Effect of Methyl–β–Cyclodextrin and Trehalose on the Freeze–Drying and Spray–Drying of Sericin for Cosmetic Purposes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Sericin Dispersions
2.2. Characterization of Sericin Powders
2.2.1. Visual Inspection and Morphology
2.2.2. Percentage Yield of Spray–Drying
2.2.3. Thermal, Spectroscopic and Granulometric Analyses
2.2.4. Microbiological Analysis
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Sericin Extraction
3.2.2. Freeze–Drying Process
3.2.3. Spray–Drying Process
3.2.4. Physico–Chemical Characterization of Sericin Powders
3.2.5. Microbial Counts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goddard, E.D.; Gruber, J.V. Principles of Polymer Science and Technology in Cosmetics and Personal Care; Marcel Dekker: New York, NY, USA, 1999; pp. 391–464. [Google Scholar]
- Secchi, G. Role of protein in cosmetics. Clin. Dermatol. 2008, 26, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Simionato, A.V.C.; Carrilho, E.; Tavares, M.F.M. Characterization of protein hydrolysates of cosmetic use by CE–MS. J. Sep. Sci. 2011, 34, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Vatanara, A.; Park, E.J.; Na, D.H. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics 2018, 10, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maury, M.; Murphy, K.; Kumar, S.; Mauerer, A.; Lee, G. Spray–drying of proteins: Effects of sorbitol and trehalose on aggregation and FT–IR amide I spectrum of an immunoglobulin G. Eur. J. Pharm. Biopharm. 2005, 59, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Latip, L.D.; Zzaman, W.; Abedin, M.Z.; Yang, T.A. Optimization of Spray Drying Process in Commercial Hydrolyzed Fish Scale Collagen and Characterization by Scanning Electron Microscope and Fourier Transform Infrared Spectroscopy. J. Food Process. Preserv. 2015, 39, 1754–1761. [Google Scholar] [CrossRef]
- Ameri, M.; Maa, Y.F. Spray drying of biopharmaceuticals: Stability and process considerations. Dry. Technol. 2006, 24, 763–768. [Google Scholar] [CrossRef]
- Kim, M.K.; Kwak, H.W.; Lee, J.Y.; Yun, H.S.; Kim, M.H.; Lee, K.H. Effect of Lyoprotectant on the Solubility and Structure of Silk Sericin. Int. J. Ind. Entomol. 2012, 25, 133–137. [Google Scholar] [CrossRef]
- Crowe, J.H.; Crowe, L.M.; Chapman, D. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 1984, 223, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.F.; Crowe, J.H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 1989, 28, 3916–3922. [Google Scholar] [CrossRef]
- Green, J.L.; Angell, C.A. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 1989, 93, 2880–2882. [Google Scholar] [CrossRef]
- Corradini, D.; Strekalova, E.G.; Stanley, H.E.; Gallo, P. Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef]
- Arsiccio, A.; Pisano, R. Water entrapment and structure ordering as protection mechanisms for protein structural preservation. J. Chem. Phys. 2018, 148. [Google Scholar] [CrossRef]
- Ohtake, S.; Kita, Y.; Arakawa, T. Trehalose: Current Use and Future Applications. Adv. Drug Deliv. Rev. 2011, 100, 2020–2053. [Google Scholar] [CrossRef]
- Genç, G.; Narin, G.; Bayraktar, O. Spray drying as a method of producing composite powders. J. Achiev. Mater. Manuf. Eng. 2009, 37, 78–86. [Google Scholar]
