Quetiapine-Induced Place Preference in Mice: Possible Dopaminergic Pathway
Abstract
:1. Introduction
2. Results
2.1. Experiment 1
2.2. Experiment 2
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs
4.3. Experimental Design
4.4. CPP Paradigm
4.5. Statistical analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maglione, M.; Maher, A.R.; Hu, J.; Wang, Z.; Shanman, R.; Shekelle, P.G.; Roth, B.; Hilton, L.; Suttorp, M.J.; Ewing, B.A.; et al. Off-Label Use of Atypical Antipsychotics: An Update; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2011. [Google Scholar]
- Oruch, R.; Pryme, I.; Fasmer, O.B.; Lund, A. Quetiapine: An Objective Evaluation of Pharmacology. Clin. Uses Intox. 2020, 8, 1–26. [Google Scholar]
- Maneeton, N.; Maneeton, B.; Woottiluk, P.; Likhitsathian, S.; Suttajit, S.; Boonyanaruthee, V.; Srisurapanont, M. Quetiapine monotherapy in acute treatment of generalized anxiety disorder: A systematic review and meta-analysis of randomized controlled trials. Drug Des. Dev. Ther. 2016, 10, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.; Geddes, J.R.; Gardiner, A.; Rendell, J.; Goodwin, G.M.; Mayer, S. Comparative economic evaluation of quetiapine plus lamotrigine combination vs quetiapine monotherapy (and folic acid vs placebo) in patients with bipolar depression (CEQUEL). Bipolar Disord. 2018, 20, 733–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maan, S.J.; Saadabadi, A. Quetiapine, in StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Yam, M.F.-C.; Kiew, C.-F.; Chong, C.-P. Hyperglycemia and late onset seizures associated with quetiapine overdose. Tzu Chi Med. J. 2013, 25, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Nudelman, E.; Vinuela, L.M.; Cohen, C.I. Safety in overdose of quetiapine: A case report. J. Clin. Psychiatry 1998, 59, 433. [Google Scholar] [CrossRef] [Green Version]
- Harmon, T.J.; Benitez, J.G.; Krenzelok, E.P.; Cortes-Belen, E. Loss of Consciousness from Acute Quetiapine Overdosage. J. Toxicol. Clin. Toxicol. 1998, 36, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Rhyee, S.H.; Pedapati, E.V.; Thompson, J. Prolonged Delirium After Quetiapine Overdose. Pediatr. Emerg. Care 2010, 26, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Pierre, J.M.; Shnayder, I.; Wirshing, D.A.; Wirshing, W.C. Intranasal Quetiapine Abuse. Am. J. Psychiatry 2004, 161, 1718. [Google Scholar] [CrossRef]
- Klein, L.; Bangh, S.; Cole, J.B. Intentional Recreational Abuse of Quetiapine Compared to Other Second-generation Antipsychotics. West. J. Emerg. Med. 2017, 18, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Mattson, M.E.; Albright, V.A.; Yoon, J.; Council, C.L. Emergency Department Visits Involving Misuse and Abuse of the Antipsychotic Quetiapine: Results from the Drug Abuse Warning Network (DAWN). Subst. Abus. Res. Treat. 2015, 9, 39–46. [Google Scholar] [CrossRef]
- Bastiaens, L.; Galus, J.; Mazur, C. Abuse of Gabapentin is Associated with Opioid Addiction. Psychiatr. Q. 2016, 87, 763–767. [Google Scholar] [CrossRef]
- Solinas, M.; Belujon, P.; Fernagut, P.O.; Jaber, M.; Thiriet, N. Dopamine and addiction: What have we learned from 40 years of research. J. Neural Transm. 2019, 126, 481–516. [Google Scholar] [CrossRef]
- Quintero, G.C. Review about gabapentin misuse, interactions, contraindications and side effects. J. Exp. Pharmacol. 2017, 9, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Hamamura, T.; Akiyama, K.; Akimoto, K.; Kashihara, K.; Okumura, K.; Ujike, H.; Otsuki, S. Co-administration of either a selective D1 or D2 dopamine antagonist with methamphetamine prevents meth-amphetamine-induced behavioral sensitization and neurochemical change, studied by in vivo intracerebral dialysis. Brain Res. 1991, 546, 40–46. [Google Scholar] [CrossRef]
