Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics
Abstract
:1. Introduction
2. Influence of Smoking Behavior on Pharmacokinetics
2.1. Smoking Behavior of Psychiatric Patients
2.2. Effect of Smoking on Pharmacokinetics
2.2.1. The Influence of Smoking on CYP Enzymes
2.2.2. Smoking-Associated Pharmacokinetic Changes Due to Other Mechanisms
3. Inflammation—Its Relevance in Psychiatry and Pharmacokinetics
3.1. The Role of Inflammation in Psychiatric Patients
3.1.1. Mental Illness and the Immune System
3.1.2. Psychotropic Drugs and the Immune System
3.2. Inflammation-Associated Pharmacokinetic Changes
3.2.1. Physiology of Inflammation
3.2.2. Possible Mechanisms of Inflammation-Induced Pharmacokinetic Changes
3.2.3. Effects of Inflammation on CYP Isoenzymes
3.2.4. Effect of Inflammation on Other Drug-Metabolizing Proteins and Transporters
3.2.5. Conflicting Data on the Effects of Inflammation on Pharmacokinetics
4. Antipsychotic Drugs
5. Therapeutic Drug Monitoring of Pharmaceuticals
6. Effect of Smoking on Antipsychotic Drug Levels
6.1. Effects of Smoking on Drug Levels of Antipsychotic Drugs Metabolized via CYP1A2
6.2. Effects of Smoking on Antipsychotic Drugs Metabolized by Other CYP Isoenzymes
7. Effect of Inflammation on Antipsychotic Drug Levels
7.1. Inflammation-Induced Toxicity of Antipsychotic Drugs
7.2. Drug Levels of Antipsychotic Drugs in Relation to Inflammation
7.3. Clinical Considerations
7.4. Value of Therapeutic Drug Monitoring during Inflammation—Clinical Recommendations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
F0 Mental disorders due to known physiological conditions |
F1 Mental and behavioral disorders due to psychoactive substance use |
F10 Alcohol related disorders |
F11 Opioid related disorders |
F12 Cannabis related disorders |
F13 Sedative, hypnotic, or anxiolytic related disorders |
F19 Other psychoactive substance related disorders |
F2 Schizophrenia, schizotypal, delusional, and other non-mood psychotic disorders |
F20 Schizophrenia |
F21 Schizotypal disorder |
F22 Delusional disorders |
F23 Brief psychotic disorder |
F24 Shared psychotic disorder |
F25 Schizoaffective disorders |
F25.0 Schizoaffective disorder, bipolar type |
F25.1 Schizoaffective disorder, depressive type |
F25.8 Other schizoaffective disorders |
F25.9 Schizoaffective disorder, unspecified |
F28 Other psychotic disorder not due to a substance or known physiological condition |
F29 Unspecified psychosis not due to a substance or known physiological condition |
F3 Mood [affective] disorders |
F30 Manic episode |
F31 Bipolar disorder |
F32 Major depressive disorder, single episode |
F33 Major depressive disorder, recurrent |
F34 Persistent mood [affective] disorders |
F4 Anxiety, dissociative, stress-related, somatoform and other nonpsychotic mental disorders |
F40 Phobic anxiety disorders |
F41 Other anxiety disorders |
F42 Obsessive-compulsive disorder |
F43 Reaction to severe stress, and adjustment disordersF43.2 Adjustment disorders |
F5 Behavioral syndromes associated with physiological disturbances and physical factors |
F50 Eating disorders |
F6 Disorders of adult personality and behavior |
F60 Specific personality disorders |
F7 Intellectual disabilities |
F71 Moderate intellectual disabilities |
F8 Pervasive and specific developmental disorders |
F9 Behavioral and emotional disorders with onset usually occurring in childhood and adolescence |
G2 Extrapyramidal and movement disorders |
G20 Parkinson’s disease |
G3 Other degenerative diseases of the nervous system |
G30 Alzheimer’s disease |
G4 Episodic and paroxysmal disorders |
G40 Epilepsy and recurrent seizures |
References
- Mandrioli, R.; Protti, M.; Mercolini, L. Novel Atypical Antipsychotics: Metabolism and Therapeutic Drug Monitoring (TDM). Curr. Drug Metab. 2015, 16, 141–151. [Google Scholar] [CrossRef]
- Alnæs, D.; Kaufmann, T.; van der Meer, D.; Córdova-Palomera, A.; Rokicki, J.; Moberget, T.; Bettella, F.; Agartz, I.; Barch, D.M.; Bertolino, A.; et al. Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk. JAMA Psychiatry 2019, 76, 739–748. [Google Scholar] [CrossRef]
- Tsuang, M.T.; Lyons, M.J.; Faraone, S.V. Heterogeneity of schizophrenia. Conceptual models and analytic strategies. Br. J. Psychiatry 1990, 156, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Severance, E.G.; Dickerson, F.B.; Yolken, R.H. Autoimmune phenotypes in schizophrenia reveal novel treatment targets. Pharmacol. Ther. 2018, 189, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Buckley, P.F.; Miller, B.J.; Lehrer, D.S.; Castle, D.J. Psychiatric comorbidities and schizophrenia. Schizophr. Bull. 2009, 35, 383–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kales, H.C.; Kim, H.M.; Zivin, K.; Valenstein, M.; Seyfried, L.S.; Chiang, C.; Cunningham, F.; Schneider, L.S.; Blow, F.C. Risk of mortality among individual antipsychotics in patients with dementia. Am. J. Psychiatry 2012, 169, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasrallah, H.A. Does the neurotoxicity of haloperidol explain the higher mortality in dementia patients compared with the second generation agents? Am. J. Psychiatry 2012, 169, 663–664; author reply 664–665. [Google Scholar] [CrossRef] [PubMed]
- Palomo, T.; Archer, T.; Kostrzewa, R.M.; Beninger, R.J. Comorbidity of substance abuse with other psychiatric disorders. Neurotox Res. 2007, 12, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, e1. [Google Scholar] [CrossRef] [Green Version]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, G.I.; Bode-Böger, S.M.; Busse, R.; Hoopmann, M.; Welte, T.; Böger, R.H. Drug-drug interactions in medical patients: Effects of in-hospital treatment and relation to multiple drug use. Int. J. Clin. Pharmacol. Ther. 2000, 38, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Seymour, R.M.; Routledge, P.A. Important drug-drug interactions in the elderly. Drugs Aging 1998, 12, 485–494. [Google Scholar] [CrossRef]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef] [Green Version]
- Cascade, E.F.; Kalali, A.H.; Buckley, P.F. Current Management of Schizophrenia: Antipsychotic Monotherapy versus Combination Therapy. Psychiatry 2008, 5, 28–30. [Google Scholar] [PubMed]
- Spina, E.; Hiemke, C.; de Leon, J. Assessing drug-drug interactions through therapeutic drug monitoring when administering oral second-generation antipsychotics. Expert Opin. Drug Metab. Toxicol. 2016, 12, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Toto, S.; Grohmann, R.; Bleich, S.; Frieling, H.; Maier, H.B.; Greil, W.; Cordes, J.; Schmidt-Kraepelin, C.; Kasper, S.; Stübner, S.; et al. Psychopharmacological Treatment of Schizophrenia over Time in 30 908 Inpatients: Data from the AMSP Study. Int. J. Neuropsychopharmacol. 2019, 22, 560–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jönsson, A.K.; Spigset, O.; Reis, M. A Compilation of Serum Concentrations of 12 Antipsychotic Drugs in a Therapeutic Drug Monitoring Setting. Ther. Drug Monit. 2019, 41, 348–356. [Google Scholar] [CrossRef]
- Bebawi, E.; Wakim, L.; Doré, M. Clozapine intoxication with severe adverse effects induced by an inflammatory and infectious process: A case report. J. Med. Case Rep. 2021, 15, 47. [Google Scholar] [CrossRef]
- Jovanović, M.; Vučićević, K.; Miljković, B. Understanding variability in the pharmacokinetics of atypical antipsychotics—focus on clozapine, olanzapine and aripiprazole population models. Drug Metab. Rev. 2020, 52, 1–18. [Google Scholar] [CrossRef]
- Nielsen, J.; Graff, C.; Kanters, J.K.; Toft, E.; Taylor, D.; Meyer, J.M. Assessing QT interval prolongation and its associated risks with antipsychotics. CNS Drugs 2011, 25, 473–490. [Google Scholar] [CrossRef]
- Pugh, A.J.; Barve, A.J.; Falkner, K.; Patel, M.; McClain, C.J. Drug-induced hepatotoxicity or drug-induced liver injury. Clin. Liver Dis. 2009, 13, 277–294. [Google Scholar] [CrossRef]
- De Hert, M.; Dekker, J.M.; Wood, D.; Kahl, K.G.; Holt, R.I.; Möller, H.J. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur. Psychiatry 2009, 24, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Druschky, K.; Bleich, S.; Grohmann, R.; Engel, R.R.; Neyazi, A.; Stübner, S.; Toto, S. Seizure rates under treatment with antipsychotic drugs: Data from the AMSP project. World J. Biol. Psychiatry 2019, 20, 732–741. [Google Scholar] [CrossRef]
- Druschky, K.; Toto, S.; Bleich, S.; Baumgärtner, J.; Engel, R.R.; Grohmann, R.; Maier, H.B.; Neyazi, A.; Rudolph, Y.J.; Rüther, E.; et al. Severe drug-induced liver injury in patients under treatment with antipsychotic drugs: Data from the AMSP study. World J. Biol. Psychiatry 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Pauwels, P.; Toto, S.; Bleich, S.; Grohmann, R.; Heinze, M.; Greiner, T. Severe weight gain as an adverse drug reaction of psychotropics: Data from the AMSP project between 2001 and 2016. Eur. Neuropsychopharmacol. 2020, 36, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.E.; Winkler, D.; Konstantinidis, A.; Huf, W.; Engel, R.; Toto, S.; Grohmann, R.; Kasper, S. Cardiovascular Adverse Reactions During Antipsychotic Treatment: Results of AMSP, A Drug Surveillance Program Between 1993 and 2013. Int. J. Neuropsychopharmacol. 2020, 23, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sane, R.; Sinz, M. Chapter 1—Introduction of Drug Metabolism and Overview of Disease Effect on Drug Metabolism. In Drug Metabolism in Diseases; Xie, W., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Stingl, J.C.; Brockmöller, J.; Viviani, R. Genetic variability of drug-metabolizing enzymes: The dual impact on psychiatric therapy and regulation of brain function. Mol. Psychiatry 2013, 18, 273–287. [Google Scholar] [CrossRef]
- Brockmöller, J.; Kirchheiner, J.; Meisel, C.; Roots, I. Pharmacogenetic diagnostics of cytochrome P450 polymorphisms in clinical drug development and in drug treatment. Pharmacogenomics 2000, 1, 125–151. [Google Scholar] [CrossRef]
- Sim, S.C.; Risinger, C.; Dahl, M.L.; Aklillu, E.; Christensen, M.; Bertilsson, L.; Ingelman-Sundberg, M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 2006, 79, 103–113. [Google Scholar] [CrossRef]
- Shah, R.R.; Smith, R.L. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: Hypothesis with implications for personalized medicine. Drug Metab. Dispos. 2015, 43, 400–410. [Google Scholar] [CrossRef] [Green Version]
- de Leon, J.; Dadvand, M.; Canuso, C.; White, A.O.; Stanilla, J.K.; Simpson, G.M. Schizophrenia and smoking: An epidemiological survey in a state hospital. Am. J. Psychiatry 1995, 152, 453–455. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Herraiz, A.G.; Ramos, S.I.; Benítez, J. Effects of caffeine withdrawal from the diet on the metabolism of clozapine in schizophrenic patients. J. Clin. Psychopharmacol. 1998, 18, 311–316. [Google Scholar] [CrossRef]
- de Leon, J.; Diaz, F.J. Serious respiratory infections can increase clozapine levels and contribute to side effects: A case report. Prog. Neuropsychopharmacl. Biol. Psychiatry 2003, 27, 1059–1063. [Google Scholar] [CrossRef]
- Degner, D.; Bleich, S.; Grohmann, R.; Bandelow, B.; Rüther, E. Myocarditis associated with clozapine treatment. Aust. N. Z. J. Psychiatry 2000, 34, 880. [Google Scholar] [CrossRef]
- Summary of Product Characteristics (SmPC) of Clozapine. Available online: https://www.fachinfo.de/suche/fi/009863 (accessed on 26 April 2021).
