Feasibility of Extrapolating Randomly Taken Plasma Samples to Trough Levels for Therapeutic Drug Monitoring Purposes of Small Molecule Kinase Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Afatinib
2.2. Erlotinib
2.3. Imatinib
2.4. Regorafenib
2.5. Sorafenib
2.6. Sunitinib and SU12662
3. Discussion
4. Materials and Methods
4.1. Pharmacokinetic Equation
4.2. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groenland, S.L.; van Nuland, M.; Verheijen, R.B.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R.; Steeghs, N. Therapeutic Drug Monitoring of Oral Anti-Hormonal Drugs in Oncology. Clin. Pharm. 2019, 58, 299–308. [Google Scholar] [CrossRef]
- Verheijen, R.B.; Yu, H.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Practical Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin. Pharmacol. Ther. 2017, 102, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol. 2020. [Google Scholar] [CrossRef]
- Verheijen, R.B.; Bins, S.; Mathijssen, R.H.; Lolkema, M.P.; van Doorn, L.; Schellens, J.H.; Beijnen, J.H.; Langenberg, M.H.; Huitema, A.D.; Steeghs, N.; et al. Individualized Pazopanib Dosing: A Prospective Feasibility Study in Cancer Patients. Clin. Cancer Res. 2016, 22, 5738–5746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenland, S.L.; Mathijssen, R.H.J.; Beijnen, J.H.; Huitema, A.D.R.; Steeghs, N. Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine. Eur. J. Clin. Pharmacol. 2019, 75, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Lankheet, N.A.; Kloth, J.S.; Gadellaa-van Hooijdonk, C.G.; Cirkel, G.A.; Mathijssen, R.H.; Lolkema, M.P.; Schellens, J.H.; Voest, E.E.; Sleijfer, S.; de Jonge, M.J.; et al. Pharmacokinetically guided sunitinib dosing: A feasibility study in patients with advanced solid tumours. Br. J. Cancer 2014, 110, 2441–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankheet, N.A.; Knapen, L.M.; Schellens, J.H.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D. Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther. Drug Monit. 2014, 36, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, R.B.; Beijnen, J.H.; Schellens, J.H.M.; Huitema, A.D.R.; Steeghs, N. Clinical Pharmacokinetics and Pharmacodynamics of Pazopanib: Towards Optimized Dosing. Clin. Pharm. 2017, 56, 987–997. [Google Scholar] [CrossRef] [Green Version]
- de Wit, D.; Guchelaar, H.J.; den Hartigh, J.; Gelderblom, H.; van Erp, N.P. Individualized dosing of tyrosine kinase inhibitors: Are we there yet? Drug Discov. Today 2015, 20, 18–36. [Google Scholar] [CrossRef]
- Hussaarts, K.; Veerman, G.D.M.; Jansman, F.G.A.; van Gelder, T.; Mathijssen, R.H.J.; van Leeuwen, R.W.F. Clinically relevant drug interactions with multikinase inhibitors: A review. Ther. Adv. Med. Oncol. 2019, 11. [Google Scholar] [CrossRef]
- Groenland, S.L.; van Eerden, R.A.G.; Verheijen, R.B.; Koolen, S.L.W.; Moes, D.; Desar, I.M.E.; Reyners, A.K.L.; Gelderblom, H.J.; van Erp, N.P.; Mathijssen, R.H.J.; et al. Therapeutic Drug Monitoring of Oral Anticancer Drugs: The Dutch Pharmacology Oncology Group-Therapeutic Drug Monitoring Protocol for a Prospective Study. Ther. Drug Monit. 2019, 41, 561–567. [Google Scholar] [CrossRef]
- Roberts, J.A.; Norris, R.; Paterson, D.L.; Martin, J.H. Therapeutic drug monitoring of antimicrobials. Br. J. Clin. Pharmacol. 2012, 73, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Brunet, M.; van Gelder, T.; Asberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef]
