Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review
Abstract
:1. Introduction
2. Rationale for the Use of Citicoline in Ophthalmological Neurodegenerative Diseases: Pre-Clinical Data
Authors | Year | Study Design | Experimental Model | Insult | Citicoline Dose | Main Results |
---|---|---|---|---|---|---|
Martinet M. et al. [13] | 1979 | Case-Control | Rats | N/A a | 50 mg/Kg−1 (i.p.) | Dopamine and tyrosine synthesis in corpus striatum |
Giménez R. et al. [40] | 1998 | Comparative Study | Sprague–Dawley Rats | N/A a | 100–500 mg/Kg (food intake) | PFA b accumulation with age in brain striatum |
Alvarez X.A. et al. [57] | 1999 | Case-Control | Sprague–Dawley Rats | Hippocampal amyloid beta injection and permanent unilateral occlusion of carotid artery | 62.5–250 mg/Kg−1 (i.p.) | Neuroprotection from A beta induced degeneration and hypoperfusion |
Krupinsky J. et al. [37] | 2002 | Case-Control | Sprague–Dawley Rats | Middle Cerebral Artery Occlusion | 500 mg/Kg−1 (i.p.) | Apoptosis rate in retina layers |
Rejdak R. et al. [12] | 2002 | Case-Control | Albino Rabbits | N/A a | 50 mg/Kg (i.p.) | Retinal catecholamine levels |
Oshitari T. et al. [30] | 2002 | N/A a | Tissue Culture of Murine Retinal Explant | High Glucose | 0.1–1 µM | Determination of apoptosis rate in RGCs c; neurite proliferation |
Adibhatla R.M. et al. [39] | 2003 | Transient Cerebral Ischemia | Effect on PLA2 d activity | |||
Mir C. et al. [46] | 2003 | N/A a | Cerebellar Granule Cells | Glutamate Toxicity | 100 µM | Apoptosis rate |
Krupinsky J. et al. [35] | 2005 | Case-Control | Sprague–Dawley Rats | Middle Cerebral Artery Occlusion | 500 mg/Kg−1 (i.p.) | Activation of MAP e kinase (ERK-1/2) in retinal layers |
Park C.H. et al. [29] | 2005 | Case-Control | Sprague–Dawley Rats | Kainic Acid (KA) | 500 mg/Kg−1 (i.p.) | Thickness of retinal layers; IHC f staining of ChAT g and TH h |
Schutteauf F. et al. [42] | 2006 | Case-Control | Brown Norway Rats | Optic Nerve Crush | 0.5 mg–2 g/Kg (i.p.) | RGCs c density; Bcl-2 IHC f |
Hurtado O. et al. [28] | 2008 | Comparative Study | Fischer Rats | Middle Cerebral Artery Occlusion | 2 g/Kg−1 (i.p.) | Association of EAAT2 with lipid rafts in rat brain; glutamate uptake |
Schauss A.G. et al. [24] | 2009 | Toxicol. Study | Sprague–Dawley Rats | N/A a | Up to 2000 mg/Kg (oral gavage) | Mortality; blood and renal parameters assessment |
Oshitari T. et al. [31] | 2010 | N/A a | Retinal Cultures of Sprague–Dawley Rats | High Glucose | 1 µM | Apoptosis rate in RGCs c population (TUNEL assay), caspases activation; regenerating neurites |
Hurtado O. et al. [38] | 2013 | N/A a | Fischer Rats wild-type and Sirt1-/- | Permanent Focal Ischemia | 0.2–2 g/Kg−1(i.p.) | Citicoline efficacy in the absence of SIRT1 |
Matteucci A. et al. [27] | 2014 | N/A a | Wistar Rat Embryos | Excitotoxicity and High Glucose | 10–1000 µM | Apoptosis rate; caspases activation |
Maestroni S. et al. [36] | 2015 | Comparative Study | C57Bl/6 Mice | Type I Diabetes | 2% Citicoline-Ophthalmic Solution | Improvement of retinal layers thickness, in particular of RNFL i and IPL l |
Bogdanov P. et al. [34] | 2018 | Db/db Mouse | Obesity-Induced Type II Diabetes | 2% Citicoline-Ophthalmic Solution | Apoptosis rate; glial activation; proinflammatory pathways activation; synaptophysin IHC f | |
Carnevale C. et al. [26] | 2019 | Case-Control | Human | N/A a | 2% Citicoline-Ophthalmic Solution | Citicoline concentration in humor vitreous |
Sbardella D. et al. [56] | 2020 | N/A a | Biochemical assay and Human Neuron-derived Cell Lines | N/A a | 1–100 µM | Allosteric Modulation of proteasome; increased UPS m activity in cultured cell lines |
3. Clinical Data
3.1. Open Angle Glaucoma
3.1.1. Psychophysical Evidences
3.1.2. Morphological Evidences
3.1.3. Electrofunctional Evidences
3.2. Anterior Ischemic Optic Neuropathy
Authors | Year | Study Population | Administration | Dosage | Schedule of Treatment | Follow-up | Main Results |
---|---|---|---|---|---|---|---|
Parisi V. et al. [80] | 1999 | OAG a with MD g −3/−6 dB | IM b | 1000 mg/day | 2 cycles of 60 days of treatment each followed by 120 days of wash-out | 360 days | Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f |
Redjak R. et al. [83] | 2003 | OAG a | Tablet | 1000 mg/day | 1 cycle of 56 day of treatment | 56 days | Shortening in PERG c P50 and VEP d P100 Its f |
Parisi V. [82] | 2005 | OAG a with MD g −3/−6 dB | IM b | 1000 mg/day | 14 cycles of 60 days of treatment each followed by 120 days of wash-out | 8 years | Increase in PERG c P50-N95 and in VEP d N75-P100 as e; Shortening in PERG c P50 and VEP d P100 Its f Correlation with Visual Field improvement. |
Parisi V. et al. [84] | 2008 | OAG a with MD g −2/−14 dB | IM b Oral | 1000 mg/day 1600 mg/day | 2 cycles of 60 days of treatment each followed by 120 days of wash-out | 360 days | Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f Non-significant differences between IM b and Oral treatment. |
Parisi V. et al. [89] | 2008 | NAION h | Oral Suspension | 1600 mg/day | 2 cycles of 60 days of treatment each followed by 120 days of wash-out | 360 days | Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f |