- Baumann, P.; Hiemke, C.; Ulrich, S.; Eckermann, G.; Gaertner, I.; Gerlach, M.; Kuss, H.J.; Laux, G.; Müller-Oerlinghausen, B.; Rao, M.L.; et al. The AGNP-TDM expert group consensus guidelines: Therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004, 37, 243–265. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Baumann, P.; Bergemann, N.; Conca, A.; Dietmaier, O.; Egberts, K.; Fric, M.; Gerlach, M.; Greiner, C.; Gründer, G.; et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: Update 2011. Pharmacopsychiatry 2011, 44, 195–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoretsanitis, G.; Paulzen, M.; Unterecker, S.; Schwarz, M.; Conca, A.; Zernig, G.; Gründer, G.; Haen, E.; Baumann, P.; Bergemann, N.; et al. TDM in psychiatry and neurology: A comprehensive summary of the consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology, update 2017; a tool for clinicians. World J. Biol. Psychiatry 2018, 19, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Hefner, G.; Shams, M.E.; Unterecker, S.; Falter, T.; Hiemke, C. Inflammation and psychotropic drugs: The relationship between C-reactive protein and antipsychotic drug levels. Psychopharmacology 2016, 233, 1695–1705. [Google Scholar] [CrossRef]
- Schmith, V.D.; Foss, J.F. Effects of inflammation on pharmacokinetics/pharmacodynamics: Increasing recognition of its contribution to variability in response. Clin. Pharmacol. Ther. 2008, 83, 809–811. [Google Scholar] [CrossRef]
- Lawn, S.; Pols, R. Smoking bans in psychiatric inpatient settings? A review of the research. Aust. N. Z. J. Psychiatry 2005, 39, 866–885. [Google Scholar] [CrossRef]
- Busch, A.M.; Nederhoff, D.M.; Dunsiger, S.I.; Japuntich, S.J.; Chrastek, M.; Adkins-Hempel, M.; Rinehart, L.M.; Lando, H. Chronic care treatment for smoking cessation in patients with serious mental illness: A pilot randomized trial. BMC Psychiatry 2021, 21, 104. [Google Scholar] [CrossRef]
- Haustein, K.O.; Haffner, S.; Woodcock, B.G. A review of the pharmacological and psychopharmacological aspects of smoking and smoking cessation in psychiatric patients. Int. J. Clin. Pharmacol. Ther. 2002, 40, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Batra, A. Tobacco use and smoking cessation in the psychiatric patient. Fortschr. Neurol. Psychiatr. 2000, 68, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Diwan, A.; Castine, M.; Pomerleau, C.S.; Meador-Woodruff, J.H.; Dalack, G.W. Differential prevalence of cigarette smoking in patients with schizophrenic vs mood disorders. Schizophr. Res. 1998, 33, 113–118. [Google Scholar] [CrossRef]
- Kendler, K.S.; Neale, M.C.; MacLean, C.J.; Heath, A.C.; Eaves, L.J.; Kessler, R.C. Smoking and major depression. A causal analysis. Arch. Gen. Psychiatry 1993, 50, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.A.; Lewinsohn, P.M.; Seeley, J.R.; Wagner, E.F. Cigarette smoking, major depression, and other psychiatric disorders among adolescents. J. Am. Acad. Child. Adolesc. Psychiatry 1996, 35, 1602–1610. [Google Scholar] [CrossRef]
- Stockings, E.; Metse, A.; Taylor, G. “It’s the one thing they have left”: Smoking, smoking cessation and mental health. Supporting Tob. Cessat. 2021, 248–272. [Google Scholar] [CrossRef]
- de Leon, J.; Diaz, F.J. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr. Res. 2005, 76, 135–157. [Google Scholar] [CrossRef] [PubMed]
- Berlin, I.; Covey, L.S. Pre-cessation depressive mood predicts failure to quit smoking: The role of coping and personality traits. Addiction 2006, 101, 1814–1821. [Google Scholar] [CrossRef]
- Hall, S.M.; Prochaska, J.J. Treatment of smokers with co-occurring disorders: Emphasis on integration in mental health and addiction treatment settings. Annu. Rev. Clin. Psychol. 2009, 5, 409–431. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Xu, Y.; Cai, Z.; Liu, Q.; Ma, Y.; Li, A.N.; Payne, T.J.; Li, M.D. Determination of shared genetic etiology and possible causal relations between tobacco smoking and depression. Psychol. Med. 2020, 1–10. [Google Scholar] [CrossRef]
- Payne, T.J.; Ma, J.Z.; Crews, K.M.; Li, M.D. Depressive symptoms among heavy cigarette smokers: The influence of daily rate, gender, and race. Nicotine Tob. Res. 2013, 15, 1714–1721. [Google Scholar] [CrossRef] [Green Version]
- Zvolensky, M.J.; Bakhshaie, J.; Sheffer, C.; Perez, A.; Goodwin, R.D. Major depressive disorder and smoking relapse among adults in the United States: A 10-year, prospective investigation. Psychiatry Res. 2015, 226, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savin, Z.; Kivity, S.; Yonath, H.; Yehuda, S. Smoking and the intestinal microbiome. Arch. Microbiol. 2018, 200, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Capurso, G.; Lahner, E. The interaction between smoking, alcohol and the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Peters, B.A.; Dominianni, C.; Zhang, Y.; Pei, Z.; Yang, L.; Ma, Y.; Purdue, M.P.; Jacobs, E.J.; Gapstur, S.M.; et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016, 10, 2435–2446. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Shi, G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J. Transl. Med. 2019, 17, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cepeda, M.S.; Katz, E.G.; Blacketer, C. Microbiome-Gut-Brain Axis: Probiotics and Their Association with Depression. J. Neuropsychiatry Clin. Neurosci. 2016, 29, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Kosciolek, T.; Eyler, L.T.; Knight, R.; Jeste, D.V. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J. Psychiatr. Res. 2018, 99, 50–61. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kosciolek, T.; Maldonado, Y.; Daly, R.E.; Martin, A.S.; McDonald, D.; Knight, R.; Jeste, D.V. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr. Res. 2019, 204, 23–29. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Liu, M.; Chen, J.; Pan, J.; Han, Y.; Liu, Y.; Cheng, K.; Zhou, C.; Wang, H.; et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 2019, 5, eaau8317. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Park, T.Y.; Li, K.J.; DeLisi, L.E. Antipsychotics and the microbiota. Curr. Opin. Psychiatry 2020, 33, 225–230. [Google Scholar] [CrossRef]
- Li, S.; Zhuo, M.; Huang, X.; Huang, Y.; Zhou, J.; Xiong, D.; Li, J.; Liu, Y.; Pan, Z.; Li, H.; et al. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 2020, 8, e9574. [Google Scholar] [CrossRef]
- Meyer, J.M. Individual changes in clozapine levels after smoking cessation: Results and a predictive model. J. Clin. Psychopharmacol. 2001, 21, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Barrangou-Poueys-Darlas, M.; Guerlais, M.; Laforgue, E.J.; Bellouard, R.; Istvan, M.; Chauvin, P.; Guillet, J.Y.; Jolliet, P.; Gregoire, M.; Victorri-Vigneau, C. CYP1A2 and tobacco interaction: A major pharmacokinetic challenge during smoking cessation. Drug Metab. Rev. 2021, 1–12. [Google Scholar] [CrossRef]
- Anderson, G.D.; Chan, L.N. Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products. Clin. Pharm. 2016, 55, 1353–1368. [Google Scholar] [CrossRef]
- Kroon, L.A. Drug interactions with smoking. Am. J. Health Syst. Pharm. 2007, 64, 1917–1921. [Google Scholar] [CrossRef] [PubMed]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef]
- Luo, K.; Luo, X.; Cao, W.; Hochalter, J.B.; Paiano, V.; Sipe, C.J.; Carmella, S.G.; Murphy, S.E.; Jensen, J.; Lam, S.; et al. Cigarette Smoking Enhances the Metabolic Activation of the Polycyclic Aromatic Hydrocarbon Phenanthrene in Humans. Carcinogenesis 2020. [Google Scholar] [CrossRef]
- Boyle, J.O.; Gümüs, Z.H.; Kacker, A.; Choksi, V.L.; Bocker, J.M.; Zhou, X.K.; Yantiss, R.K.; Hughes, D.B.; Du, B.; Judson, B.L.; et al. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev. Res. 2010, 3, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Chi, A.C.; Appleton, K.; Henriod, J.B.; Krayer, J.W.; Marlow, N.M.; Bandyopadhyay, D.; Sigmon, R.C.; Kurtz, D.T. Differential induction of CYP1A1 and CYP1B1 by benzo[a]pyrene in oral squamous cell carcinoma cell lines and by tobacco smoking in oral mucosa. Oral. Oncol. 2009, 45, 980–985. [Google Scholar] [CrossRef] [Green Version]