- Rocha, L.K.H.; Favaro, L.I.L.; Rios, A.C.; Silva, E.C.; Silva, W.F.; Stigliani, T.P.; Guilger, M.; Lima, R.; Oliveira, J.M.; Aranha, N.; et al. Sericin from Bombyx mori cocoons: Part I: Extraction and physicochemical–biological characterization for biopharmaceutical applications. Process Biochem. 2017, 61, 163–177. [Google Scholar] [CrossRef]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.D.F.C.; Natali, M.R.M. Silkworm Sericin: Properties and Biomedical Applications. Biomed. Res. Int. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.; Agrawal, A.; Chaudhary, H.; Gulrajani, M.; Gupta, C. Cleaner process for extraction of sericin using infrared. J. Clean. Prod. 2013, 52, 488–494. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Li, W.W.; Wang, F.; Zhang, Y.Q. Using of hydrated lime water as a novel degumming agent of silk and sericin recycling from wastewater. J. Clean. Prod. 2018, 172, 2090–20963. [Google Scholar] [CrossRef]
- European Commission. European Green Deal, European Commission Priorities 2019–2024; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Zhang, Y.Q. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 2002, 20, 91–100. [Google Scholar] [CrossRef]
- Aramwit, P.; Siritientong, T.; Srichana, T. Potential applications of silk sericin, a natural protein from textile industry by–products. Waste Manag. Res. 2012, 30, 217–224. [Google Scholar] [CrossRef]
- Orlandi, G.; Faragò, S.; Menato, S.; Sorlini, M.; Butti, F.; Mocchi, M.; Donelli, I.; Catenacci, L.; Sorrenti, M.L.; Croce, S.; et al. Eco–sustainable silk sericin from by–product of textile industry can be employed for cosmetic, dermatology and drug delivery. J. Chem. Technol. Biotechnol. 2020, 95, 2549–2560. [Google Scholar] [CrossRef]
- Dash, R.; Mandal, M.; Ghosh, S.K.; Kundu, S.C. Silk sericin protein of tropical tasar silkworm inhibits UVB–induced apoptosis in human skin keratinocytes. Mol. Cell. Biochem. 2008, 311, 111–119. [Google Scholar] [CrossRef]
- Berardesca, E.; Ardigo, M.; Cameli, N.; Mariano, M.; Agozzino, M.; Matts, P.J. Randomized, double–blinded, vehicle–controlled, split–face study to evaluate the effects of topical application of a Gold Silk Sericin/Niacinamide/Signaline complex on biophysical parameters related to skin ageing. Int. J. Cosmet. Sci. 2015, 37, 606–612. [Google Scholar] [CrossRef]
- Barajas–Gamboa, J.A.; Serpa–Guerra, A.M.; Restrepo–Osorio, A.; Álvarez–López, C. Aplicaciones de la sericina: Una proteina globular proveniente de la seda. Ing. Compet. 2016, 18, 193–206. [Google Scholar] [CrossRef]
- Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M.A.; Tosca, M.C.; Marazzi, M.; Vigo, D.; et al. Sericins exhibit ROS–scavenging, anti–tyrosinase, anti–elastase, and in vitro immunomodulatory activities. Int. J. Biol. Macromol. 2013, 58, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Padamwar, M.N.; Pawar, A.P. Silk sericin and its applications: A review. J. Sci. Ind. Res. 2004, 63, 323–329. [Google Scholar]
- Rigano, L.; Leporatti, R.; Lionetti, N. Sericina Integra. Cosmet. Technol. 2005, 8, 15–22. [Google Scholar]
- Sheng, J.Y.; Xu, J.; Zhuang, Y.; Sun, D.Q.; Xing, T.L.; Chen, G.Q. Study on the application of sericin in cosmetics. Adv. Mater. Res. 2013, 796, 416–423. [Google Scholar] [CrossRef]
- Paul, P.K.C.; Pye, S.; Raut, J.S. Use of Silk Proteins for Hair Care; WO 2017042048 A1; World Intellectual Property Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Serno, T.; Geidobler, R.; Winter, G. Protein stabilization by cyclodextrins in the liquid and dried state. Adv. Drug Deliv. Rev. 2011, 63, 1086–1106. [Google Scholar] [CrossRef] [PubMed]