- IJzerman, N.S.; Groenland, S.L.; Koenen, A.M.; Kerst, M.; van der Graaf, W.T.A.; Rosing, H.; Beijnen, J.H.; Huitema, A.D.R.; Steeghs, N. Therapeutic drug monitoring of imatinib in patients with gastrointestinal stromal tumours—Results from daily clinical practice. Eur. J. Cancer 2020, 136, 140–148. [Google Scholar] [CrossRef]
- de Jonge, M.E.; Huitema, A.D.; Schellens, J.H.; Rodenhuis, S.; Beijnen, J.H. Individualised cancer chemotherapy: Strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: A review. Clin. Pharm. 2005, 44, 147–173. [Google Scholar] [CrossRef]
- Wang, Y.; Chia, Y.L.; Nedelman, J.; Schran, H.; Mahon, F.X.; Molimard, M. A therapeutic drug monitoring algorithm for refining the imatinib trough level obtained at different sampling times. Ther. Drug Monit. 2009, 31, 579–584. [Google Scholar] [CrossRef]
- de Man, F.M.; Hussaarts, K.; de With, M.; Oomen-de Hoop, E.; de Bruijn, P.; van Halteren, H.K.; van der Burg-de Graauw, N.; Eskens, F.; van Gelder, T.; van Leeuwen, R.W.F.; et al. Influence of the Proton Pump Inhibitor Esomeprazole on the Bioavailability of Regorafenib: A Randomized Crossover Pharmacokinetic Study. Clin. Pharmacol. Ther. 2019, 105, 1456–1461. [Google Scholar] [CrossRef] [PubMed]
- Eechoute, K.; Franke, R.M.; Loos, W.J.; Scherkenbach, L.A.; Boere, I.; Verweij, J.; Gurney, H.; Kim, R.B.; Tirona, R.G.; Mathijssen, R.H.; et al. Environmental and genetic factors affecting transport of imatinib by OATP1A2. Clin. Pharmacol. Ther. 2011, 89, 816–820. [Google Scholar] [CrossRef]
- Eechoute, K.; Fransson, M.N.; Reyners, A.K.; de Jong, F.A.; Sparreboom, A.; van der Graaf, W.T.; Friberg, L.E.; Schiavon, G.; Wiemer, E.A.; Verweij, J.; et al. A long-term prospective population pharmacokinetic study on imatinib plasma concentrations in GIST patients. Clin. Cancer Res. 2012, 18, 5780–5787. [Google Scholar] [CrossRef] [Green Version]
- Hussaarts, K.; van Doorn, L.; Eechoute, K.; Damman, J.; Fu, Q.; van Doorn, N.; Eisenmann, E.D.; Gibson, A.A.; Oomen-de Hoop, E.; de Bruijn, P.; et al. Influence of Probenecid on the Pharmacokinetics and Pharmacodynamics of Sorafenib. Pharmaceutics 2020, 12, 788. [Google Scholar] [CrossRef]
- Kloth, J.S.; Binkhorst, L.; de Wit, A.S.; de Bruijn, P.; Hamberg, P.; Lam, M.H.; Burger, H.; Chaves, I.; Wiemer, E.A.; van der Horst, G.T.; et al. Relationship Between Sunitinib Pharmacokinetics and Administration Time: Preclinical and Clinical Evidence. Clin. Pharm. 2015, 54, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Kloth, J.S.; Klumpen, H.J.; Yu, H.; Eechoute, K.; Samer, C.F.; Kam, B.L.; Huitema, A.D.; Daali, Y.; Zwinderman, A.H.; Balakrishnar, B.; et al. Predictive value of CYP3A and ABCB1 phenotyping probes for the pharmacokinetics of sunitinib: The ClearSun study. Clin. Pharm. 2014, 53, 261–269. [Google Scholar] [CrossRef]
- van Leeuwen, R.W.; Peric, R.; Hussaarts, K.G.; Kienhuis, E.; NS, I.J.; de Bruijn, P.; van der Leest, C.; Codrington, H.; Kloover, J.S.; van der Holt, B.; et al. Influence of the Acidic Beverage Cola on the Absorption of Erlotinib in Patients with Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 1309–1314. [Google Scholar] [CrossRef]
- Veerman, G.D.M.; Hussaarts, K.; Peric, R.; Oomen-de Hoop, E.; Landa, K.D.; van der Leest, C.H.; Broerse, S.D.; Rutten, H.B.; Belderbos, H.N.A.; Steendam, C.M.J.; et al. Influence of Cow’s Milk and Esomeprazole on the Absorption of Erlotinib: A Randomized, Crossover Pharmacokinetic Study in Lung Cancer Patients. Clin. Pharm. 2020. [Google Scholar] [CrossRef]
- BIO-GIO Study—Netherlands Trial Register NL6336 (NTR6652). Available online: https://www.trialregister.nl/trial/6336 (accessed on 16 December 2020).