- Dörrenhaus, A.; Müller, T.; Roos, P.H. Increased CYP1A1 expression in human exfoliated urothelial cells of cigarette smokers compared to non-smokers. Arch. Toxicol. 2007, 81, 19–25. [Google Scholar] [CrossRef]
- Hukkanen, J.; Pelkonen, O.; Hakkola, J.; Raunio, H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol. 2002, 32, 391–411. [Google Scholar] [CrossRef]
- Huuskonen, P.; Storvik, M.; Reinisalo, M.; Honkakoski, P.; Rysä, J.; Hakkola, J.; Pasanen, M. Microarray analysis of the global alterations in the gene expression in the placentas from cigarette-smoking mothers. Clin. Pharmacol. Ther. 2008, 83, 542–550. [Google Scholar] [CrossRef] [PubMed]
- McLemore, T.L.; Adelberg, S.; Liu, M.C.; McMahon, N.A.; Yu, S.J.; Hubbard, W.C.; Czerwinski, M.; Wood, T.G.; Storeng, R.; Lubet, R.A. Expression of CYP1A1 gene in patients with lung cancer: Evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J. Natl. Cancer Inst. 1990, 82, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, P.J.; Monteiro, A.; Bhattacharya, S.; Fowler, P.A. Maternal smoking and fetal sex significantly affect metabolic enzyme expression in the human fetal liver. J. Clin. Endocrinol. Metab. 2011, 96, 2851–2860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasanen, M.; Haaparanta, T.; Sundin, M.; Sivonen, P.; Vakakangas, K.; Raunio, H.; Hines, R.; Gustafsson, J.A.; Pelkonen, O. Immunochemical and molecular biological studies on human placental cigarette smoke-inducible cytochrome P-450-dependent monooxygenase activities. Toxicology 1990, 62, 175–187. [Google Scholar] [CrossRef]
- Tsai, P.C.; Glastonbury, C.A.; Eliot, M.N.; Bollepalli, S.; Yet, I.; Castillo-Fernandez, J.E.; Carnero-Montoro, E.; Hardiman, T.; Martin, T.C.; Vickers, A.; et al. Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clin. Epigenetics 2018, 10, 126. [Google Scholar] [CrossRef]
- Ullrich, D.; Münzel, P.A.; Beck-Gschaidmeier, S.; Schröder, M.; Bock, K.W. Drug-metabolizing enzymes in pharyngeal mucosa and in oropharyngeal cancer tissue. Biochem. Pharmacol. 1997, 54, 1159–1162. [Google Scholar] [CrossRef]
- Vyhlidal, C.A.; Riffel, A.K.; Haley, K.J.; Sharma, S.; Dai, H.; Tantisira, K.G.; Weiss, S.T.; Leeder, J.S. Cotinine in human placenta predicts induction of gene expression in fetal tissues. Drug Metab. Dispos. 2013, 41, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, J.R.; Satarug, S.; Reilly, P.E.; Edwards, R.J.; Ariyoshi, N.; Kamataki, T.; Moore, M.R.; Williams, D.J. Relationships between non-occupational cadmium exposure and expression of nine cytochrome P450 forms in human liver and kidney cortex samples. Biochem. Pharmacol. 2001, 62, 713–721. [Google Scholar] [CrossRef]
- Hunt, S.N.; Jusko, W.J.; Yurchak, A.M. Effect of smoking on theophylline disposition. Clin. Pharmacol. Ther. 1976, 19, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, E.J.; Kuntzman, R.; Conney, A.H. Decreased concentration of phenacetin in plasma of cigarette smokers. Science 1972, 175, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Lampe, J.W.; Stepaniants, S.B.; Mao, M.; Radich, J.P.; Dai, H.; Linsley, P.S.; Friend, S.H.; Potter, J.D. Signatures of environmental exposures using peripheral leukocyte gene expression: Tobacco smoke. Cancer Epidemiol. Biomark. Prev. 2004, 13, 445–453. [Google Scholar]
- van Leeuwen, D.M.; van Agen, E.; Gottschalk, R.W.; Vlietinck, R.; Gielen, M.; van Herwijnen, M.H.; Maas, L.M.; Kleinjans, J.C.; van Delft, J.H. Cigarette smoke-induced differential gene expression in blood cells from monozygotic twin pairs. Carcinogenesis 2007, 28, 691–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willey, J.C.; Coy, E.L.; Frampton, M.W.; Torres, A.; Apostolakos, M.J.; Hoehn, G.; Schuermann, W.H.; Thilly, W.G.; Olson, D.E.; Hammersley, J.R.; et al. Quantitative RT-PCR measurement of cytochromes p450 1A1, 1B1, and 2B7, microsomal epoxide hydrolase, and NADPH oxidoreductase expression in lung cells of smokers and nonsmokers. Am. J. Respir. Cell Mol. Biol. 1997, 17, 114–124. [Google Scholar] [CrossRef]
- Thum, T.; Erpenbeck, V.J.; Moeller, J.; Hohlfeld, J.M.; Krug, N.; Borlak, J. Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environ. Health Perspect 2006, 114, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Peng, M.; Jacob, P. Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin. Pharmacol. Ther. 2003, 74, 468–474. [Google Scholar] [CrossRef]
- Oyama, T.; Sugio, K.; Uramoto, H.; Iwata, T.; Onitsuka, T.; Isse, T.; Nozoe, T.; Kagawa, N.; Yasumoto, K.; Kawamoto, T. Increased cytochrome P450 and aryl hydrocarbon receptor in bronchial epithelium of heavy smokers with non-small cell lung carcinoma carries a poor prognosis. Front. Biosci. 2007, 12, 4497–4503. [Google Scholar] [CrossRef] [Green Version]
- Haslemo, T.; Eikeseth, P.H.; Tanum, L.; Molden, E.; Refsum, H. The effect of variable cigarette consumption on the interaction with clozapine and olanzapine. Eur. J. Clin. Pharmacol. 2006, 62, 1049–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plowchalk, D.R.; Rowland Yeo, K. Prediction of drug clearance in a smoking population: Modeling the impact of variable cigarette consumption on the induction of CYP1A2. Eur. J. Clin. Pharmacol. 2012, 68, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.S.; Fuhr, U. Time response of cytochrome P450 1A2 activity on cessation of heavy smoking. Clin. Pharmacol. Ther. 2004, 76, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Seifert, J.; Heck, J.; Eckermann, G.; Singer, M.; Bleich, S.; Grohmann, R.; Toto, S. Psychopharmacotherapy during the COVID-19 pandemic. Nervenarzt 2020, 91, 604–610. [Google Scholar] [CrossRef]
- Sandson, N.B.; Cozza, K.L.; Armstrong, S.C.; Eckermann, G.; Fischer, B.A.; Phillips, B. Clozapine case series. Psychosomatics 2007, 48, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Tega, Y.; Yamazaki, Y.; Akanuma, S.I.; Kubo, Y.; Hosoya, K.I. Impact of Nicotine Transport across the Blood-Brain Barrier: Carrier-Mediated Transport of Nicotine and Interaction with Central Nervous System Drugs. Biol. Pharm. Bull. 2018, 41, 1330–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, L.T.; Jørgensen, S.; Petersen, L.J.; Hemmingsen, U.; Bülow, J.; Loft, S.; Gottrup, F. Acute effects of nicotine and smoking on blood flow, tissue oxygen, and aerobe metabolism of the skin and subcutis. J. Surg. Res. 2009, 152, 224–230. [Google Scholar] [CrossRef]
- Morecraft, R.; Blair, W.F.; Brown, T.D.; Gable, R.H. Acute effects of smoking on digital artery blood flow in humans. J. Hand Surg. Am. 1994, 19, 1–7. [Google Scholar] [CrossRef]
- Jensen, J.A.; Goodson, W.H.; Hopf, H.W.; Hunt, T.K. Cigarette smoking decreases tissue oxygen. Arch. Surg. 1991, 126, 1131–1134. [Google Scholar] [CrossRef]
- Verbeeck, R.K. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur. J. Clin. Pharmacol. 2008, 64, 1147–1161. [Google Scholar] [CrossRef]
- Dempster, E.; Viana, J.; Pidsley, R.; Mill, J. Epigenetic studies of schizophrenia: Progress, predicaments, and promises for the future. Schizophr. Bull. 2013, 39, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannon, E.; Dempster, E.L.; Mansell, G.; Burrage, J.; Bass, N.; Bohlken, M.M.; Corvin, A.; Curtis, C.J.; Dempster, D.; Di Forti, M.; et al. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. eLife 2021, 10. [Google Scholar] [CrossRef]
- Seeman, M.V. The gut microbiome and antipsychotic treatment response. Behav. Brain Res. 2021, 396, 112886. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef] [Green Version]
- Leustean, A.M.; Ciocoiu, M.; Sava, A.; Costea, C.F.; Floria, M.; Tarniceriu, C.C.; Tanase, D.M. Implications of the Intestinal Microbiota in Diagnosing the Progression of Diabetes and the Presence of Cardiovascular Complications. J. Diabetes Res. 2018, 2018, 5205126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benkert, O.; Hippius, H. Kompendium Der Psychiatrischen Pharmakotherapie; Springer: Berlin/Heidelberg, Germany, 2020; Volume 13. [Google Scholar]
- CredibleMeds. Available online: www.crediblemeds.org (accessed on 14 April 2021).