- Stella, V.J.; Rajewski, R.A. Cyclodextrins: Their future in drug formulation and delivery. Pharm. Res. 1997, 14, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Horský, J.; Pitha, J. Inclusion complexes of proteins: Interaction of cyclodextrins with peptides containing aromatic amino acids studied by competitive spectrophotometry. J. Incl. Phenom. Mol. Recognit. Chem. 1994, 18, 291–300. [Google Scholar] [CrossRef]
- Aachmann, F.L.; Otzen, D.E.; Larsen, K.L.; Wimmer, R. Structural background of cyclodextrin–protein interactions. Protein Eng. 2003, 16, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Tavornvipas, S.; Hirayama, F.; Takeda, S.; Arima, H.; Uekama, K. Effects of cyclodextrins on chemically and thermally induced unfolding and aggregation of lysozyme and basic fibroblast growth factor. J. Pharm. Sci. 2006, 95, 2722–2729. [Google Scholar] [CrossRef]
- Dodziuk, H. Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications; Wiley–VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar] [CrossRef] [Green Version]
- Jalalipour, M.; Najafabadi, A.R.; Gilani, K.; Esmaily, H.; Tajerzadeh, H. Effect of Dimethyl–b–Cyclodextrin Concentrations on the Pulmonary Delivery of Recombinant Human Growth Hormone Dry Powder in Rats. J. Pharm. Sci. 2008, 97, 5176–5185. [Google Scholar] [CrossRef]
- Loftsson, T.; Masson, M. Cyclodextrins in topical drug formulations: Theory and practice. Int. J. Pharm. 2001, 225, 15–30. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Crini, G. Review: A history of cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Bilensoy, E. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 134–140. [Google Scholar] [CrossRef]
- Buschmann, H.J.; Schollmeyer, E. Applications of cyclodextrins in cosmetic products: A review. J. Cosmet. Sci. 2002, 53, 185–191. [Google Scholar] [PubMed]
- Ambrogi, V.; Perioli, L.; Tiralti, M.C. Ciclodestrine: Applicazioni in campo cosmetico. Kosmetica 2007, 4, 50–53. [Google Scholar]
- Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [CrossRef]
- Siritientong, T.; Bonani, W.; Motta, A.; Migliaresi, C.; Aramwit, P. The effects of Bombyx mori silk strain and extraction time on the molecular and biological characteristics of sericin. Biosci. Biotechnol. Biochem. 2016, 80, 241–249. [Google Scholar] [CrossRef]
- Kluge, J.A.; Kahn, B.T.; Brown, J.E.; Omenetto, F.G.; Kaplan, D.L. Optimizing Molecular Weight of Lyophilized Silk as a Shelf–Stable Source Material. ACS Biomater. Sci. Eng. 2016, 2, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Anandharamakrishnan, C.; Rielly, C.D.; Stapley, A.G.F. Effects of process variables on the denaturation of whey proteins during spray drying. Dry. Technol. 2007, 25, 799–807. [Google Scholar] [CrossRef]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.R.; Ribani, M.; Gimenes, M.L.; Scheer, A.P. High molecular weight sericin obtained by high temperature and ultrafiltration process. Procedia Eng. 2012, 42, 833–841. [Google Scholar] [CrossRef] [Green Version]
- Büchi. Microencapsulation of Flavors and Fragrances by Spray Drying; Application Note No. 248/2017; Büchi: Flawil, Switzerland, 2017. [Google Scholar]
- Martínez, D.C.C.; Zuluaga, C.L.; Restrepo–Osorio, A.; Álvarez–López, C. Characterization of sericin obtained from cocoons and silk yarns. Procedia Eng. 2017, 200, 377–383. [Google Scholar] [CrossRef]