Roberti G. et al. [72] | 2014 | OAG a with MD g −2/−14 dB | Eye drops | 3 drops/day | 60 days of treatment followed by 30 days of wash-out | 90 days | Increase in PERG c P50-N95 as e Shortening in PERG c P50 Its f Association with Visual Field improvement. |
Parisi V. et al. [73] | 2015 | OAG a with MD g > 12 dB | Eye drops | 3 drops/day | 120 days of treatment followed by 60 days of wash-out | 180 days | Increase in PERG c P50 -N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f Correlation with Visual Field improvement. |
Parisi V. et al. [85] | 2019 | OAG a with MD g −2/−6 dB | Eye drops LF i | 3 drops/day | 120 days of treatment | 120 days | Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f Association with Visual Field improvement. |
Parisi V. et al. [90] | 2019 | NAION h | Oral Solution | 500 mL/day | 180 days of treatment followed by 90 days of wash-out | 2700 days | Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f Association with Visual Field or RNFL-T l stabilization or improvement. |
3.2.1. Psychophysical Evidences: Visual Acuity
3.2.2. Psychophysical Evidences: Visual Field
3.2.3. Morphological Evidences
3.2.4. Electrofunctional Evidences
3.3. Diabetic Retinopathy
Authors | Year | Study Population | Administration | Dosage | Schedule of Treatment | Follow-up | Main Results |
---|---|---|---|---|---|---|---|
Pecori Giraldi J. et al. [65] | 1989 | OAG a | IM b | 1000 mg/day | 10 days | 90 days | Visual Field improvement and stability |
Virno M. et al. [66] | 2000 | OAG a | IM b | 1000 mg/day | 20 cycles of 15 days of treatment each followed by 180 days of wash-out | 10 years | Visual Field improvement |
Parisi V. et al. [82] | 2005 | OAG a with MD g −3/−6 dB | IM b | 1000 mg/day | 14 cycles of 60 days of treatment each followed by 120 days of wash-out | 8 years | Visual Field improvement correlated with: Increase in PERG c P50-N95 and in VEP d N75-P100 as e; Shortening in PERG c P50 and VEP d P100 Its f |
Parisi V. et al. [89] | 2008 | NAION h | Oral Suspension | 1600 mg/day | 2 cycles of 60 days of treatment each followed by 120 days of wash-out | 360 days | Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f |
Ottobelli L. et al. [68] | 2013 | Progressive OAG a | Oral Solution | 500 mg/day | 4 cycles of 120 days of treatment each followed by 60 days of washout | 2 years | Reduction of Visual Field rate of progression |
Roberti G. et al. [72] | 2014 | OAG a with MD g −2/−14 dB | Eye drops | 3 drops/day | 60 days of treatment followed by 30 days of wash-out | 90 days | Visual Field improvement associated to: Increase in PERG c P50-N95 as e Shortening in PERG c P50 Its f |
Parisi V. et al. [73] | 2015 | OAG a with MD g > 12 dB | Eye drops | 3 drops/day | 120 days of treatment followed by 60 days of wash-out | 180 days | Visual Field improvement correlated with: Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f |
Parisi V. et al. [85] | 2019 | OAG a with MD g −2/−6 dB | Eye drops LF i | 3 drops/day | 120 days of treatment | 120 days | Visual Field improvement associated to: Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f |
Parisi V. et al. [90] | 2019 | NAION h | Oral Solution | 500 mL/day | 180 days of treatment followed by 90 days of wash-out | 270 days | Visual Field improvement associated to: Increase in PERG c P50-N95 and in VEP d N75-P100 as e Shortening in PERG c P50 and VEP d P100 Its f |
Lanza M. et al. [71] | 2019 | OAG a | Oral Solution | 500 mg/day | 2 cycles of 120 days of treatment each followed by 60 days of wash-out | 730 days | Reduction of Visual Field rate of progression Association with slower RNFL-T l and GCC-T m thinning |
Rossetti L. et al. [74] | 2020 | OAG a with MD d −2/−15 dB | Eye drops | 3 drops/day | 1095 days of treatment | 1095 days | Reduction of Visual Field rate of progression Association with slower RNFL-T l thinning |
Parravano M. et al. [120] | 2020 | NPDR n | Eye drops | 3 drops/day | 1095 days of treatment | 1095 days | Increase in FDT o 10-2 Macular Sensitivity, Association with IPL p and OPL q thickness stabilization Foveal vessel density at SCP r and DCP s stabilization at OCTA t |
3.3.1. Psychophysical Evidences
3.3.2. Morphological Evidences
Authors | Year | Study Population | Administration | Dosage | Schedule of Treatment | Follow-up | Main Results |
---|---|---|---|---|---|---|---|
Lanza M. et al. [71] | 2019 | OAG a | Oral Solution | 500 mg/day | 2 cycles of 120 days of treatment each followed by 60 days of wash-out | 730 days | Slower RNFL-T b and GCC-T c thinning Association with visual field stabilization |
Rossetti L. et al. [74] | 2020 | OAG a with MD d −2/−15 dB | Eye drops | 3 drops/day | 1095 days of treatment | 1095 days | Slower RNFL-T b thinning Association with visual field stabilization (10-2) |
Parisi V. et al. [90] | 2019 | NAION e | Oral Solution | 500 mL/day | 180 days of treatment followed by 90 days of wash-out | 270 days | RNFL-T b stabilization or improvement associated to: Increase in PERG f P50 -N95 and in VEP g N75-P100 as h Shortening in PERG P50 and VEP P100 Its i Improvement of Visual Filed |
Parravano M. et al. [120] | 2020 | NPDR l | Eye drops | 3 drops/day | 1095 days of treatment | 1095 days | IPL m and OPL n thickness stabilization Foveal vessel density at SCP o and DCP p stabilization at OCTA q |
Fogagnolo P. el al. [126] | 2020 | DR r | Eye drops | 3 drops/day | 540 days of treatment | 540 days | Increase of corneal nerve fiber length density and of corneal sensitivity |