- Hiemke, C.; Eckermann, G. Kombinationstherapie/Polypharmazie—Interaktionen von Psychopharmaka. Arzneimitteltherapie 2014, 21, 269–279. [Google Scholar]
- Obuchowicz, E.; Bielecka-Wajdman, A.M.; Paul-Samojedny, M.; Nowacka, M. Different influence of antipsychotics on the balance between pro- and anti-inflammatory cytokines depends on glia activation: An in vitro study. Cytokine 2017, 94, 37–44. [Google Scholar] [CrossRef]
- Kahn, R.S.; Sommer, I.E. The neurobiology and treatment of first-episode schizophrenia. Mol. Psychiatry 2015, 20, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Di Nicola, M.; Cattaneo, A.; Hepgul, N.; Di Forti, M.; Aitchison, K.J.; Janiri, L.; Murray, R.M.; Dazzan, P.; Pariante, C.M.; Mondelli, V. Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav. Immun. 2013, 31, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bocchio Chiavetto, L.; Bignotti, S.; Battisa Tura, G.; Pioli, R.; Boin, F.; Kenis, G.; Bosmans, E.; de Jongh, R.; Lin, A.; et al. Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur. Neuropsychopharmacol. 2000, 10, 119–124. [Google Scholar] [CrossRef]
- DeLisi, L.E.; Crow, T.J. Is schizophrenia a viral or immunologic disorder? Psychiatr. Clin. N. Am. 1986, 9, 115–132. [Google Scholar] [CrossRef]
- Olfson, M.; Gerhard, T.; Huang, C.; Crystal, S.; Stroup, T.S. Premature Mortality among Adults with Schizophrenia in the United States. JAMA Psychiatry 2015, 72, 1172–1181. [Google Scholar] [CrossRef] [Green Version]
- Chengappa, K.N.; Ganguli, R.; Yang, Z.W.; Shurin, G.; Brar, J.S.; Rabin, B.S. Impaired mitogen (PHA) responsiveness and increased autoantibodies in Caucasian schizophrenic patients with the HLA B8/DR3 phenotype. Biol. Psychiatry 1995, 37, 546–549. [Google Scholar] [CrossRef]
- Müller, N.; Hofschuster, E.; Ackenheil, M.; Eckstein, R. T-cells and psychopathology in schizophrenia: Relationship to the outcome of neuroleptic therapy. Acta Psychiatr. Scand. 1993, 87, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Beumer, W.; Drexhage, R.C.; De Wit, H.; Versnel, M.A.; Drexhage, H.A.; Cohen, D. Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology 2012, 37, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesh, T.A.; Careaga, M.; Rose, D.R.; McAllister, A.K.; Van de Water, J.; Carter, C.S.; Ashwood, P. Cytokine alterations in first-episode schizophrenia and bipolar disorder: Relationships to brain structure and symptoms. J. Neuroinflamm. 2018, 15, 165. [Google Scholar] [CrossRef] [Green Version]
- Mondelli, V.; Howes, O. Inflammation: Its role in schizophrenia and the potential anti-inflammatory effects of antipsychotics. Psychopharmacology 2014, 231, 317–318. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Fan, X.; Li, X.; Zhang, W.; Gao, J.; Zhao, J.; Harrington, A.; Ziedonis, D.; Lv, L. Changes in pro-inflammatory cytokines and body weight during 6-month risperidone treatment in drug naïve, first-episode schizophrenia. Psychopharmacology 2014, 231, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakeim, H.K.; Al-Rammahi, D.A.; Al-Dujaili, A.H. IL-6, IL-18, sIL-2R, and TNFα proinflammatory markers in depression and schizophrenia patients who are free of overt inflammation. J. Affect. Disord. 2015, 182, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Orhan, F.; Schwieler, L.; Fatouros-Bergman, H.; Malmqvist, A.; Cervenka, S.; Collste, K.; Flyckt, L.; Farde, L.; Sellgren, C.M.; Piehl, F.; et al. Increased number of monocytes and plasma levels of MCP-1 and YKL-40 in first-episode psychosis. Acta Psychiatr. Scand. 2018, 138, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Wilke, I.; Arolt, V.; Rothermundt, M.; Weitzsch, C.; Hornberg, M.; Kirchner, H. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur. Arch. Psychiatry Clin. Neurosci. 1996, 246, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 21, 1696–1709. [Google Scholar] [CrossRef]
- Lee, E.E.; Ancoli-Israel, S.; Eyler, L.T.; Tu, X.M.; Palmer, B.W.; Irwin, M.R.; Jeste, D.V. Sleep Disturbances and Inflammatory Biomarkers in Schizophrenia: Focus on Sex Differences. Am. J. Geriatr. Psychiatry 2019, 27, 21–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leschak, C.J.; Eisenberger, N.I. Two Distinct Immune Pathways Linking Social Relationships With Health: Inflammatory and Antiviral Processes. Psychosom. Med. 2019, 81, 711–719. [Google Scholar] [CrossRef]
- Prather, A.A.; Janicki-Deverts, D.; Hall, M.H.; Cohen, S. Behaviorally Assessed Sleep and Susceptibility to the Common Cold. Sleep 2015, 38, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, R.; Brar, J.S.; Solomon, W.; Chengappa, K.N.; Rabin, B.S. Altered interleukin-2 production in schizophrenia: Association between clinical state and autoantibody production. Psychiatry Res. 1992, 44, 113–123. [Google Scholar] [CrossRef]
- Arnson, Y.; Shoenfeld, Y.; Amital, H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J. Autoimmun. 2010, 34, J258–J265. [Google Scholar] [CrossRef]
- Poggi, G.; Boretius, S.; Möbius, W.; Moschny, N.; Baudewig, J.; Ruhwedel, T.; Hassouna, I.; Wieser, G.L.; Werner, H.B.; Goebbels, S.; et al. Cortical network dysfunction caused by a subtle defect of myelination. Glia 2016, 64, 2025–2040. [Google Scholar] [CrossRef] [Green Version]
- van Berckel, B.N.; Bossong, M.G.; Boellaard, R.; Kloet, R.; Schuitemaker, A.; Caspers, E.; Luurtsema, G.; Windhorst, A.D.; Cahn, W.; Lammertsma, A.A.; et al. Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C]PK11195 positron emission tomography study. Biol. Psychiatry 2008, 64, 820–822. [Google Scholar] [CrossRef]
- Orlovska-Waast, S.; Köhler-Forsberg, O.; Brix, S.W.; Nordentoft, M.; Kondziella, D.; Krogh, J.; Benros, M.E. Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: A systematic review and meta-analysis. Mol. Psychiatry 2019, 24, 869–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Doef, T.F.; de Witte, L.D.; Sutterland, A.L.; Jobse, E.; Yaqub, M.; Boellaard, R.; de Haan, L.; Eriksson, J.; Lammertsma, A.A.; Kahn, R.S.; et al. In vivo (R)-[(11)C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis. NPJ Schizophr. 2016, 2, 16031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, S.E.; Hinz, R.; Drake, R.J.; Gregory, C.J.; Conen, S.; Matthews, J.C.; Anton-Rodriguez, J.M.; Gerhard, A.; Talbot, P.S. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: A. Mol. Psychiatry 2016, 21, 1672–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, L.J.; Fusar-Poli, P.; Schmitz, T. Oligodendroglial alterations and the role of microglia in white matter injury: Relevance to schizophrenia. Dev. Neurosci. 2013, 35, 102–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorburne, S.K.; Juurlink, B.H. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem. 1996, 67, 1014–1022. [Google Scholar] [CrossRef]
- Chiappelli, J.; Hong, L.E.; Wijtenburg, S.A.; Du, X.; Gaston, F.; Kochunov, P.; Rowland, L.M. Alterations in frontal white matter neurochemistry and microstructure in schizophrenia: Implications for neuroinflammation. Transl. Psychiatry 2015, 5, e548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peferoen, L.; Kipp, M.; van der Valk, P.; van Noort, J.M.; Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 2014, 141, 302–313. [Google Scholar] [CrossRef]
- Seki, Y.; Kato, T.A.; Monji, A.; Mizoguchi, Y.; Horikawa, H.; Sato-Kasai, M.; Yoshiga, D.; Kanba, S. Pretreatment of aripiprazole and minocycline, but not haloperidol, suppresses oligodendrocyte damage from interferon-γ-stimulated microglia in co-culture model. Schizophr. Res. 2013, 151, 20–28. [Google Scholar] [CrossRef]
- Banati, R.B.; Gehrmann, J.; Schubert, P.; Kreutzberg, G.W. Cytotoxicity of microglia. Glia 1993, 7, 111–118. [Google Scholar] [CrossRef]
- Girgis, R.R.; Kumar, S.S.; Brown, A.S. The cytokine model of schizophrenia: Emerging therapeutic strategies. Biol. Psychiatry 2014, 75, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Bretler, T.; Weisberg, H.; Koren, O.; Neuman, H. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 2019, 17, 112. [Google Scholar] [CrossRef]
- Bauer, P.V.; Hamr, S.C.; Duca, F.A. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol. Life Sci. 2016, 73, 737–755. [Google Scholar] [CrossRef]