- Woolverton, W.L. Effects of a D1 and a D2 dopamine antagonist on the self-administration of cocaine and piribedil by Rhesus monkeys. Pharmacol. Biochem. Behav. 1986, 24, 531–535. [Google Scholar] [CrossRef]
- Yue, K.; Ma, B.; Ru, Q.; Chen, L.; Gan, Y.; Wang, D.; Jin, G.; Li, C. The dopamine receptor antagonist levo-tetrahydropalmatine attenuates heroin self-administration and heroin-induced reinstatement in rats. Pharmacol. Biochem. Behav. 2012, 102, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ranaldi, R.; Beninger, R.J. Bromocriptine enhancement of responding for conditioned reward depends on intact D1 receptor function. Psychopharmacology 1995, 118, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.A.; Beninger, R.J. Psychopharmacology of conditioned reward: Evidence for a rewarding signal at D1-like dopamine receptors. Psychopharmacology 1999, 144, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Fibiger, H.C. Mesolimbic dopamine: An analysis of its role in motivated behavior. In Seminars in Neuroscience; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Grenier, P.; Mailhiot, M.C.; Cahill, C.M.; Olmstead, M.C. Blockade of dopamine D1 receptors in male rats disrupts morphine reward in pain naïve but not in chronic pain states. J. Neurosci. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Carati, C.; Schenk, S. Role of dopamine D1- and D2-like receptor mechanisms in drug-seeking following methamphetamine self-administration in rats. Pharmacol. Biochem. Behav. 2011, 98, 449–454. [Google Scholar] [CrossRef]
- Fowler, S.C.; Liou, J.-R. Microcatalepsy and disruption of forelimb usage during operant behavior: Differences between dopamine D1 (SCH-23390) and D2 (raclopride) antagonists. Psychopharmacology 1994, 115, 24–30. [Google Scholar] [CrossRef]
- Beninger, R.J.; Miller, R. Dopamine D1-like receptors and reward-related incentive learning. Neurosci. Biobehav. Rev. 1998, 22, 335–345. [Google Scholar] [CrossRef]
- McLelland, A.E.; Martin-Iverson, M.T.; Beninger, R.J. The effect of quetiapine (Seroquel™) on conditioned place preference and elevated plus maze tests in rats when administered alone and in combination with (+)-amphetamine. Psychopharmacology 2014, 231, 4349–4359. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.J.; Lee, H.-A.; Ahn, J.-I.; Jeon, S.-H.; Kim, E.J.; Jeong, H.-S. Dependence Potential of Quetiapine: Behavioral Pharmacology in Rodents. Biomol. Ther. 2013, 21, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Waheed, W.; Hussain, S. Intravenous Quetiapine Abuse. Am. J. Psychiatry 2005, 162, 1755. [Google Scholar] [CrossRef] [PubMed]
- Morin, A.K. Possible intranasal quetiapine misuse. Am. J. Heal. Pharm. 2007, 64, 723–725. [Google Scholar] [CrossRef]
- Yargic, I.; Caferov, C. Quetiapine Dependence and Withdrawal: A Case Report. Subst. Abus. 2011, 32, 168–169. [Google Scholar] [CrossRef]
- Klein-Schwartz, W.; Schwartz, E.K.; Anderson, B.D. Evaluation of Quetiapine Abuse and Misuse Reported to Poison Centers. J. Addict. Med. 2014, 8, 195–198. [Google Scholar] [CrossRef]
- Pinta, E.; Taylor, R. Quetiapine addiction?(letter). Am. J. Psychiatry 2007, 164, 174–175, DAVID MURPHY, MD KIMBERLY BAILEY, RN MICHAEL STONE WILLIAM C. WIRSHING, MD Culver City, Calif. [Google Scholar] [CrossRef] [PubMed]
- Keltner, N.L.; Vance, D.E. Biological Perspectives Incarcerated Care and Quetiapine Abuse. Perspect. Psychiatr. Care 2008, 44, 202–206. [Google Scholar] [CrossRef]