3.3.3. Electrofunctional Evidences
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RGCs | retinal ganglion cells |
ONH | optic nerve head |
OAG | open angle glaucoma |
AION | anterior ischemic optic neuropathy |
DR | diabetic retinopathy |
KA | kainic acid |
MAPK | Mitogen Activated Protein Kinase |
TNF-α | Tumor Necrosis Factor α |
RNFL | retinal nerve fiber layer |
IPL | inner plexiform layer |
PLA2 | phospholipase A2 |
PN | proteostasis network |
UPS | ubiquitin proteasome system |
CamKII | calmodulin kinase pathways |
PKA | Protein Kinase A |
IOP | intraocular pressure |
NPA | non-perception area |
HFA | Humphrey field analyzer |
RoP | rate of progression |
MD | mean deviation |
PSD | pattern standard deviation |
OCT | optical coherence tomography |
PERG | pattern electroretinogram |
VEP | visual evoked potential |
RCT | retinocortical time |
NAION | non-arteritic anterior ischemic optic neuropathy |
AAION | arteritic anterior ischemic optic neuropathy |
VA | Visual Acuity |
Sd-OCT | spectral domain optical coherence tomography |
RNFL-T | RNFL thickness |
DM1 | type 1 diabetes mellitus |
NPDR | non-proliferative diabetic retinopathy |
FDT | frequency doubling technology |
OCTA | OCT angiography |
AO | adaptive optics |
MS | mean sensitivity |
INL | inner nuclear layer |
OPL | outer plexiform layer |
VD | vessel density |
SCP | superficial capillary plexus |
DCP | deep capillary plexus |
FAZ | foveal avascular zone |
References
- Sadun, A.A.; Glaser, J.S. Anatomy of the visual sensory system. In Neuro-Ophthalmology, 3rd ed.; Glaser, J.S., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 1999; Volume 4, pp. 75–94. [Google Scholar]
- Chang, E.E.; Goldberg, J.L. Glaucoma 2.0: Neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 2012, 119, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, S.; Wang, M.; Yan, Z.; Tian, Z.; Chen, H.; Yang, X.; Zhuo, Y. Autophagy in retinal ganglion cells in a rhesus monkey chronic hypertensive glaucoma model. PLoS ONE 2013, 15, e77100. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Salt, T.E.; Luong, V.; Wood, N.; Cheung, W.; Maass, A.; Ferrari, G.; Russo-Marie, F.; Sillito, A.M.; Cheetham, M.E.; et al. Targeting amyloid-beta in glaucoma treatment. Proc. Natl. Acad. Sci. USA 2007, 104, 13444–13449. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.L.; Amato, R.; Lazzara, F.; Porciatti, V.; Chou, T.H.; Drago, F.; Bucolo, C. P2X7 receptor antagonism preserves retinal ganglion cells in glaucomatous mice. Biochem. Pharmacol. 2020, 180, 114199. [Google Scholar] [CrossRef]
- Khalilpour, S.; Latifi, S.; Behnammanesh, G.; Majid, A.M.S.A.; Majid, A.S.A.; Tamayol, A. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection. J. Neurol. Sci. 2017, 375, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Stitt, A.W.; Gardner, T.W. Neurodegeneration in diabetic retinopathy: Does it really matter? Diabetologia 2018, 61, 1902–1912. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Chan, M.Y.; Leung, W.Y.; Wong, H.Y.; Ng, C.M.; Chan, V.T.T.; Wong, R.; Lok, J.; Szeto, S.; Chan, J.C.K.; et al. Assessment of retinal neurodegeneration with spectral-domain optical coherence tomography: A systematic review and meta-analysis. Eye 2020, 24, 1–9. [Google Scholar] [CrossRef]
- Simó, R.; Hernández, C.; European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration is an early event in diabetic retinopathy: Therapeutic implications. Br. J. Ophthalmol. 2012, 96, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Roberti, G.; Tanga, L.; Michelessi, M.; Quaranta, L.; Parisi, V.; Manni, G.; Oddone, F. Cytidine 5’-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2015, 16, 28401–28417. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.L.; Platania, C.B.; Forte, S.; Salomone, S.; Drago, F.; Bucolo, C. MicroRNAtarget prediction in glaucoma. Prog. Brain Res. 2015, 220, 217–240. [Google Scholar] [PubMed]
- Rejdak, R.; Toczolowski, J.; Solski, J.; Duma, D.; Grieb, P. Citicoline Treatment Increases Retinal Dopamine Content in Rabbits. Ophthalmic. Res. 2002, 34, 146–149. [Google Scholar] [CrossRef]
- Martinet, M.; Fonlupt, P.; Pacheco, H. Effects of Cytidine-5’ Diphosphocholine on Norepinephrine, Dopamine and Serotonin Synthesis in Various Regions of the Rat Brain. Arch. Int. Pharmacodyn. Ther. 1979, 239, 52–61. [Google Scholar] [PubMed]
- Bucolo, C.; Leggio, G.M.; Drago, F.; Salomone, S. Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther. 2019, 203, 107392. [Google Scholar] [CrossRef]
- Faiq, M.A.; Wollstein, G.; Schuman, J.S.; Chan, K.C. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog. Retin. Eye Res. 2019, 72, 100767. [Google Scholar] [CrossRef] [PubMed]
- Grieb, P. Neuroprotective Properties of Citicoline: Facts, Doubts and Unresolved Issues. CNS Drugs 2014, 28, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, E.P.; Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 1956, 222, 193–214. [Google Scholar] [CrossRef]
- Trovarelli, G.; de Medio, G.E.; Dorman, R.V.; Piccinin, G.L.; Horrocks, L.A.; Porcellati, G. Effect of cytidine diphosphate choline (CDP-choline) on ischemia-induced alterations of brain lipid in the gerbil. Neurochem. Res. 1981, 6, 821–833. [Google Scholar] [CrossRef]