- Dieset, I.; Andreassen, O.A.; Haukvik, U.K. Somatic Comorbidity in Schizophrenia: Some Possible Biological Mechanisms Across the Life Span. Schizophr. Bull. 2016, 42, 1316–1319. [Google Scholar] [CrossRef] [Green Version]
- Moschny, N.K. Epigenetics in Psychiatry—Characterization of the Immune System and Its Methylome in Depressed Patients Receiving Electroconvulsive Therapy. University of Veterinary Medicine Hannover and Hannover Medical School. Hannover 2020. [Google Scholar] [CrossRef]
- Miyaoka, T.; Wake, R.; Furuya, M.; Liaury, K.; Ieda, M.; Kawakami, K.; Tsuchie, K.; Taki, M.; Ishihara, K.; Araki, T.; et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: An open-label study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 37, 222–226. [Google Scholar] [CrossRef]
- Na, K.S.; Lee, K.J.; Lee, J.S.; Cho, Y.S.; Jung, H.Y. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry 2013, 70, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Pouget, J.G.; Gonçalves, V.F.; Spain, S.L.; Finucane, H.K.; Raychaudhuri, S.; Kennedy, J.L.; Knight, J.; Consortium, S.W. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases. Schizophr. Bull. 2016, 42, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Tracey, K.J. Neural circuitry and immunity. Immunol. Res. 2015, 63, 38–57. [Google Scholar] [CrossRef]
- Hu, H.; Sun, S.C. Ubiquitin signaling in immune responses. Cell Res. 2016, 26, 457–483. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R.; on behalf of the French Society of Pharmacology and Therapeutics. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, K.; Dudeck, A.; Hasenberg, M.; Nye, E.; van Rooijen, N.; Hartmann, K.; Gunzer, M.; Roers, A.; Hogg, N. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 2013, 121, 4930–4937. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.J.; Anthony, D.C.; Oakley, F.; Carlsen, H.; Elsharkawy, A.M.; Blomhoff, R.; Mann, D.A. Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain. J. Neuropathol. Exp. Neurol. 2008, 67, 223–230. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, R.M.; Jenkins, B.J.; Grail, D.; Williams, A.S.; Fielding, C.A.; Parker, C.R.; Ernst, M.; Topley, N.; Jones, S.A. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc. Natl. Acad. Sci. USA 2005, 102, 9589–9594. [Google Scholar] [CrossRef] [Green Version]
- Foote, A.K.; Blakemore, W.F. Inflammation stimulates remyelination in areas of chronic demyelination. Brain 2005, 128, 528–539. [Google Scholar] [CrossRef] [Green Version]
- Noda, M.; Suzumura, A. Sweepers in the CNS: Microglial Migration and Phagocytosis in the Alzheimer Disease Pathogenesis. Int. J. Alzheimers Dis. 2012, 2012, 891087. [Google Scholar] [CrossRef] [Green Version]
- Boada-Romero, E.; Martinez, J.; Heckmann, B.L.; Green, D.R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 2020, 21, 398–414. [Google Scholar] [CrossRef]
- Keller, R.; Klein, M.; Thomas, M.; Dräger, A.; Metzger, U.; Templin, M.F.; Joos, T.O.; Thasler, W.E.; Zell, A.; Zanger, U.M. Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling. PLoS Comput. Biol. 2016, 12, e1004431. [Google Scholar] [CrossRef]
- Wu, K.C.; Lin, C.J. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. J. Food Drug Anal. 2019, 27, 48–59. [Google Scholar] [CrossRef]
- Tanner, N.; Kubik, L.; Luckert, C.; Thomas, M.; Hofmann, U.; Zanger, U.M.; Böhmert, L.; Lampen, A.; Braeuning, A. Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells. Drug Metab. Dispos. 2018, 46, 326–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, M.; Thomas, M.; Hofmann, U.; Seehofer, D.; Damm, G.; Zanger, U.M. A systematic comparison of the impact of inflammatory signaling on absorption, distribution, metabolism, and excretion gene expression and activity in primary human hepatocytes and HepaRG cells. Drug Metab. Dispos. 2015, 43, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.J.; Billings, R.E. Role of nitric oxide in the cytokine-mediated regulation of cytochrome P-450. Mol. Pharmacol. 1996, 49, 796–801. [Google Scholar]
- Lee, C.M.; Pohl, J.; Morgan, E.T. Dual mechanisms of CYP3A protein regulation by proinflammatory cytokine stimulation in primary hepatocyte cultures. Drug Metab. Dispos. 2009, 37, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Morgan, E.T. Chapter 2—Regulation of Drug-Metabolizing Enzymes and Drug Metabolism by Inflammatory Responses. In Drug Metabolism in Diseases; Xie, W., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 21–58. [Google Scholar] [CrossRef]
- Lee, C.M.; Tripathi, S.; Morgan, E.T. Nitric oxide-regulated proteolysis of human CYP2B6 via the ubiquitin-proteasome system. Free Radic. Biol. Med. 2017, 108, 478–486. [Google Scholar] [CrossRef]
- Sabunciyan, S.; Maher, B.; Bahn, S.; Dickerson, F.; Yolken, R.H. Association of DNA Methylation with Acute Mania and Inflammatory Markers. PLoS ONE 2015, 10, e0132001. [Google Scholar] [CrossRef]
- Habano, W.; Kawamura, K.; Iizuka, N.; Terashima, J.; Sugai, T.; Ozawa, S. Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. Clin. Epigenetics 2015, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Dickmann, L.J.; Patel, S.K.; Wienkers, L.C.; Slatter, J.G. Effects of interleukin 1β (IL-1β) and IL-1β/interleukin 6 (IL-6) combinations on drug metabolizing enzymes in human hepatocyte culture. Curr. Drug Metab. 2012, 13, 930–937. [Google Scholar] [CrossRef]
- Klein, C.; Wüstefeld, T.; Assmus, U.; Roskams, T.; Rose-John, S.; Müller, M.; Manns, M.P.; Ernst, M.; Trautwein, C. The IL-6-gp130-STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. J. Clin. Investig. 2005, 115, 860–869. [Google Scholar] [CrossRef] [Green Version]
- Geisterfer, M.; Richards, C.; Baumann, M.; Fey, G.; Gywnne, D.; Gauldie, J. Regulation of IL-6 and the hepatic IL-6 receptor in acute inflammation in vivo. Cytokine 1993, 5, 1–7. [Google Scholar] [CrossRef]
- Dickmann, L.J.; Patel, S.K.; Rock, D.A.; Wienkers, L.C.; Slatter, J.G. Effects of interleukin-6 (IL-6) and an anti-IL-6 monoclonal antibody on drug-metabolizing enzymes in human hepatocyte culture. Drug Metab. Dispos. 2011, 39, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Rubin, K.; Janefeldt, A.; Andersson, L.; Berke, Z.; Grime, K.; Andersson, T.B. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug Metab. Dispos. 2015, 43, 119–125. [Google Scholar] [CrossRef]
- Frye, R.F.; Schneider, V.M.; Frye, C.S.; Feldman, A.M. Plasma levels of TNF-alpha and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J. Card. Fail. 2002, 8, 315–319. [Google Scholar] [CrossRef]
- Slaviero, K.A.; Clarke, S.J.; Rivory, L.P. Inflammatory response: An unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol. 2003, 4, 224–232. [Google Scholar] [CrossRef]
- Haas, C.E.; Kaufman, D.C.; Jones, C.E.; Burstein, A.H.; Reiss, W. Cytochrome P450 3A4 activity after surgical stress. Crit. Care Med. 2003, 31, 1338–1346. [Google Scholar] [CrossRef]
- Schmitt, C.; Kuhn, B.; Zhang, X.; Kivitz, A.J.; Grange, S. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin. Pharmacol. Ther. 2011, 89, 735–740. [Google Scholar] [CrossRef]
- Evers, R.; Dallas, S.; Dickmann, L.J.; Fahmi, O.A.; Kenny, J.R.; Kraynov, E.; Nguyen, T.; Patel, A.H.; Slatter, J.G.; Zhang, L. Critical review of preclinical approaches to investigate cytochrome p450-mediated therapeutic protein drug-drug interactions and recommendations for best practices: A white paper. Drug Metab. Dispos. 2013, 41, 1598–1609. [Google Scholar] [CrossRef] [PubMed]
- Aitken, A.E.; Morgan, E.T. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab. Dispos. 2007, 35, 1687–1693. [Google Scholar] [CrossRef]
- Nyagode, B.A.; Jahangardi, R.; Merrell, M.D.; Tansey, M.G.; Morgan, E.T. Selective effects of a therapeutic protein targeting tumor necrosis factor-alpha on cytochrome P450 regulation during infectious colitis: Implications for disease-dependent drug-drug interactions. Pharmacol. Res. Perspect. 2014, 2, e00027. [Google Scholar] [CrossRef]
- Gorski, J.C.; Hall, S.D.; Becker, P.; Affrime, M.B.; Cutler, D.L.; Haehner-Daniels, B. In vivo effects of interleukin-10 on human cytochrome P450 activity. Clin. Pharmacol. Ther. 2000, 67, 32–43. [Google Scholar] [CrossRef]
- Dallas, S.; Chattopadhyay, S.; Sensenhauser, C.; Batheja, A.; Singer, M.; Silva, J. Interleukins-12 and -23 do not alter expression or activity of multiple cytochrome P450 enzymes in cryopreserved human hepatocytes. Drug Metab. Dispos. 2013, 41, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Gressier, F.; Verstuyft, C.; Hardy, P.; Becquemont, L.; Corruble, E. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors. J. Neural. Transm. 2015, 122, 35–42. [Google Scholar] [CrossRef]