- Freiwald, M.; Schmid, U.; Fleury, A.; Wind, S.; Stopfer, P.; Staab, A. Population pharmacokinetics of afatinib, an irreversible ErbB family blocker, in patients with various solid tumors. Cancer Chemother. Pharmacol. 2014, 73, 759–770. [Google Scholar] [CrossRef]
- Delbaldo, C.; Chatelut, E.; Re, M.; Deroussent, A.; Seronie-Vivien, S.; Jambu, A.; Berthaud, P.; Le Cesne, A.; Blay, J.Y.; Vassal, G. Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin. Cancer Res. 2006, 12, 6073–6078. [Google Scholar] [CrossRef] [Green Version]
- Houk, B.E.; Bello, C.L.; Kang, D.; Amantea, M. A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin. Cancer Res. 2009, 15, 2497–2506. [Google Scholar] [CrossRef] [Green Version]
- Evelina, C.; Guidi, M.; Khoudour, N.; Pascaline, B.-R.; Fabre, E.; Tlemsani, C.; Arrondeau, J.; Francois, G.; Vidal, M.; Schneider, M.P.; et al. Population Pharmacokinetics of Erlotinib in Patients with Non-small Cell Lung Cancer: Its Application for Individualized Dosing Regimens in Older Patients. Clin. Ther. 2020, 42, 1302–1316. [Google Scholar] [CrossRef]
- Diekstra, M.H.; Klumpen, H.J.; Lolkema, M.P.; Yu, H.; Kloth, J.S.; Gelderblom, H.; van Schaik, R.H.; Gurney, H.; Swen, J.J.; Huitema, A.D.; et al. Association analysis of genetic polymorphisms in genes related to sunitinib pharmacokinetics, specifically clearance of sunitinib and SU12662. Clin. Pharmacol. Ther. 2014, 96, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Touma, J.A.; McLachlan, A.J.; Gross, A.S. The role of ethnicity in personalized dosing of small molecule tyrosine kinase inhibitors used in oncology. Transl. Cancer Res. 2017, 6, S1558–S1591. [Google Scholar] [CrossRef]
- Jain, L.; Woo, S.; Gardner, E.R.; Dahut, W.L.; Kohn, E.C.; Kummar, S.; Mould, D.R.; Giaccone, G.; Yarchoan, R.; Venitz, J.; et al. Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br. J. Clin. Pharmacol. 2011, 72, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Keunecke, A.; Hoefman, S.; Drenth, H.J.; Zisowsky, J.; Cleton, A.; Ploeger, B.A. Population pharmacokinetics of regorafenib in solid tumours: Exposure in clinical practice considering enterohepatic circulation and food intake. Br. J. Clin. Pharmacol. 2020, 86, 2362–2376. [Google Scholar] [CrossRef] [PubMed]
- Bins, S.; van Doorn, L.; Phelps, M.A.; Gibson, A.A.; Hu, S.; Li, L.; Vasilyeva, A.; Du, G.; Hamberg, P.; Eskens, F.; et al. Influence of OATP1B1 Function on the Disposition of Sorafenib-beta-D-Glucuronide. Clin. Transl. Sci. 2017, 10, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, A.; Marquet, P. Application of pharmacokinetic modelling to the routine therapeutic drug monitoring of anticancer drugs. Fundam. Clin. Pharmacol. 2002, 16, 253–262. [Google Scholar] [CrossRef]
- Donagher, J.; Martin, J.H.; Barras, M.A. Individualised medicine: Why we need Bayesian dosing. Intern. Med. J. 2017, 47, 593–600. [Google Scholar] [CrossRef]
- Agency, E.M. Guideline on the Investigation of Bioequivalence. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf (accessed on 25 January 2021).