- Waters, M.B.; Joshi, K.G. Intravenous quetiapine-cocaine use (“Q-ball”). Am. J. Psychiatry 2007, 164, 173–174. [Google Scholar] [CrossRef]
- Gugger, J.J.; Cassagnol, M. Low-Dose Quetiapine Is Not a Benign Sedative-Hypnotic Agent. Am. J. Addict. 2008, 17, 454–455. [Google Scholar] [CrossRef]
- Ray, L.A.; Chin, P.F.; Heydari, A.; Miotto, K. A human laboratory study of the effects of quetiapine on subjective intoxication and alcohol craving. Psychopharmacology 2011, 217, 341–351. [Google Scholar] [CrossRef]
- Seeman, P. Atypical Antipsychotics: Mechanism of Action. Focus 2004, 47, 27–58. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, J.; Ishii, H.; Bonaccorso, S.; Fowler, W.L.; O’Laughlin, I.A.; Meltzer, H.Y. 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: A possible mech-anism of atypical antipsychotic-induced cortical dopamine release. J. Neurochem. 2001, 76, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Hasbi, A.; Perreault, M.L.; Shen, M.Y.F.; Fan, T.; Nguyen, T.; Alijaniaram, M.; Banasikowski, T.J.; Grace, A.A.; O’Dowd, B.F.; Fletcher, P.J.; et al. Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and ΔFosB. Front. Pharmacol. 2018, 8, 924. [Google Scholar] [CrossRef]
- Justinova, Z.; Panlilio, L.V.; Goldberg, S.R. Drug addiction. In Behavioral Neurobiology of the Endocannabinoid System; Springer: Berlin/Heidelberg, Germany, 2009; pp. 309–346. [Google Scholar]
- Baik, J.-H. Dopamine signaling in reward-related behaviors. Front. Neural Circuits 2013, 7, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranaldi, R.; Wise, R.A. Blockade of D1 Dopamine Receptors in the Ventral Tegmental Area Decreases Cocaine Reward: Possible Role for Dendritically Released Dopamine. J. Neurosci. 2001, 21, 5841–5846. [Google Scholar] [CrossRef]
- Stouffer, M.A.; Ali, S.; Reith, M.E.A.; Patel, J.C.; Sarti, F.; Carr, K.D.; Rice, M.E. SKF-83566, a D1-dopamine receptor antagonist, inhibits the dopamine transporter. J. Neurochem. 2011, 118, 714–720. [Google Scholar] [CrossRef]
- Fritts, M.E.; Mueller, K.; Morris, L. Amphetamine-Induced Locomotor Stereotypy in Rats Is Reduced by a D1 but not a D2 Antagonist. Pharmacol. Biochem. Behav. 1997, 58, 1015–1019. [Google Scholar] [CrossRef]
- Althobaiti, Y.; Alghorabi, A.; AlShehri, F.S.; Baothman, B.; Almalki, A.H.; Alsaab, H.; Alsanie, W.; Gaber, A.; Almalki, H.; Alghamdi, A.S.; et al. Gabapentin-induced drug-seeking-like behavior: A potential role for the dopaminergic system. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Althobaiti, Y.; Almalki, A.; Alsaab, H.; Alsanie, W.; Gaber, A.; Alhadidi, Q.; Hardy, A.M.G.; Nasr, A.; Alzahrani, O.; Stary, C.M.; et al. Pregabalin: Potential for Addiction and a Possible Glutamatergic Mechanism. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althobaiti, Y.S. Role of venlafaxine in relapse to methamphetamine seeking: Potential treatment option for drug dependence. Saudi Med. J. 2019, 40, 339. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althobaiti, Y.S. Quetiapine-Induced Place Preference in Mice: Possible Dopaminergic Pathway. Pharmaceuticals 2021, 14, 156. https://doi.org/10.3390/ph14020156
Althobaiti YS. Quetiapine-Induced Place Preference in Mice: Possible Dopaminergic Pathway. Pharmaceuticals. 2021; 14(2):156. https://doi.org/10.3390/ph14020156
Chicago/Turabian StyleAlthobaiti, Yusuf S. 2021. "Quetiapine-Induced Place Preference in Mice: Possible Dopaminergic Pathway" Pharmaceuticals 14, no. 2: 156. https://doi.org/10.3390/ph14020156
APA StyleAlthobaiti, Y. S. (2021). Quetiapine-Induced Place Preference in Mice: Possible Dopaminergic Pathway. Pharmaceuticals, 14(2), 156. https://doi.org/10.3390/ph14020156