- Shah, R.R.; Shah, D.R. Personalized medicine: Is it a pharmacogenetic mirage? Br. J. Clin. Pharmacol. 2012, 74, 698–721. [Google Scholar] [CrossRef] [PubMed]
- Molanaei, H.; Qureshi, A.R.; Heimbürger, O.; Lindholm, B.; Diczfalusy, U.; Anderstam, B.; Bertilsson, L.; Stenvinkel, P. Inflammation down-regulates CYP3A4-catalysed drug metabolism in hemodialysis patients. BMC Pharmacol. Toxicol. 2018, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Wrighton, S.A.; Stevens, J.C. The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol. 1992, 22, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Yamazaki, H.; Mimura, M.; Inui, Y.; Guengerich, F.P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 1994, 270, 414–423. [Google Scholar]
- Petrovic, V.; Teng, S.; Piquette-Miller, M. Regulation of drug transporters during infection and inflammation. Mol. Interv. 2007, 7, 99–111. [Google Scholar] [CrossRef]
- Ufer, M.; Häsler, R.; Jacobs, G.; Haenisch, S.; Lächelt, S.; Faltraco, F.; Sina, C.; Rosenstiel, P.; Nikolaus, S.; Schreiber, S.; et al. Decreased sigmoidal ABCB1 (P-glycoprotein) expression in ulcerative colitis is associated with disease activity. Pharmacogenomics 2009, 10, 1941–1953. [Google Scholar] [CrossRef]
- Congiu, M.; Mashford, M.L.; Slavin, J.L.; Desmond, P.V. UDP glucuronosyltransferase mRNA levels in human liver disease. Drug Metab. Dispos. 2002, 30, 129–134. [Google Scholar] [CrossRef]
- Richardson, T.A.; Sherman, M.; Kalman, D.; Morgan, E.T. Expression of UDP-glucuronosyltransferase isoform mRNAs during inflammation and infection in mouse liver and kidney. Drug Metab. Dispos. 2006, 34, 351–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrell, M.D.; Nyagode, B.A.; Clarke, J.D.; Cherrington, N.J.; Morgan, E.T. Selective and cytokine-dependent regulation of hepatic transporters and bile acid homeostasis during infectious colitis in mice. Drug Metab. Dispos. 2014, 42, 596–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piquette-Miller, M.; Pak, A.; Kim, H.; Anari, R.; Shahzamani, A. Decreased expression and activity of P-glycoprotein in rat liver during acute inflammation. Pharm. Res. 1998, 15, 706–711. [Google Scholar] [CrossRef]
- Puig, M.M.; Pol, O. Peripheral effects of opioids in a model of chronic intestinal inflammation in mice. J. Pharmacol. Exp. Ther. 1998, 287, 1068–1075. [Google Scholar]
- Piafsky, K.M.; Borgá, O.; Odar-Cederlöf, I.; Johansson, C.; Sjöqvist, F. Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of plasma alpha1 acid glycoprotein. N. Engl. J. Med. 1978, 299, 1435–1439. [Google Scholar] [CrossRef]
- Williams, R.L.; Upton, R.A.; Cello, J.P.; Jones, R.M.; Blitstein, M.; Kelly, J.; Nierenburg, D. Naproxen disposition in patients with alcoholic cirrhosis. Eur. J. Clin. Pharmacol. 1984, 27, 291–296. [Google Scholar] [CrossRef]
- Tillement, J.P.; Zini, R.; d’ Athis, P.; Vassent, G. Binding of certain acidic drugs to human albumin: Theoretical and practical estimation of fundamental parameters. Eur. J. Clin. Pharmacol. 1974, 7, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Bern, M.; Sand, K.M.; Nilsen, J.; Sandlie, I.; Andersen, J.T. The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery. J. Control. Release 2015, 211, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Mehler-Wex, C.; Gerlach, M.; Schimmelmann, B. Antipsychotika; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Miyamoto, S.; Duncan, G.E.; Marx, C.E.; Lieberman, J.A. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry 2005, 10, 79–104. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.; Honigfeld, G.; Singer, J.; Meltzer, H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry 1988, 45, 789–796. [Google Scholar] [CrossRef]
- Gründer, G. Antipsychotika. In Handbuch Der Psychiatrischen Pharmakotherapie; Gründer, G., Benkert, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Newman-Tancredi, A.; Cussac, D.; Depoortere, R. Neuropharmacological profile of bifeprunox: Merits and limitations in comparison with other third-generation antipsychotics. Curr. Opin. Investig. Drugs 2007, 8, 539–554. [Google Scholar]
- Limandri, B.J. Clinical Use of Dopamine Modulators as Third-Generation Antipsychotic Agents. J. Psychosoc. Nurs. Ment. Health Serv. 2019, 57, 7–11. [Google Scholar] [CrossRef]
- Gardner, D.M.; Baldessarini, R.J.; Waraich, P. Modern antipsychotic drugs: A critical overview. CMAJ 2005, 172, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Hefner, G.; Laib, A.K.; Sigurdsson, H.; Hohner, M.; Hiemke, C. The value of drug and metabolite concentration in blood as a biomarker of psychopharmacological therapy. Int. Rev. Psychiatry 2013, 25, 494–508. [Google Scholar] [CrossRef]
- Hendset, M.; Haslemo, T.; Rudberg, I.; Refsum, H.; Molden, E. The complexity of active metabolites in therapeutic drug monitoring of psychotropic drugs. Pharmacopsychiatry 2006, 39, 121–127. [Google Scholar] [CrossRef]
- Tsuda, Y.; Saruwatari, J.; Yasui-Furukori, N. Meta-analysis: The effects of smoking on the disposition of two commonly used antipsychotic agents, olanzapine and clozapine. BMJ Open 2014, 4, e004216. [Google Scholar] [CrossRef]
- Zang, Y.N.; Dong, F.; Li, A.N.; Wang, C.Y.; Guo, G.X.; Wang, Q.; Zhang, Y.F.; Zhang, L.; de Leon, J.; Ruan, C.J. The Impact of Smoking, Sex, Infection, and Comedication Administration on Oral Olanzapine: A Population Pharmacokinetic Model in Chinese Psychiatric Patients. Eur. J. Drug Metab. Pharmacokinet. 2021. [Google Scholar] [CrossRef]
- Wagner, E.; McMahon, L.; Falkai, P.; Hasan, A.; Siskind, D. Impact of smoking behavior on clozapine blood levels—a systematic review and meta-analysis. Acta Psychiatr. Scand. 2020, 142, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Scherf-Clavel, M.; Samanski, L.; Hommers, L.G.; Deckert, J.; Menke, A.; Unterecker, S. Analysis of smoking behavior on the pharmacokinetics of antidepressants and antipsychotics: Evidence for the role of alternative pathways apart from CYP1A2. Int. Clin. Psychopharmacol. 2019, 34, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Gex-Fabry, M.; Balant-Gorgia, A.E.; Balant, L.P. Therapeutic drug monitoring of olanzapine: The combined effect of age, gender, smoking, and comedication. Ther. Drug Monit. 2003, 25, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kawada, T. Factors Affecting Serum Olanzapine Concentration. Ther. Drug Monit. 2021, 43, 301. [Google Scholar] [CrossRef]
- Deng, S.H.; Wang, Z.Z.; Lu, H.Y.; Li, L.; Hu, J.Q.; Zhu, X.Q.; Xie, H.S.; Chen, H.Z.; Zhang, M.; Ni, X.J.; et al. A Retrospective Analysis of Steady-State Olanzapine Concentrations in Chinese Patients Using Therapeutic Drug Monitoring: Effects of Valproate and Other Factors. Ther. Drug Monit. 2020, 42, 636–642. [Google Scholar] [CrossRef]
- Smith, R.L.; O’Connell, K.; Athanasiu, L.; Djurovic, S.; Kringen, M.K.; Andreassen, O.A.; Molden, E. Identification of a novel polymorphism associated with reduced clozapine concentration in schizophrenia patients-a genome-wide association study adjusting for smoking habits. Transl. Psychiatry 2020, 10, 198. [Google Scholar] [CrossRef]
- Zullino, D.F.; Delessert, D.; Eap, C.B.; Preisig, M.; Baumann, P. Tobacco and cannabis smoking cessation can lead to intoxication with clozapine or olanzapine. Int. Clin. Psychopharmacol. 2002, 17, 141–143. [Google Scholar] [CrossRef]
- Lowe, E.J.; Ackman, M.L. Impact of tobacco smoking cessation on stable clozapine or olanzapine treatment. Ann. Pharmacother. 2010, 44, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Haen, E.; Stegmann, B.; Hiemke, C.; Gründer, G.; Paulzen, M. Effect of smoking on risperidone pharmacokinetics—A multifactorial approach to better predict the influence on drug metabolism. Schizophr. Res. 2017, 185, 51–57. [Google Scholar] [CrossRef]