- Fagone, P.; Jackowski, S. Phosphatidylcholine and the CDP-choline cycle. Biochim. Biophys. Acta 2013, 1831, 523–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G.B. Metabolism and actions of CDP-choline as an endogenous compound and administered exogenously as citicoline. Life Sci. 1995, 56, 637–660. [Google Scholar] [CrossRef]
- Gandolfi, S.; Marchini, G.; Caporossi, A.; Scuderi, G.; Tomasso, L.; Brunoro, A. Cytidine 5’-Diphosphocholine (Citicoline): Evidence for a Neuroprotective Role in Glaucoma. Nutrients 2020, 12, 793. [Google Scholar] [CrossRef] [Green Version]
- Grieb, P.; Rejdak, R. Pharmacodynamics of citicoline relevant to the treatment of glaucoma. J. Neurosci. Res. 2002, 67, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Secades, J.J. Citicoline: Pharmacological and clinical review, 2016 update. Rev. Neurol. 2016, 63, 1–73. [Google Scholar]
- Schauss, A.G.; Somfai-Relle, S.; Financsek, I.; Glavits, R.; Parent, S.C.; Endres, J.R.; Varga, T.; Szücs, Z.; Clewell, A. Single- and Repeated-Dose Oral Toxicity Studies of Citicoline Free-Base (Choline Cytidine 5’-Pyrophosphate) in Sprague-Dawley Rats. Int. J. Toxicol. 2009, 28, 479–487. [Google Scholar] [CrossRef]
- Gareri, P.; Castagna, A.; Cotroneo, A.M.; Putignano, S.; De Sarro, G.; Bruni, A.C. The Role of Citicoline in Cognitive Impairment: Pharmacological Characteristics, Possible Advantages, and Doubts for an Old Drug with New Perspectives. Clin. Interv. Aging 2015, 10, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Carnevale, C.; Manni, G.; Roberti, G.; Micera, A.; Bruno, L.; Cacciamani, A.; Altafini, R.; Quaranta, L.; Agnifili, L.; Tanga, L.; et al. Human Vitreous Concentrations of Citicoline Following Topical Application of Citicoline 2% Ophthalmic Solution. PLoS ONE 2019, 14, e0224982. [Google Scholar] [CrossRef]
- Matteucci, A.; Varano, M.; Gaddini, L.; Mallozzi, C.; Villa, M.; Pricci, F.; Malchiodi-Albedi, F. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration. Int. J. Mol. Sci. 2014, 15, 6286–6297. [Google Scholar] [CrossRef]
- Hurtado, O.; Pradillo, J.M.; Fernández-López, D.; Morales, J.R.; Sobrino, T.; Castillo, J.; Alborch, E.; Moro, M.A.; Lizasoain, I. Delayed Post-Ischemic Administration of CDP-Choline Increases EAAT2 Association to Lipid Rafts and Affords Neuroprotection in Experimental Stroke. Neurobiol. Dis. 2008, 29, 123–131. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, Y.S.; Noh, H.S.; Cheon, E.W.; Yang, Y.A.; Yoo, J.M.; Choi, W.S.; Cho, G.J. Neuroprotective Effect of Citicoline against KA-Induced Neurotoxicity in the Rat Retina. Exp. Eye Res. 2005, 81, 350–358. [Google Scholar] [CrossRef]
- Oshitari, T.; Fujimoto, N.; Adachi-Usami, E. Citicoline Has a Protective Effect on Damaged Retinal Ganglion Cells in Mouse Culture Retina. Neuroreport 2002, 13, 2109–2111. [Google Scholar] [CrossRef] [PubMed]
- Oshitari, T.; Yoshida-Hata, N.; Yamamoto, S. Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose. Brain Res. 2010, 1346, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Matteucci, A.; Gaddini, L.; Villa, M.; Varano, M.; Parravano, M.; Monteleone, V.; Cavallo, F.; Leo, L.; Mallozzi, C.; Malchiodi-Albedi, F.; et al. Neuroprotection by Rat Müller Glia against High Glucose-Induced Neurodegeneration through a Mechanism Involving ERK1/2 Activation. Exp. Eye Res. 2014, 125, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Davinelli, S.; Chiosi, F.; Di Marco, R.; Costagliola, C.; Scapagnini, G. Cytoprotective Effects of Citicoline and Homotaurine against Glutamate and High Glucose Neurotoxicity in Primary Cultured Retinal Cells. Oxid. Med. Cell Longev. 2017, 2017, 2825703. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, P.; Sampedro, J.; Solà-Adell, C.; Simó-Servat, O.; Russo, C.; Varela-Sende, L.; Simó, R.; Hernández, C. Effects of Liposomal Formulation of Citicoline in Experimental Diabetes-Induced Retinal Neurodegeneration. Int. J. Mol. Sci. 2018, 19, 2458. [Google Scholar] [CrossRef] [Green Version]
- Krupinski, J.; Slevin, M.; Badimon, L. Citicoline Inhibits MAP Kinase Signalling Pathways after Focal Cerebral Ischaemia. Neurochem. Res. 2005, 30, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, S.; Preziosa, C.; Capuano, V.; Spinello, A.; Zucchiatti, I.; Gabellini, D.; Lattanzio, R.; Bandello, F.; Zerbini, G. In vivo Evaluation of Retinal and Choroidal Structure in a Mouse Model of Long-Lasting Diabetes. Effect of Topical Treatment with Citicoline. J. Ocul. Dis. Ther. 2015, 3, 1–8. [Google Scholar]
- Krupinski, J.; Ferrer, I.; Barrachina, M.; Secades, J.J.; Mercadal, J.; Lozano, R. CDP-Choline Reduces pro-Caspase and Cleaved Caspase-3 Expression, Nuclear DNA Fragmentation, and Specific PARP-Cleaved Products of Caspase Activation Following Middle Cerebral Artery Occlusion in the Rat. Neuropharmacology 2002, 42, 846–854. [Google Scholar] [CrossRef]
- Hurtado, O.; Hernández-Jiménez, M.; Zarruk, J.G.; Cuartero, M.I.; Ballesteros, I.; Camarero, G.; Moraga, A.; Pradillo, J.M.; Moro, M.A.; Lizasoain, I. Citicoline (CDP-Choline) Increases Sirtuin1 Expression Concomitant to Neuroprotection in Experimental Stroke. J. Neurochem. 2013, 126, 819–826. [Google Scholar] [CrossRef]
- Adibhatla, R.M.; Hatcher, J.F. Citicoline Decreases Phospholipase A2 Stimulation and Hydroxyl Radical Generation in Transient Cerebral Ischemia. J. Neurosci. Res. 2003, 73, 308–315. [Google Scholar] [CrossRef]
