 1197 | 0.57 ± 0.04 | 2.27 ± 0.62 | 1.86 ± 0.44 | 0.35 ± 0.14 |
29 | estragole | 1196 | 1195 | 0.27 ± 0.01 | |||
30 | fenchyl acetate | 1216 | 1220 | 0.05 ± 0.01 | |||
31 | methyl thymyl ether | 1231 | 1235 | Tr | Tr | 0.04 ± 0.01 | |
32 | bornyl acetate | 1283 | 1285 | 11.08 ± 1.80 | 1.26 ± 0.04 | 0.20 ± 0.04 | 1.21 ± 0.17 |
33 | sabinyl acetate | 1293 | 1293 | 0.16 ± 0.01 | |||
34 | δ-elemene | 1334 | 1337 | 0.6 ± 0.43 | |||
35 | terpenyl acetate | 1347 | 1351 | 0.18 ± 0.01 | |||
36 | α-longipinene | 1349 | 1351 | 0.34 ± 0.03 | |||
37 | citronellyl acetate | 1351 | 1354 | 0.04 ± 0.01 | 0.06 ± 0.01 | Tr | |
38 | longicyclene | 1371 | 1373 | 0.05 ± 0.03 | |||
39 | α-copaene | 1375 | 1376 | 0.06 ± 0.03 | 0.08 ± 0.03 | 0.03 ± 0.03 | |
40 | geranyl acetate | 1380 | 1382 | 0.04 ± 0.03 | 0.12 ± 0.01 | ||
41 | β-elemene | 1387 | 1391 | 0.15 ± 0.03 | 0.27 ± 0.03 | 0.42 ± 0.26 | |
42 | longifolene | 1404 | 1408 | 0.50 ± 0.09 | |||
43 | trans-caryophyllene | 1416 | 1415 | 1.17 ± 0.13 | 2.68 ± 0.18 | 0.34 ± 0.16 | 1.99 ± 0.30 |
44 | γ-elemene | 1428 | 1430 | 0.13 ± 0.01 | |||
45 | trans-α-bergamotene | 1432 | 1436 | 0.04 ± 0.01 | 0.48 ± 0.04 | ||
46 | α-humulene | 1453 | 1452 | 1.23 ± 0.04 | 1.12 ± 0.13 | 1.07 ± 0.54 | 0.27 ± 0.03 |
47 | ethyl cinnamate | 1464 | 1460 | 0.11 ± 0.01 | |||
48 | β-cadinene | 1470 | 1472 | 0.15 ± 0.06 | 0.16 ± 0.07 | ||
49 | γ-muurolene | 1473 | 1477 | 0.24 ± 0.03 | 0.76 ± 0.06 | 0.20 ± 0.04 | 0.16 ± 0.04 |
50 | germacrene D | 1478 | 1480 | 0.76 ± 0.07 | 19.80 ± 4.40 | 5.47 ± 2.70 | 2.74 ± 1.07 |
51 | ledene | 1485 | 1487 | 0.08 ± 0.01 | |||
52 | phenylethyl isovalerate | 1489 | 1489 | 0.03 ± 0.01 | |||
53 | valencene | 1491 | 1490 | 0.10 ± 0.01 | 0.06 ± 0.04 | ||
54 | β-selinene | 1485 | 1485 | 0.05 ± 0.04 | 0.38 ± 0.18 | ||
55 | α-selinene | 1493 | 1494 | 0.19 ± 0.08 | |||
56 | α-muurolene | 1496 | 1499 | 0.75 ± 0.13 | 1.01 ± 0.18 | 0.09 ± 0.01 | 0.13 ± 0.06 |
57 | α-farnesene | 1504 | 1508 | 0.25 ± 0.01 | |||
58 | γ-cadinene | 1510 | 1514 | 0.86 ± 0.31 | 0.72 ± 0.04 | 0.20 ± 0.01 | 0.11 ± 0.03 |
59 | δ-cadinene | 1517 | 1523 | 4.21 ± 0.69 | 4.52 ± 0.66 | 0.74 ± 0.01 | 0.34 ± 0.06 |
60 | zonarene | 1521 | 1526 | 0.15 ± 0.07 | 0.16 ± 0.06 | ||
61 | cadina-1,4-diene | 1531 | 1532 | 0.07 ± 0.04 | 0.10 ± 0.00 | ||
62 | α-cadinene | 1536 | 1538 | 0.14 ± 0.07 | 0.17 ± 0.04 | ||
63 | trans-α-bisabolene | 1541 | 1544 | 0.95 ± 0.24 | |||
64 | germacrene B | 1553 | 1560 | 0.10 ± 0.04 | 0.30 ± 0.00 | ||
65 | nerolidol | 1560 | 1565 | 0.06 ± 0.00 | 0.04 ± 0.01 | ||
66 | γ-eudesmol | 1631 | 1630 | 0.11 ± 0.01 | |||
67 | α-muurolol | 1643 | 1645 | 2.15 ± 0.28 | 2.55 ± 0.54 | ||
68 | δ-cadinol | 1646 | 1646 | 0.32 ± 0.05 | |||
69 | α-cadinol | 1655 | 1656 | 3.78 ± 0.76 | 4.11 ± 0.88 | 0.36 ± 0.21 | |
70 | manool | 2053 | 2056 | 9.40 ± 1.85 | |||
71 | verticillol | 2102 | 2106 c | 2.14 ± 1.60 | |||
TOTAL | 98.06 ± 0.97 | 97.75 ± 2.23 | 99.13 ± 0.04 | 98.77 ± 1.68 | |||
Monoterpene hydrocarbons | 57.77 ± 3.85 | 52.90 ± 0.53 | 82.50 ± 6.68 | 88.56 ± 4.83 | |||
Sesquiterpene hydrocarbons | 11.43 ± 1.78 | 31.63 ± 6.53 | 11.22 ± 4.35 | 5.83 ± 2.09 | |||
Monoterpene alcohols and esters | 12.90 ± 2.97 | 4.01 ± 1.85 | 4.39 ± 0.31 | 1.86 ± 0.32 | |||