- Li, L.; Shang, D.W.; Wen, Y.G.; Ning, Y.P. A systematic review and combined meta-analysis of concentration of oral amisulpride. Br. J. Clin. Pharmacol. 2020, 86, 668–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chermá, M.D.; Reis, M.; Hägg, S.; Ahlner, J.; Bengtsson, F. Therapeutic drug monitoring of ziprasidone in a clinical treatment setting. Ther. Drug Monit. 2008, 30, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, C.J.; Rieger-Gies, A.; Heinzel-Gutenbrunner, M.; Hiemke, C.; Remschmidt, H.; Theisen, F.M. Large variability of aripiprazole and dehydroaripiprazole serum concentrations in adolescent patients with schizophrenia. Ther. Drug Monit. 2008, 30, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Citrome, L. Brexpiprazole for schizophrenia and as adjunct for major depressive disorder: A systematic review of the efficacy and safety profile for this newly approved antipsychotic—what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract. 2015, 69, 978–997. [Google Scholar] [CrossRef]
- Citrome, L. Cariprazine for acute and maintenance treatment of adults with schizophrenia: An evidence-based review and place in therapy. Neuropsychiatr. Dis. Treat. 2018, 14, 2563–2577. [Google Scholar] [CrossRef] [Green Version]
- Sanford, M.; Dhillon, S. Lurasidone: A review of its use in adult patients with bipolar I depression. CNS Drugs 2015, 29, 253–263. [Google Scholar] [CrossRef]
- DeVane, C.L.; Nemeroff, C.B. Clinical pharmacokinetics of quetiapine: An atypical antipsychotic. Clin. Pharmacokinet. 2001, 40, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Jibson, M.D.; Tandon, R. New atypical antipsychotic medications. J. Psychiatr. Res. 1998, 32, 215–228. [Google Scholar] [CrossRef]
- Nguyen, A.S.; Grossman-Kahn, R.; Wichser, L. Anticipatory Clozapine Dosing After Discharge From Inpatient Treatment for the Patient With Comorbid Schizophrenia and Tobacco Use. J. Clin. Psychopharmacol. 2020, 40, 618–619. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.G.; Nelson, S.; Takala, C.R.; Gören, J.L. Infection and inflammation leading to clozapine toxicity and intensive care: A case series. Ann. Pharmacother. 2014, 48, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Grootendorst-van Mil, N.H.; Huiskens, A.R.M.; Dieleman, S.; Birkenhäger, T.K. Response after Infection-Associated Rise in Clozapine Levels in Treatment-Resistant Schizoaffective Disorder. Case Rep. Psychiatry 2018, 2018, 3174368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tio, N.; Schulte, P.F.J.; Martens, H.J.M. Clozapine Intoxication in COVID-19. Am. J. Psychiatry 2021, 178, 123–127. [Google Scholar] [CrossRef]
- Marnell, L.; Mold, C.; Du Clos, T.W. C-reactive protein: Ligands, receptors and role in inflammation. Clin. Immunol. 2005, 117, 104–111. [Google Scholar] [CrossRef]
- Pfuhlmann, B.; Hiemke, C.; Unterecker, S.; Burger, R.; Schmidtke, A.; Riederer, P.; Deckert, J.; Jabs, B. Toxic clozapine serum levels during inflammatory reactions. J. Clin. Psychopharmacol. 2009, 29, 392–394. [Google Scholar] [CrossRef]
- Scherf-Clavel, M.; Weidner, A.; Deckert, J.; Menke, A.; Unterecker, S. Pathological Concentration of C-reactive Protein is Correlated to Increased Concentrations of Quetiapine, But Not of Risperidone, Olanzapine and Aripiprazole in a Naturalistic Setting. Pharmacopsychiatry 2020, 53, 30–35. [Google Scholar] [CrossRef]
- Hefner, G.; Falter, T.; Bruns, K.; Hiemke, C. Elevated risperidone serum concentrations during acute inflammation, two cases. Int. J. Psychiatry Med. 2015, 50, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Schaber, G.; Stevens, I.; Gaertner, H.J.; Dietz, K.; Breyer-Pfaff, U. Pharmacokinetics of clozapine and its metabolites in psychiatric patients: Plasma protein binding and renal clearance. Br. J. Clin. Pharmacol. 1998, 46, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espnes, K.A.; Heimdal, K.O.; Spigset, O. A puzzling case of increased serum clozapine levels in a patient with inflammation and infection. Ther. Drug Monit. 2012, 34, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Odom-White, A.; de Leon, J. Clozapine levels and caffeine. J. Clin. Psychiatry 1996, 57, 175–176. [Google Scholar]
- Summary of Product Characteristics (SmPC) of Leponex. Leponex® 25 mg/- 100 mg Tabletten. Available online: https://www.fachinfo.de/suche/fi/021241 (accessed on 30 April 2021).
- Fernández, M.; Lago, L.; Alonso, M.G.; Guede, A.; Benavente, J.L.; Olivares, J.M. Serotonin syndrome versus neuroleptic malignant syndrome: A case report. Actas Esp. Psiquiatr. 2018, 46, 68–74. [Google Scholar] [PubMed]
- Belvederi Murri, M.; Guaglianone, A.; Bugliani, M.; Calcagno, P.; Respino, M.; Serafini, G.; Innamorati, M.; Pompili, M.; Amore, M. Second-generation antipsychotics and neuroleptic malignant syndrome: Systematic review and case report analysis. Drugs R D 2015, 15, 45–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bola, J.; Kao, D.; Soydan, H. Antipsychotic medication for early episode schizophrenia. Cochrane Database Syst. Rev. 2011, CD006374. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.A.; O’Mahony, M.S. Adverse drug reactions in special populations—The elderly. Br. J. Clin. Pharmacol. 2015, 80, 796–807. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, M. Age-associated decline in the immune system. Nihon. Rinsho. 2013, 71, 993–998. [Google Scholar] [PubMed]
- Salam, N.; Rane, S.; Das, R.; Faulkner, M.; Gund, R.; Kandpal, U.; Lewis, V.; Mattoo, H.; Prabhu, S.; Ranganathan, V.; et al. T cell ageing: Effects of age on development, survival & function. Indian J. Med. Res. 2013, 138, 595–608. [Google Scholar] [PubMed]
- Salvi, F.; Marchetti, A.; D’Angelo, F.; Boemi, M.; Lattanzio, F.; Cherubini, A. Adverse drug events as a cause of hospitalization in older adults. Drug Saf. 2012, 35 (Suppl. 1), 29–45. [Google Scholar] [CrossRef]
- Hurlimann, J.; Thorbecke, G.J.; Hochwald, G.M. The liver as the site of C-reactive protein formation. J. Exp. Med. 1966, 123, 365–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.W.; Ku, N.-O.; Mortensen, R.F. Both Human IL-1 and IL-6 Induce Synthesis of C-Reactive Protein (CRP) by the PLC/PRF/5 Hepatoma Cell Line. Ann. N. Y. Acad. Sci. 1989, 557, 532–533. [Google Scholar] [CrossRef]
- Taylor, A.W.; Ku, N.O.; Mortensen, R.F. Regulation of cytokine-induced human C-reactive protein production by transforming growth factor-beta. J. Immunol. 1990, 145, 2507–2513. [Google Scholar]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Du Clos, T.W.; Mold, C. C-reactive protein: An activator of innate immunity and a modulator of adaptive immunity. Immunol. Res. 2004, 30, 261–277. [Google Scholar] [CrossRef]
- Clyne, B.; Olshaker, J.S. The C-reactive protein. J. Emerg. Med. 1999, 17, 1019–1025. [Google Scholar] [CrossRef]
- Chmielewski, P.P.; Strzelec, B. Elevated leukocyte count as a harbinger of systemic inflammation, disease progression, and poor prognosis: A review. Folia Morphol. 2018, 77, 171–178. [Google Scholar] [CrossRef]
- Riley, L.K.; Rupert, J. Evaluation of Patients with Leukocytosis. Am. Fam. Physician 2015, 92, 1004–1011. [Google Scholar]
- Thein, T.L.; Lye, D.C.; Leo, Y.S.; Wong, J.G.; Hao, Y.; Wilder-Smith, A. Severe neutropenia in dengue patients: Prevalence and significance. Am. J. Trop. Med. Hyg. 2014, 90, 984–987. [Google Scholar] [CrossRef] [Green Version]
- Shourick, J.; Dinh, A.; Matt, M.; Salomon, J.; Davido, B. Severe neutropenia revealing a rare presentation of dengue fever: A case report. BMC Res. Notes 2017, 10, 415. [Google Scholar] [CrossRef] [Green Version]
- Melbye, H.; Hvidsten, D.; Holm, A.; Nordbø, S.A.; Brox, J. The course of C-reactive protein response in untreated upper respiratory tract infection. Br. J. Gen. Pract. 2004, 54, 653–658. [Google Scholar]
- Sasaki, K.; Fujita, I.; Hamasaki, Y.; Miyazaki, S. Differentiating between bacterial and viral infection by measuring both C-reactive protein and 2′-5′-oligoadenylate synthetase as inflammatory markers. J. Infect. Chemother. 2002, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Haack, M.J.; Bak, M.L.; Beurskens, R.; Maes, M.; Stolk, L.M.; Delespaul, P.A. Toxic rise of clozapine plasma concentrations in relation to inflammation. Eur. Neuropsychopharmacol. 2003, 13, 381–385. [Google Scholar] [CrossRef]
- Shedlofsky, S.I.; Israel, B.C.; McClain, C.J.; Hill, D.B.; Blouin, R.A. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism. J. Clin. Investig. 1994, 94, 2209–2214. [Google Scholar] [CrossRef] [PubMed]