- Giménez, R.; Aguilar, J. Effects of CDP-Choline Administration on Brain Striatum Platelet-Activating Factor in Aging Rats. Eur. J. Pharmacol. 1998, 344, 149–152. [Google Scholar] [CrossRef]
- Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells 2019, 8, 728. [Google Scholar] [CrossRef] [Green Version]
- Schuettauf, F.; Rejdak, R.; Thaler, S.; Bolz, S.; Lehaci, C.; Mankowska, A.; Zarnowski, T.; Junemann, A.; Zagorski, Z.; Zrenner, E.; et al. Citicoline and Lithium Rescue Retinal Ganglion Cells Following Partial Optic Nerve Crush in the Rat. Exp. Eye Res. 2006, 83, 1128–1134. [Google Scholar] [CrossRef]
- Brailoiu, E.; Chakraborty, S.; Brailoiu, G.C.; Zhao, P.; Barr, J.L.; Ilies, M.A.; Unterwald, E.M.; Abood, M.E.; Taylor, C.W. Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals through Sigma-1 Receptors. Cell Rep. 2019, 26, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucolo, C.; Campana, G.; Di Toro, R.; Cacciaguerra, S.; Spampinato, S. Sigma1 recognition sites in rabbit iris-ciliary body: Topical sigma1-site agonists lower intraocular pressure. J. Pharmacol. Exp. Ther. 1999, 289, 1362–1369. [Google Scholar]
- Bucolo, C.; Drago, F.; Lin, L.R.; Reddy, V.N. Sigma receptor ligands protect human retinal cells against oxidative stress. Neuroreport 2006, 27, 287–291. [Google Scholar] [CrossRef]
- Mir, C.; Clotet, J.; Aledo, R.; Durany, N.; Argemí, J.; Lozano, R.; Cervós-Navarro, J.; Casals, N. CDP-Choline Prevents Glutamate-Mediated Cell Death in Cerebellar Granule Neurons. J. Mol. Neurosci. MN 2003, 20, 53–60. [Google Scholar] [CrossRef]
- Hipp, M.S.; Kasturi, P.; Hartl, F.U. The Proteostasis Network and Its Decline in Ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421–435. [Google Scholar] [CrossRef]
- Newton, T.M.; Duce, J.A.; Bayle, E.D. The Proteostasis Network Provides Targets for Neurodegeneration. Br. J. Pharmacol. 2019, 176, 3508–3514. [Google Scholar] [CrossRef] [Green Version]
- Lopez Salon, M.; Pasquini, L.; Besio Moreno, M.; Pasquini, J.M.; Soto, E. Relationship between Beta-Amyloid Degradation and the 26S Proteasome in Neural Cells. Exp. Neurol. 2003, 180, 131–143. [Google Scholar] [CrossRef]
- Tundo, G.R.; Sbardella, D.; Ciaccio, C.; Grasso, G.; Gioia, M.; Coletta, A.; Polticelli, F.; Di Pierro, D.; Milardi, D.; Van Endert, P.; et al. Multiple Functions of Insulin-Degrading Enzyme: A Metabolic Crosslight? Crit. Rev. Biochem. Mol. Biol. 2017, 52, 554–582. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, D.; Tundo, G.R.; Coletta, A.; Marcoux, J.; Koufogeorgou, E.I.; Ciaccio, C.; Santoro, A.M.; Milardi, D.; Grasso, G.; Cozza, P.; et al. The Insulin-Degrading Enzyme Is an Allosteric Modulator of the 20S Proteasome and a Potential Competitor of the 19S. Cell Mol. Life Sci. CMLS 2018, 75, 3441–3456. [Google Scholar] [CrossRef]
- Sbardella, D.; Tundo, G.R.; Sciandra, F.; Bozzi, M.; Gioia, M.; Ciaccio, C.; Tarantino, U.; Brancaccio, A.; Coletta, M.; Marini, S. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution. PLoS ONE 2015, 10, e0132455. [Google Scholar] [CrossRef] [Green Version]
- Ciechanover, A.; Brundin, P. The Ubiquitin Proteasome System in Neurodegenerative Diseases: Sometimes the Chicken, Sometimes the Egg. Neuron 2003, 40, 427–446. [Google Scholar] [CrossRef] [Green Version]
- Campello, L.; Esteve-Rudd, J.; Cuenca, N.; Martín-Nieto, J. The Ubiquitin-Proteasome System in Retinal Health and Disease. Mol. Neurobiol. 2013, 47, 790–810. [Google Scholar] [CrossRef] [PubMed]
- Tundo, G.R.; Sbardella, D.; Santoro, A.M.; Coletta, A.; Oddone, F.; Grasso, G.; Milardi, D.; Lacal, P.M.; Marini, S.; Purrello, R.; et al. The Proteasome as a Druggable Target with Multiple Therapeutic Potentialities: Cutting and Non-Cutting Edges. Pharmacol. Ther. 2020, 213, 107579. [Google Scholar] [CrossRef]
- Sbardella, D.; Coletta, A.; Tundo, G.R.; Ahmed, I.M.M.; Bellia, F.; Oddone, F.; Manni, G.; Coletta, M. Structural and Functional Evidence for Citicoline Binding and Modulation of 20S Proteasome Activity: Novel Insights into Its pro-Proteostatic Effect. Biochem. Pharmacol. 2020, 177, 113977. [Google Scholar] [CrossRef]
- Alvarez, X.A.; Sampedro, C.; Lozano, R.; Cacabelos, R. Citicoline Protects Hippocampal Neurons against Apoptosis Induced by Brain Beta-Amyloid Deposits plus Cerebral Hypoperfusion in Rats. Methods Find Exp. Clin. Pharmacol. 1999, 21, 535–540. [Google Scholar] [CrossRef]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Livneh, I.; Cohen-Kaplan, V.; Cohen-Rosenzweig, C.; Avni, N.; Ciechanover, A. The Life Cycle of the 26S Proteasome: From Birth, through Regulation and Function, and onto Its Death. Cell Res. 2016, 26, 869–885. [Google Scholar] [CrossRef] [Green Version]
- VerPlank, J.J.S.; Goldberg, A.L. Regulating Protein Breakdown through Proteasome Phosphorylation. Biochem. J. 2017, 474, 3355–3371. [Google Scholar] [CrossRef] [Green Version]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990-2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [Green Version]
- Quigley, H.A. Number of people with glaucoma worldwide. Br. J. Ophthalmol. 1996, 80, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Leske, M.C.; Heijl, A.; Hyman, L.; Bengtsson, B. Early Manifest Glaucoma Trial: Design and baseline data. Ophthalmology 1999, 106, 2144–2153. [Google Scholar] [CrossRef]