Sesquiterpene alcohols | 6.28 ± 0.48 | 6.69 ± 1.43 | 0.39 ± 0.31 | 0.00 | |||
Diterpene alcohols | 9.40 ± 1.85 | 0 | 0 | 2.14 ± 1.60 |
Strain | a | Pin | Lim | Phel | Bor | Cam | Cin | Ner | Pa | Ld | Pm | Pn | Gen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b | |||||||||||||
S. aureus ATCC 25923 | a | 50 | 25 | 50 | 50 | 50 | 25 | 50 | 25 | 12.5 | 6.25 | 12.5 | 0.48 |
b | 25 | 12.5 | 25 | 25 | 25 | 12.5 | 25 | 12.5 | 6.25 | 3.13 | 6.25 | n.t. | |
S. aureus 19 F | a | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 6.25 | 50 | 25 | 25 | 0.48 |
b | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 3.13 | 25 | 12.5 | 12.5 | n.t. | |
S. aureus 8 V | a | 25 | 50 | 50 | 50 | 50 | 50 | 50 | 20 | 25 | 25 | 25 | 0.96 |
b | 12.5 | 25 | 25 | 25 | 25 | 25 | 25 | 10 | 12.5 | 12.5 | 12.5 | n.t. | |
S. aureus 12 H | a | 12.5 | 50 | 50 | 50 | 50 | 50 | 50 | 6.25 | 50 | 25 | 6.25 | 0.96 |
b | 6.25 | 25 | 25 | 25 | 25 | 25 | 25 | 3.13 | 25 | 12.5 | 3.13 | n.t. | |
S. aureus 35 PL | a | 12.5 | 50 | 50 | 50 | 50 | 50 | 50 | 6.25 | 25 | 25 | 6.25 | 2.88 |
b | 6.25 | 25 | 25 | 25 | 25 | 25 | 25 | 3.13 | 12.5 | 12.5 | 3.13 | n.t. | |
Pseudomonas aeruginosa ATCC 27853 | a | 25 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 25 | 1.96 |
b | 12.5 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 2512.5 | 12.5 | n.t. | |
P. aeruginosa 1 H | a | 25 | 25 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 25 | 7.84 |
b | 12.5 | 12.5 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 12.5 | 12.5 | n.t. | |
P. aeruginosa 61/2 | a | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 25 | 15.68 |
b | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 12.5 | 12.5 | n.t. | |
P. aeruginosa 399 | a | 50 | 50 | 25 | 25 | 25 | 25 | 25 | 50 | 50 | 50 | 25 | 15.68 |
b | 25 | 25 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 25 | 25 | 25 | 12.5 | n.t. | |
P. aeruginosa 261/1 | a | 50 | 50 | 25 | 25 | 25 | 25 | 25 | 50 | 50 | 50 | 25 | 7.84 |
b | 25 | 25 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 25 | 25 | 25 | 12.5 | n.t. | |
B. subtilis 6633 | a | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 6.25 | 50 | 25 | 6.25 | 0.24 |
b | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 3.13 | 25 | 12.5 | 3.13 | n.t. | |
E. faecalis ATCC 29212 | a | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 25 | 50 | 50 | 25 | 7.68 |
b | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 12.5 | 25 | 25 | 12.5 | n.t. | |
E. coli ATCC 25922 | a | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 50 | 50 | 50 | 25 | 0.48 |
b | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 25 | 25 | 25 | 12.5 | n.t. | |
C. albicans ATCC 10231 | a | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 6.25 | 25 | 25 | 6.25 | n.t. |
b | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 3.13 | 12.5 | 12.5 | 3.13 | n.t. |
Strains | Sample | The Diameter of the Inhibition Zones (mm) | ||||||
---|---|---|---|---|---|---|---|---|
oxa | cli | cip | tet | gen | pen | ery | ||
S. aureus ATCC 25923 | control | 18 | 32 | 22 | 24 | 22 | 26 | 26 |
P. abies | 18 | 40 | 26 | 23 | 23 | 26 | 30 | |
L. decidua | 18 | 30 | 24 | 22 | 22 | 26 | 22 | |