- Agency, E.M. Validation of Analytical Procedures. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 25 January 2021).
Title of Prospective Pharmacokinetic Study | Reference |
---|---|
A long-term prospective population pharmacokinetic study on imatinib plasma concentrations in GIST patients | [19] |
Environmental and genetic factors affecting transport of imatinib by OATP1A2 | [18] |
Predictive Value of CYP3A and ABCB1 Phenotyping Probes for the Pharmacokinetics of Sunitinib: the ClearSun Study | [22] |
Relationship Between Sunitinib Pharmacokinetics and Administration Time: Preclinical and Clinical Evidence | [21] |
Influence of the Acidic Beverage Cola on the Absorption of Erlotinib in Patients With Non-Small-Cell Lung Cancer | [23] |
Influence of Cow’s Milk and Esomeprazole on the Absorption of Erlotinib: A Randomized, Crossover Pharmacokinetic Study in Lung Cancer Patients | [24] |
Influence of Probenecid on the Pharmacokinetics and Pharmacodynamics of Sorafenib | [20] |
Influence of the Proton Pump Inhibitor Esomeprazole on the Bioavailability of Regorafenib: A Randomized Crossover Pharmacokinetic Study | [17] |
The effects of esomeprazole on the bioavailability of afatinib in patients with non-small-cell lung cancer | [25] |
SMKI | Tmax (h) | T1/2 (h) | DI (h) | Patients (n) | Time after Intake (h) | Blood Withdrawal (n) | RD (%) | 90%CI RD (%) |
---|---|---|---|---|---|---|---|---|
Afatinib | 2 to 5 | 37 | 24 | 13 | 2.00 to 2.98 | 66 | −6.4 | −12.0 to −0.3 |
13 | 3.00 to 3.98 | 70 | 1.1 | −4.2 to 6.7 | ||||
13 | 4.00 to 4.13 | 30 | 9.5 | 2.6 to 17.0 | ||||
13 | 5.50 to 6.48 | 36 | 10.1 | 4.5 to 16.0 | ||||
13 | 7.50 to 8.30 | 35 | 9.8 | 4.2 to 15.8 | ||||
13 | 11.50 to 12.73 | 34 | −3.6 | −8.8 to 1.9 | ||||
Erlotinib | 4 | 36 | 24 | 55 | 4.00 to 4.27 | 98 | 33.0 | 24.5 to 42.1 |
59 | 5.90 to 6.63 | 120 | 24.7 | 18.4 to 31.2 | ||||
59 | 7.87 to 8.33 | 119 | 27.2 | 21.2 to 33.5 | ||||
59 | 11.92 to 13.00 | 118 | 10.8 | 6.2 to 15.5 | ||||
Imatinib | 2.5 | 18 | 24 | 25 | 2.58 to 2.98 | 37 | 20.0 | 5.2 to 37.0 |
61 | 3.00 to 3.98 | 200 | 19.3 | 13.9 to 24.9 | ||||
61 | 4.00 to 4.92 | 176 | 19.2 | 14.0 to 24.7 | ||||
58 | 5.00 to 6.00 | 150 | 4.1 | −0.9 to 9.2 | ||||
34 | 6.02 to 7.08 | 54 | 15.8 | 7.9 to 24.3 | ||||
Regorafenib | 3 to 4 | 20 to 30 | 24 | 22 | 3.00 to 3.98 | 106 | 15.9 | 7.3 to 25.1 |