- Bucolo, C.; Platania, C.B.M.; Drago, F.; Bonfiglio, V.; Reibaldi, M.; Avitabile, T.; Uva, M. Novel Therapeutics in Glaucoma Management. Curr. Neuropharmacol. 2018, 16, 978–992. [Google Scholar] [CrossRef]
- Pecori Giraldi, J.; Virno, M.; Covelli, G.; Grechi, G.; De Gregorio, F. Therapeutic value of citicoline in the treatment of glaucoma (computerized and automated perimetric investigation). Int. Ophthalmol. 1989, 13, 109–112. [Google Scholar] [CrossRef]
- Virno, M.; Pecori-Giraldi, J.; Liguori, A.; De Gregorio, F. The protective effect of citicoline on the progression of the perimetric defects in glaucomatous patients (perimetric study with a 10-year follow-up). Acta Ophthalmol. Scand. Suppl. 2000, 232, 56–57. [Google Scholar] [CrossRef]
- Ventura, L.; Porciatti, V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction. Ophthalmology 2005, 1, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottobelli, L.; Manni, G.L.; Centofanti, M.; Iester, M.; Allevena, F.; Rossetti, L. Citicoline oral solution in glaucoma: Is there a role in slowing disease progression? Ophthalmologica 2013, 229, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Agut, J.; Font, E.; Sacristán, A.; Ortiz, J.A. Bioavailability of methyl-14C CDP-choline by oral route. Arzneimittelforschung 1983, 33, 1045–1047. [Google Scholar] [PubMed]
- Roda, A.; Fini, A.; Grigolo, B.; Scapini, G. Routes of administration and serum levels of [Methyl-14C]-Cytidine-Diphosphocholine. Curr. Ther. Res. Clin. Exp. 1983, 34, 1049–1053. [Google Scholar]
- Lanza, M.; Gironi Carnevale, U.A.; Mele, L.; Bifani Sconocchia, M.; Bartollino, S.; Costagliola, C. Morphological and Functional Evaluation of Oral Citicoline Therapy in Chronic Open-Angle Glaucoma Patients: A Pilot Study with a 2-Year Follow-Up. Front. Pharmacol. 2019, 10, 1117. [Google Scholar] [CrossRef]
- Roberti, G.; Tanga, L.; Parisi, V.; Sampalmieri, M.; Centofanti, M.; Manni, G. A preliminary study of the neuroprotective role of citicoline eye drops in glaucomatous optic neuropathy. Indian J. Ophthalmol. 2014, 62, 549–553. [Google Scholar] [CrossRef]
- Parisi, V.; Centofanti, M.; Ziccardi, L.; Tanga, L.; Michelessi, M.; Roberti, G.; Manni, G. Treatment with citicoline eye drops enhances retinal function and neural conduction along the visual pathways in open angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 1327–1340. [Google Scholar] [CrossRef]
- Rossetti, L.; Iester, M.; Tranchina, L.; Ottobelli, L.; Coco, G.; Calcatelli, E.; Ancona, C.; Cirafici, P.; Manni, G. Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial. J. Glaucoma 2020, 29, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Mafei, L.; Fiorentini, A. Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 1981, 211, 953–955. [Google Scholar] [CrossRef]
- Parisi, V. Impaired visual function in glaucoma. Clin. Neurophysiol. 2001, 112, 351–358. [Google Scholar] [CrossRef]
- Parisi, V.; Scarale, M.E.; Balducci, N.; Fresina, M.; Campos, E.C. Electrophysiological detection of delayed postretinal neural conduction in human amblyopia. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5041–5048. [Google Scholar] [CrossRef] [Green Version]
- Ziccardi, L.; Sadun, F.; De Negri, A.M.; Barboni, P.; Savini, G.; Borrelli, E.; La Morgia, C.; Carelli, V.; Parisi, V. Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber’s hereditary optic neuropathy. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6893–6901. [Google Scholar] [CrossRef] [Green Version]
- Celesia, G.G.; Kaufman, D.; Cone, S.B. Simultaneous recording of pattern electroretinography and visual evoked potentials in multiple sclerosis. A method to separate demyelination from axonal damage to the optic nerve. Arch. Neurol. 1986, 43, 1247–1252. [Google Scholar] [CrossRef]
- Parisi, V.; Manni, G.; Colacino, G.; Bucci, M.G. Cytidine-5’-diphosphocholine (citicoline) improves retinal and cortical responses in patients with glaucoma. Ophthalmology 1999, 106, 1126–1134. [Google Scholar] [CrossRef]
- Cacabelos, R.; Caamaño, J.; Gómez, M.J.; Fernández-Novoa, L.; Franco-Maside, A.; Alvarez, X.A. Therapeutic effects of CDP-choline in Alzheimer’s disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. Ann. N. Y. Acad. Sci. 1996, 777, 399–403. [Google Scholar] [CrossRef]
- Parisi, V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5’-diphosphocholine (citicoline): A study of 8 years of follow-up. Doc. Ophthalmol. 2005, 110, 91–102. [Google Scholar] [CrossRef]
- Rejdak, R.; Toczolowski, J.; Kurkowski, J.; Kaminski, M.L.; Rejdak, K.; Stelmasiak, Z.; Grieb, P. Oral citicoline treatment improves visual pathway function in glaucoma. Med. Sci. Monit. 2003, 9, PI24–PI28. [Google Scholar]
- Parisi, V.; Coppola, G.; Centofanti, M.; Oddone, F.; Angrisani, A.M.; Ziccardi, L.; Ricci, B.; Quaranta, L.; Manni, G. Evidence of the neuroprotective role of citicoline in glaucoma patients. Prog. Brain Res. 2008, 173, 541–554. [Google Scholar]
- Parisi, V.; Oddone, F.; Roberti, G.; Tanga, L.; Carnevale, C.; Ziccardi, L.; Manni, G. Enhancement of Retinal Function and of Neural Conduction Along the Visual Pathway Induced by Treatment with Citicoline Eye Drops in Liposomal Formulation in Open Angle Glaucoma: A Pilot Electrofunctional Study. Adv. Ther. 2019, 36, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S. Ischemic optic neuropathy. Prog. Retin. Eye Res. 2009, 28, 34–62. [Google Scholar] [CrossRef] [PubMed]