P.menziesii | 18 | 26 | 24 | 23 | 21 | 26 | 26 | |
P. nigra | 18 | 38 | 27 | 22 | 24 | 26 | 23 | |
S. aureus 19 F | control | 10 | 32 | 28 | 22 | 19 | 0 | 22 |
P. abies | 10 | 28 | 33 | 21 | 21 | 8 | 22 | |
L. decidua | 10 | 40 | 32 | 20 | 25 | 13 | 27 | |
P.menziesii | 10 | 36 | 28 | 22 | 23 | 18 | 25 | |
P. nigra | 10 | 34 | 29 | 22 | 23 | 7 | 27 | |
S. aureus 8 V | control | 11 | 38 | 25 | 20 | 19 | 0 | 10 |
P. abies | 11 | 34 | 27 | 21 | 21 | 0 | 9 | |
L. decidua | 11 | 33 | 27 | 21 | 21 | 0 | 11 | |
P.menziesii | 11 | 32 | 27 | 21 | 21 | 0 | 11 | |
P. nigra | 11 | 36 | 27 | 21 | 21 | 0 | 12 | |
S. aureus 12 H | control | 10 | 34 | 24 | 20 | 20 | 15 | 11 |
P. abies | 10 | 36 | 27 | 26 | 21 | 19 | 12 | |
L. decidua | 10 | 38 | 28 | 22 | 19 | 15 | 12 | |
P.menziesii | 10 | 36 | 25 | 20 | 19 | 15 | 11 | |
P. nigra | 10 | 44 | 30 | 30 | 23 | 24 | 24 | |
S. aureus 35 PL | control | 14 | 25 | 23 | 0 | 18 | 0 | 0 |
P. abies | 14 | 26 | 25 | 0 | 18 | 0 | 0 | |
L. decidua | 14 | 26 | 23 | 0 | 20 | 0 | 0 | |
P.menziesii | 14 | 28 | 24 | 0 | 19 | 8 | 0 | |
P. nigra | 14 | 29 | 24 | 9 | 20 | 0 | 0 |
Borneol | Camfor | 1,8-Cineole | Limonene | α-Pinene | Paa | Lda | Pma | Pna | |
---|---|---|---|---|---|---|---|---|---|
S. aureus | |||||||||
Total no. of strains | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
DN-ase | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Lipase | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 |
Lecithinase | 3 | 3 | 4 | 3 | 3 | 5 | 5 | 3 | 5 |
Haemolysins | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
Caseinase | 3 | 3 | 3 | 3 | 4 | 5 | 3 | 3 | 3 |
Siderophore-like | 5 | 5 | 7 | 7 | 8 | 7 | 6 | 5 | 6 |
P. aeruginosa | |||||||||
Total no. of strains | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
DN-ase | 10 | 9 | 10 | 9 | 10 | 10 | 10 | 10 | 9 |
Lipase | 5 | 6 | 6 | 5 | 5 | 6 | 5 | 6 | 6 |
Lecithinase | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 5 | 5 |
Haemolysins | 6 | 7 | 6 | 7 | 7 | 6 | 6 | 6 | 6 |
Caseinase | 9 | 9 | 8 | 9 | 0 | 0 | 0 | 0 | 0 |
Siderophore-like | 10 | 7 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visan, D.-C.; Oprea, E.; Radulescu, V.; Voiculescu, I.; Biris, I.-A.; Cotar, A.I.; Saviuc, C.; Chifiriuc, M.C.; Marinas, I.C. Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals 2021, 14, 1159. https://doi.org/10.3390/ph14111159
Visan D-C, Oprea E, Radulescu V, Voiculescu I, Biris I-A, Cotar AI, Saviuc C, Chifiriuc MC, Marinas IC. Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals. 2021; 14(11):1159. https://doi.org/10.3390/ph14111159
Chicago/Turabian StyleVisan, Diana-Carolina, Eliza Oprea, Valeria Radulescu, Ion Voiculescu, Iovu-Adrian Biris, Ani Ioana Cotar, Crina Saviuc, Mariana Carmen Chifiriuc, and Ioana Cristina Marinas. 2021. "Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species" Pharmaceuticals 14, no. 11: 1159. https://doi.org/10.3390/ph14111159
APA StyleVisan, D. -C., Oprea, E., Radulescu, V., Voiculescu, I., Biris, I. -A., Cotar, A. I., Saviuc, C., Chifiriuc, M. C., & Marinas, I. C. (2021). Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals, 14(11), 1159. https://doi.org/10.3390/ph14111159