- Shedlofsky, S.I.; Israel, B.C.; Tosheva, R.; Blouin, R.A. Endotoxin depresses hepatic cytochrome P450-mediated drug metabolism in women. Br. J. Clin. Pharmacol. 1997, 43, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antipsychotic Drug (2nd and 3rd Generation) | Enzymes Involved in Drug Metabolism 1 | Therapeutic Reference Range | Alert Level | t1/2 | TDM Level of Recommendation 2 |
---|---|---|---|---|---|
Amisulpride | More than 90% is excreted unchanged via the kidney | 100–320 ng/mL | 640 ng/mL | 12–20 h | 1 |
Comment: Some patients may need concentrations above 320 ng/mL to attain sufficient improvement. CL not affected by CYP enzymes. | |||||
Aripiprazole plus dehydro-aripiprazole | CYP2D6, CYP3A4 | 150–500 ng/mL | 1000 ng/mL | 60–80 h | 2 |
Comment: Dehydro-aripiprazole concentrations amount to about 45% of the parent drug. Apparent elimination half-life 30–47 days. CAVE: Steady-state will be reached after approximately 14 days. | |||||
Brexpiprazole | CYP3A4, CYP2D6 | 40–140 ng/mL | 280 ng/mL | 91 h | 3 |
Comment: CAVE: Steady-state will be reached after approximately 19 days | |||||
Cariprazine | CYP3A4 | 10–20 ng/mL | 40 ng/mL | 48–120 h | 3 |
Comment: Active metabolites are N-desmethyl-cariprazine and N,N-di-desmethyl-cariprazine. CAVE: Steady-state will be reached after approximately 21 days. | |||||
Clozapine | CYP1A2, CYP2C19 | 350–600 ng/mL | 1000 ng/mL | 12–16 h | 1 |
Comment: CL may be enhanced in smokers due to induction of CYP1A2 and decreased during inflammation. A lower CRP value associated with a 100% increase in drug serum concentration: 25.5 mg/L *. CL/F is twofold higher in Asian than Caucasian patients. For clozapine, t1/2 is prolonged to 30 h in intoxicated patients. | |||||
Lurasidone | CYP3A4 | 15–40 ng/mL | 120 ng/mL | 20–40 h | 3 |
Comment: CL affected by food intake (fat content). | |||||
Olanzapine | UGT1A4, CYP1A2 | 20–80 ng/mL | 100 ng/mL | 30–60 h | 1 |
Comment: Apparent half-life for olanzapine pamoate 30 days, CL higher in males than in females and elevated in smokers due to induction of CYP1A2. | |||||
Paliperidone | 60% is excreted unmetabolized | 20–60 ng/mL | 120 ng/mL | 17–23 h | 2 |
Comment: Apparent half-life for paliperidone palmitate 25–49 days. CL not affected by CYP enzymes. | |||||
Quetiapine | CYP3A4 | 100–500 ng/mL | 1000 ng/mL | 6–11 h | 2 |
Comment: When the patient has taken the extended release (ER) formulation in the evening and blood was withdrawn in the morning, expected concentrations are 2-fold higher than trough levels. CL affected by gender and age. Trend for a drug concentration increase during inflammation (less than 15%) *. | |||||
Risperidone plus 9-hydroxy-risperidone | CYP2D6 | 20–60 ng/mL | 120 ng/mL | 2–4 h 17–23 h | 2 |
Comment: Adverse reactions correlate with drug concentrations. To avoid neurological adverse reactions, > 40 ng/mL should be targeted only in cases of insufficient or absence of therapeutic response. Apparent half-life for long-acting injection formulation 26 days. CL affected by CYP2D6 and age, potentially decreased during inflammation. A lower CRP value associated with a 100% increase in RIS + OH-RIS serum concentration was detected at CRP ≥ 37.5 mg/L *. | |||||
Sertindole | CYP2D6 | 50–100 ng/mL | 200 ng/mL | 55–90 h | 2 |
Comment: Active metabolite dehydro-sertindole (concentration at therapeutic doses 40–60 ng/mL), concentration dependent increase of QT interval by blockade of potassium channels. | |||||
Sulpiride | Not metabolized, renal excretion | 200–1000 ng/mL | 1000 ng/mL | 8–14 h | 2 |
Comment: CL reduced in case of impaired renal function, CL not affected by CYP enzymes. | |||||
Ziprasidone | - | 50–200 ng/mL | 400 ng/mL | 4–8 h | 2 |
Comment: The drug should be taken with a meal, otherwise absorption is reduced and drug concentrations will be lower than expected. |
Antipsychotic Drug (2nd and 3rd Generation) | In-Label Diagnoses 1 | Receptor Profile (Main Receptors Responsible for Drug Efficacy) 1,2 | Classification AZCERT 3 | Anticholinergic Activity 4 | Main Symptoms of Intoxication 1,2,3,4 |
---|---|---|---|---|---|
Amisulpride | F20, F21, F23, F25 | D2 = D3 > D4 antagonism | Conditional risk | Not classified | Sedation, hypotension, EPMS, QTc-prolongation/TdP |
Aripiprazole | F20, F21, F23, F25, F30, F31 | D2/D3/5-HT1A partial agonism, 5-HT2A antagonism | Possible risk | None | Somnolence, hypertension, tachycardia, dyspepsia, QTc-prolongation/TdP |
Brexpiprazole | F20, F21, F23, F25 | D2/D3/5-HT1A partial agonism, 5-HT2A antagonism | Not classified | Not classified | Somnolence, hypertension, tachycardia, dyspepsia |
Cariprazine | F20, F21, F23, F25 | D2/D3/5-HT1A partial agonism, 5-HT2A/5-HT2B antagonism | Not classified | Not classified | Orthostatic syndrome, somnolence, low blood pressure, abnormal heartbeats, abnormal body movements |
Clozapine | F20, F21, F23, F25, G20 | H1/α1/5-HT2A/5-HT2C/M1/M4/D4 antagonism | Possible risk | High | Central anticholinergic syndrome, delirium, impaired consciousness, coma, convulsions, hypotension, cardiac adverse events (e.g., QTc-prolongation/TdP), circulatory collapse, respiratory insufficiency, pulmonary edema, metabolic acidosis, (paralytic) ileus |
Lurasidone | F20, F21, F23, F25 | D2/5-HT2A/5-HT7 antagonism, 5-HT1A partial agonism | Possible risk | Not classified | Arrhythmias, QTc-prolongation/TdP, orthostatic hypotension, circulatory collapse, EPMS, obtundation, seizures, dystonic reaction of the head and neck, aspiration |
Olanzapine | F20, F21, F23, F25, F30, F31 | mAch/5-HT2/D1-5/H1 antagonism | Conditional risk | Moderate | Central anticholinergic syndrome, delirium, impaired consciousness, coma, agitation, EPMS, circulatory collapse, QTc-prolongation/TdP, tachycardia, respiratory depression, circulatory collapse, NMS |
Paliperidone | F20, F21, F23, F25 | 5-HT2A/5-HT2C/5-HT7/D2 antagonism | Possible risk | Not classified | Delirium, impaired consciousness, coma, agitation, EPMS, circulatory collapse, QTc-prolongation/TdP, tachycardia, respiratory depression, circulatory collapse, NMS |
Quetiapine | F20, F21, F23, F25, F30, F31, F32, F33, F34, F43.2 | H1/5-HT1/5-HT2/D1-3 antagonism | Conditional risk | Low | Delirium, impaired consciousness, coma, agitation, EPMS, circulatory collapse, QTc-prolongation/TdP, tachycardia, respiratory depression, circulatory collapse, NMS |
Risperidone | F0, F20, F21, F23, F25, F30, F31 | 5-HT2A/5-HT2C/5-HT7/D2 antagonism | Conditional risk | None | Delirium, impaired consciousness, coma, agitation, EPMS, circulatory collapse, QTc-prolongation/TdP, tachycardia, respiratory depression, circulatory collapse, NMS |
Sertindole | F20, F21, F23, F25 | D2/5-HT2 antagonism | Known risk | Not classified | Respiratory depression, QT-prolongation/TdP/cardiac death, EPMS, circulatory collapse |
Sulpiride | F20, F21, F23, F25, F31, F32, F33, F34, F43.2 | D2/D3 antagonism | Known risk | Not classified | EPMS, impaired consciousness, agitation, coma, hypotension, QT-prolongation/TdP, cardiac death |
Ziprasidone | F20, F21, F23, F25 | 5-HT2A/5-HT2C/D2/D3/H1 antagonism | Conditional risk | None | Delirium, impaired consciousness, coma, agitation, EPMS, circulatory collapse, QTc-prolongation/TdP, tachycardia, respiratory depression, circulatory collapse, NMS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moschny, N.; Hefner, G.; Grohmann, R.; Eckermann, G.; Maier, H.B.; Seifert, J.; Heck, J.; Francis, F.; Bleich, S.; Toto, S.; et al. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals 2021, 14, 514. https://doi.org/10.3390/ph14060514
Moschny N, Hefner G, Grohmann R, Eckermann G, Maier HB, Seifert J, Heck J, Francis F, Bleich S, Toto S, et al. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals. 2021; 14(6):514. https://doi.org/10.3390/ph14060514
Chicago/Turabian StyleMoschny, Nicole, Gudrun Hefner, Renate Grohmann, Gabriel Eckermann, Hannah B Maier, Johanna Seifert, Johannes Heck, Flverly Francis, Stefan Bleich, Sermin Toto, and et al. 2021. "Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics" Pharmaceuticals 14, no. 6: 514. https://doi.org/10.3390/ph14060514
APA StyleMoschny, N., Hefner, G., Grohmann, R., Eckermann, G., Maier, H. B., Seifert, J., Heck, J., Francis, F., Bleich, S., Toto, S., & Meissner, C. (2021). Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals, 14(6), 514. https://doi.org/10.3390/ph14060514