- Newman, N.J. Optic neuropathy. Neurology 1996, 46, 315–322. [Google Scholar] [CrossRef]
- Hayreh, S.S. Controversies on neuroprotection therapy in non-arteritic anterior ischaemic optic neuropathy. Br. J. Ophthalmol. 2020, 104, 153–156. [Google Scholar] [CrossRef]
- Parisi, V.; Coppola, G.; Ziccardi, L.; Gallinaro, G.; Falsini, B. Cytidine-5’-diphosphocholine (Citicoline): A pilot study in patients with non-arteritic ischaemic optic neuropathy. Eur. J. Neurol. 2008, 15, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Barbano, L.; Di Renzo, A.; Coppola, G.; Ziccardi, L. Neuroenhancement and neuroprotection by oral solution citicoline in nonarteritic ischemic optic neuropathy as a model of neurodegeneration: A randomized pilot study. PLoS ONE 2019, 14, e0220435. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Zimmerman, B. Non-arteritic anterior ischemic optic neuropathy: Natural history of visual outcome. Ophthalmology 2008, 115, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, D.O.; Huang, D.; Sadun, A.A. Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4539–4545. [Google Scholar] [CrossRef]
- Barbano, L.; Ziccardi, L.; Parisi, V. Correlations between visual morphological, electrophysiological, and acuity changes in chronic non-arteritic ischemic optic neuropathy. Graefes Arch. Clin. Exp. Ophthalmol. 2021. [Google Scholar] [CrossRef]
- Bellusci, C.; Savini, G.; Carbonelli, M.; Carelli, V.; Sadun, A.A.; Barboni, P. Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 641–647. [Google Scholar] [CrossRef]
- Akbari, M.; Abdi, P.; Fard, M.A.; Afzali, M.; Ameri, A.; Yazdani-Abyaneh, A.; Mohammadi, M.; Moghimi, S. Retinal Ganglion Cell Loss Precedes Retinal Nerve Fiber Thinning in Nonarteritic Anterior Ischemic Optic Neuropathy. J. Neuroophthalmol. 2016, 36, 141–146. [Google Scholar] [CrossRef]
- Kupersmith, M.J.; Garvin, M.K.; Wang, J.K.; Durbin, M.; Kardon, R. Retinal ganglion cell layer thinning within one month of presentation for non-arteritic anterior ischemic optic neuropathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3588–3593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, Y.; Bikbova, G.; Baba, T.; Yamamoto, S.; Oshitari, T. In vivo effects of single or combined topical neuroprotective and regenerative agents on degeneration of retinal ganglion cells in rat optic nerve crush model. Sci. Rep. 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Porciatti, V.; Schiavi, C.; Benedetti, P.; Baldi, A.; Campos, E.C. Cytidine-5’- diphosphocholine improves visual acuity, contrast sensitivity and visually-evoked potentials of amblyopic subjects. Curr. Eye Res. 1998, 17, 141–148. [Google Scholar] [CrossRef]
- Porciatti, V. Electrophysiological assessment of retinal ganglion cell function. Exp. Eye Res. 2015, 141, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, J.; Kaufman, D.I. Use of pattern electroretinography to differentiate acute optic neuritis from acute anterior ischemic optic neuropathy. Electroencephalogr Clin. Neurophysiol. 1994, 92, 480–486. [Google Scholar] [CrossRef]
- Janáky, M.; Fülöp, Z.; Pálffy, A.; Benedek, K.; Benedek, G. Electrophysiological findings in patients with nonarteritic anterior ischemic optic neuropathy. Clin. Neurophysiol. 2006, 117, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Atilla, H.; Tekeli, O.; Ornek, K.; Batioglu, F.; Elhan, A.H.; Eryilmaz, T. Pattern electroretinography and visual evoked potentials in optic nerve diseases. J. Clin. Neurosci. 2006, 13, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Leasher, J.L.; Bourne, R.R.A.; Flaxman, S.R.; Jonas, J.B.; Keeffe, J.; Naidoo, N.; Pesudovs, K.; Price, H.; White, R.A.; Wong, T.Y.; et al. Erratum. Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis from 1990–2010. Diabetes Care 2016, 39, 2096. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.S.; Klein, R.; O’Colmain, B.J.; Klein, B.E.K.; Moss, S.E.; Kempen, J.H. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch. Ophthalmol. 2004, 122, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Raymond, N.T.; Varadhan, L.; Reynold, D.R.; Bush, K.; Sankaranarayanan, S.; Bellary, S.; Barnett, A.H.; Kumar, S.; O’Hare, J.P.; UK Asian Diabetes Study Retinopathy Study Group. Higher prevalence of retinopathy in diabetic patients of South Asian ethnicity compared with white Europeans in the community: A cross-sectional study. Diabetes Care 2009, 32, 410–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.Y.; Cheung, N.; Tay, W.T.; Wang, J.J.; Aung, T.; Saw, S.M.; Lim, S.C.; Tai, E.S.; Mitchell, P. Prevalence and risk factors for diabetic retinopathy: The Singapore Malay Eye Study. Ophthalmology 2008, 115, 1869–1875. [Google Scholar] [CrossRef]
- Xie, X.W.; Xu, L.; Wang, Y.X.; Jonas, J.B. Prevalence and associated factors of diabetic retinopathy. The Beijing Eye Study 2006. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Kempen, J.H.; O’Colmain, B.J.; Leske, M.C.; Haffner, S.M.; Klein, R.K.; Moss, S.E.; Taylor, H.R.; Hamman, R.F.; Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 2004, 122, 552–563. [Google Scholar]