- Iwai, J.; Ogawa, N.; Nagase, H.; Endo, T.; Loftsson, T.; Ueda, H. Effects of Various Cyclodextrins on the Stability of Freeze–Dried Lactate Dehydrogenase. J. Pharm. Sci. 2007, 96, 3140–3143. [Google Scholar] [CrossRef] [PubMed]
- Both, E.M.; Boom, R.M.; Schutyser, M.A.I. Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technol. 2020, 363, 519–524. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M. Handbook on Spray Drying Applications for Food Industries, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–29. [Google Scholar]
- Ramezani, V.; Vatanara, A.; Seyedabadi, M.; Meibodi, M.N.; Fanaei, H. Application of cyclodextrins in antibody microparticles: Potentials for antibody protection in spray drying. Drug Dev. Ind. Pharm. 2017, 43, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Srirangsan, P.; Kawai, K.; Hamada-Sato, N.; Watanabe, M.; Suzuki, T. Improvement in the remaining activity of freeze-dried xanthine oxidase with the addition of a disaccharide-polymer mixture. Food Chem. 2010, 119, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.K.; Roy, I. Effect of trehalose on protein structure. Protein Sci. 2009, 18, 24–36. [Google Scholar] [CrossRef] [PubMed]
- European Commission. The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients, 9th ed.; SCCS/1564/15; European Commission: Brussels, Belgium, 2016. [Google Scholar]
Samples | fd_Powders | sd_Powders | |
---|---|---|---|
Moisture (% w/w) | Moisture (% w/w) | Yield (% w/w) | |
S | 7.9 ± 0.1 | 9.8 ± 0.3 | 34.4 ± 5.2 |
T | 5.2 ± 0.1 | 5.2 ± 0.3 | 36.9 ± 2.7 |
M | 2.2 ± 0.2 | 5.0 ± 0.3 | 23.6 ± 5.3 |
MT | --- | 8.2 ± 0.1 | 49.6 ± 1.9 |
ST | 5.5 ± 0.3 | 8.7 ± 0.1 | 43.8 ± 4.9 |
SM | 4.5 ± 0.6 | 8.1 ± 0.1 | 38.0 ± 5.3 |
SMT | --- | 6.1 ± 0.2 | 58.9 ± 1.2 |
Materials | Freeze–Dried Powders | Spray–Dried Powders |
---|---|---|
Silk sericin (S) | fd_S | sd_S |
Trehalose dihydrate (T) | fd_T | sd_T |
Methyl–β–cyclodextrin (M) | fd_M | sd_M |
Methyl–β–cyclodextrin + Trehalose dihydrate (MT) | --- | sd_MT |
Silk sericin + Trehalose dihydrate (ST) | fd_ST | sd_ST |
Silk sericin + Methyl–β–cyclodextrin (SM) | fd_SM | sd_SM |
Silk sericin + Methyl–β–cyclodextrin + Trehalose dihydrate (SMT) | --- | sd_SMT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovannelli, L.; Milanesi, A.; Ugazio, E.; Fracchia, L.; Segale, L. Effect of Methyl–β–Cyclodextrin and Trehalose on the Freeze–Drying and Spray–Drying of Sericin for Cosmetic Purposes. Pharmaceuticals 2021, 14, 262. https://doi.org/10.3390/ph14030262
Giovannelli L, Milanesi A, Ugazio E, Fracchia L, Segale L. Effect of Methyl–β–Cyclodextrin and Trehalose on the Freeze–Drying and Spray–Drying of Sericin for Cosmetic Purposes. Pharmaceuticals. 2021; 14(3):262. https://doi.org/10.3390/ph14030262
Chicago/Turabian StyleGiovannelli, Lorella, Andrea Milanesi, Elena Ugazio, Letizia Fracchia, and Lorena Segale. 2021. "Effect of Methyl–β–Cyclodextrin and Trehalose on the Freeze–Drying and Spray–Drying of Sericin for Cosmetic Purposes" Pharmaceuticals 14, no. 3: 262. https://doi.org/10.3390/ph14030262
APA StyleGiovannelli, L., Milanesi, A., Ugazio, E., Fracchia, L., & Segale, L. (2021). Effect of Methyl–β–Cyclodextrin and Trehalose on the Freeze–Drying and Spray–Drying of Sericin for Cosmetic Purposes. Pharmaceuticals, 14(3), 262. https://doi.org/10.3390/ph14030262