22 | 4.00 to 4.58 | 47 | −1.3 | −11.6 to 10.1 | ||||
22 | 5.90 to 6.50 | 52 | −12.0 | −22.3 to 0.4 | ||||
22 | 7.88 to 8.50 | 52 | 1.5 | −9.2 to 13.5 | ||||
22 | 11.82 to 12.10 | 52 | −12.6 | −22.7 to −1.3 | ||||
Sorafenib | 3 | 25 to 48 | 12 | 16 | 3.98 to 4.22 | 32 | 16.9 | 0.4 to 36.0 |
16 | 5.97 to 6.15 | 32 | 8.5 | −6.2 to 25.6 | ||||
16 | 7.93 to 8.43 | 32 | 13.9 | −1.6 to 31.7 | ||||
16 | 9.93 to 10.25 | 32 | 0.9 | −12.0 to 15.8 | ||||
Sunitinib | 6 to 12 | 40 to 60 | 24 | 17 | 6.00 to 6.27 | 30 | −3.8 | −9.1 to 1.8 |
75 | 7.63 to 8.67 | 149 | 3.1 | 0.6 to 5.8 | ||||
24 | 11.95 to 12.42 | 52 | −2.5 | −5.6 to −0.7 | ||||
SU12662 | 6 to 12 | 80 to 110 | 24 | 17 | 6.00 to 6.27 | 30 | −3.6 | −9.8 to 3.1 |
75 | 7.63 to 8.67 | 148 | 1.3 | −1.5 to 4.1 | ||||
23 | 11.95 to 12.42 | 52 | 3.8 | −7.8 to 0.3 |
Drug | Recommended Interval |
---|---|
Afatinib | ≥2 h |
Erlotinib | ≥12 h |
Imatinib | ≥3 h |
Regorafenib | Not recommended |
Sorafenib | ≥10 h |
Sunitinib (and SU12662) | ≥6 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Eerden, R.A.G.; Oomen-de Hoop, E.; Noordam, A.; Mathijssen, R.H.J.; Koolen, S.L.W. Feasibility of Extrapolating Randomly Taken Plasma Samples to Trough Levels for Therapeutic Drug Monitoring Purposes of Small Molecule Kinase Inhibitors. Pharmaceuticals 2021, 14, 119. https://doi.org/10.3390/ph14020119
van Eerden RAG, Oomen-de Hoop E, Noordam A, Mathijssen RHJ, Koolen SLW. Feasibility of Extrapolating Randomly Taken Plasma Samples to Trough Levels for Therapeutic Drug Monitoring Purposes of Small Molecule Kinase Inhibitors. Pharmaceuticals. 2021; 14(2):119. https://doi.org/10.3390/ph14020119
Chicago/Turabian Stylevan Eerden, Ruben A. G., Esther Oomen-de Hoop, Aad Noordam, Ron H. J. Mathijssen, and Stijn L. W. Koolen. 2021. "Feasibility of Extrapolating Randomly Taken Plasma Samples to Trough Levels for Therapeutic Drug Monitoring Purposes of Small Molecule Kinase Inhibitors" Pharmaceuticals 14, no. 2: 119. https://doi.org/10.3390/ph14020119
APA Stylevan Eerden, R. A. G., Oomen-de Hoop, E., Noordam, A., Mathijssen, R. H. J., & Koolen, S. L. W. (2021). Feasibility of Extrapolating Randomly Taken Plasma Samples to Trough Levels for Therapeutic Drug Monitoring Purposes of Small Molecule Kinase Inhibitors. Pharmaceuticals, 14(2), 119. https://doi.org/10.3390/ph14020119