- Rogers, S.L.; Tikellis, G.T.; Cheung, N.; Tapp, R.; Shaw, J.; Zimmet, P.Z.; Mitchell, P.; Wang, J.J.; Wong, T.Y. Retinal arteriolar caliber predicts incident retinopathy: The Australian Diabetes, Obesity and Lifestyle (AusDiab) study. Diabetes Care 2008, 31, 761–763. [Google Scholar] [CrossRef] [Green Version]
- Picconi, F.; Parravano, M.; Ylli, D.; Pasqualetti, P.; Coluzzi, S.; Giordani, I.; Malandrucco, I.; Lauro, D.; Scarinci, F.; Giorno, P.; et al. Retinal neurodegeneration in patients with type 1 diabetes mellitus: The role of glycemic variability. Acta Diabetol. 2017, 54, 489–497. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Lieth, E.; Barber, A.J.; Gardner, T.W. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin. Ophthalmol. 1999, 14, 240–248. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Barber, A.J.; Bronson, S.K.; Freeman, W.M.; Gardner, T.W.; Jefferson, L.S.; Kester, M.; Kimball, S.R.; Krady, J.K.; LaNoue, K.F.; et al. Diabetic retinopathy: Seeing beyond glucose-induced microvascular disease. Diabetes 2006, 55, 2401–2411. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, E.L.; Phipps, J.A.; Ward, M.M.; Puthussery, T.; Wilkinson-Berka, J.L. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr. Pharm. Des. 2007, 13, 2699–2712. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; McGuire, P.G.; Rangasamy, S. Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology 2015, 122, 1375–1394. [Google Scholar] [CrossRef]
- Van de Lagemaat, E.E.; de Groot, L.C.P.G.M.; van den Heuvel, E.G.H.M. Vitamin B12 in relation to oxidative stress: A systematic review. Nutrients 2019, 11, 482. [Google Scholar] [CrossRef] [Green Version]
- Platania, C.B.M.; Giurdanella, G.; Di Paola, L.; Leggio, G.M.; Drago, F.; Salomone, S.; Bucolo, C. P2X7 receptor antagonism: Implications in diabetic retinopathy. Biochem Pharmacol. 2017, 138, 130–139. [Google Scholar] [CrossRef]
- Solini, A.; Novak, I. Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications. Curr. Opin. Pharmacol. 2019, 47, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, S.; Augustine, J.; Cunning, R.; Harkin, K.; Stitt, A.W.; Xu, H.; Chen, M. Attenuating Diabetic Vascular and Neuronal Defects by Targeting P2rx7. Int. J. Mol. Sci. 2019, 20, 2101. [Google Scholar] [CrossRef] [Green Version]
- Parravano, M.; Scarinci, F.; Parisi, V.; Giorno, P.; Giannini, D.; Oddone, F.; Varano, M. Citicoline and Vitamin B(12) Eye Drops in Type 1 Diabetes: Results of a 3-year Pilot Study Evaluating Morpho-Functional Retinal Changes. Adv. Ther. 2020, 37, 1646–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vujosevic, S.; Midena, E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J. Diabetes Res. 2013, 2013, 905058. [Google Scholar] [CrossRef]
- Scarinci, F.; Picconi, F.; Virgili, G.; Giorno, P.; Di Renzo, A.; Varano, M.; Frontoni, S.; Parravano, M. Single Retinal Layer Evaluation in Patients with Type 1 Diabetes with No or Early Signs of Diabetic Retinopathy: The First Hint of Neurovascular Crosstalk Damage between Neurons and Capillaries? Ophthalmologica 2017, 237, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tang, F.; Wong, R.; Lok, J.; Szeto, S.K.H.; Chan, J.C.K.; Chan, C.K.M.; Tham, C.C.; Ng, D.S.; Cheung, C.Y. OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema: A Prospective Study. Ophthalmology 2019, 126, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Scarinci, F.; Picconi, F.; Virgili, G.; Varano, M.; Giorno, P.; Frontoni, S.; Parravano, M. Microvascular impairment as a biomarker of diabetic retinopathy progression in the long-term follow up in type 1 diabetes. Sci. Rep. 2020, 10, 18266. [Google Scholar] [CrossRef]
- Quattrini, C.; Tavakoli, M.; Jeziorska, M.; Kallinikos, P.; Tesfaye, S.; Finnigan, J.; Marshall, A.; Boulton, A.J.; Efron, N.; Malik, R.A. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 2007, 56, 2148–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogagnolo, P.; Melardi, E.; Tranchina, L.; Rossetti, L. Topical citicoline and vitamin B12 versus placebo in the treatment of diabetes-related corneal nerve damage: A randomized double-blind controlled trial. BMC Ophthalmol. 2020, 20, 315. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oddone, F.; Rossetti, L.; Parravano, M.; Sbardella, D.; Coletta, M.; Ziccardi, L.; Roberti, G.; Carnevale, C.; Romano, D.; Manni, G.; et al. Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review. Pharmaceuticals 2021, 14, 281. https://doi.org/10.3390/ph14030281
Oddone F, Rossetti L, Parravano M, Sbardella D, Coletta M, Ziccardi L, Roberti G, Carnevale C, Romano D, Manni G, et al. Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review. Pharmaceuticals. 2021; 14(3):281. https://doi.org/10.3390/ph14030281
Chicago/Turabian StyleOddone, Francesco, Luca Rossetti, Mariacristina Parravano, Diego Sbardella, Massimo Coletta, Lucia Ziccardi, Gloria Roberti, Carmela Carnevale, Dario Romano, Gianluca Manni, and et al. 2021. "Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review" Pharmaceuticals 14, no. 3: 281. https://doi.org/10.3390/ph14030281
APA StyleOddone, F., Rossetti, L., Parravano, M., Sbardella, D., Coletta, M., Ziccardi, L., Roberti, G., Carnevale, C., Romano, D., Manni, G., & Parisi, V. (2021). Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review. Pharmaceuticals, 14(3), 281. https://doi.org/10.3390/ph14030281