Carica papaya Leaf Extract Silver Synthesized Nanoparticles Inhibit Dengue Type 2 Viral Replication In Vitro
Abstract
:1. Introduction
2. Results
2.1. UV-Vis Spectrophotometric Analysis
2.2. FTIR Analysis
2.3. Scanning Electron Microscopy
2.4. Total Flavonoid and Phenolic Content Determination
2.5. Docking Interactions of Selected Bioactive Compounds with Dengue Type 2 Virus Non-Structural Protein 5
2.6. In Vitro Assay
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Collection of Plant Materials
4.3. Sample Preparation and Extraction
4.4. Characterization of C. papaya Leaf Extract Silver Synthesized Nanoparticles
4.4.1. UV–Visible Spectrometric Analysis
4.4.2. Fourier Transform Infrared (FTIR) Analysis
4.4.3. Scanning Electron Microscopy (SEM)
4.5. Determination of Total Phenolic Content (TPC)
4.6. Determination of Total Flavonoid Content
4.7. Cell Culture and Virus Propagation
4.8. Determination of Antiviral Activities
4.9. Dengue Focus Reduction Neutralization Test
4.10. Molecular Docking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, A.; Ball, J.D.; Rojas, D.P.; Berhane, A.; Ghebrat, Y.; Mebrahtu, G.; Gebresellasie, A.; Zehaie, A.; Mufunda, J.; Liseth, O.; et al. Dengue Fever Outbreaks in Eritrea, 2005–2015. Glob. Heal. Res. Policy 2016, 1, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. HHS Public Access 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Lim, X.N.; Shan, C.; Marzinek, J.K.; Dong, H.; Ng, T.S.; Ooi, J.S.G.; Fibriansah, G.; Wang, J.; Verma, C.S.; Bond, P.J.; et al. Molecular Basis of Dengue Virus Serotype 2 Morphological Switch from 29 °C to 37 °C. PLoS Pathog. 2019, 15, e1007996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO. Dengue. 2019. Available online: https://www.Afro.Who.Int/Health-Topics/Dengue (accessed on 5 November 2020).
- Kasture, P.N.; Nagabhushan, K.H.; Kumar, A. A Multi-Centric, Double-blind, Placebo-Controlled, Randomized, Prospective Study to Evaluate the Efficacy and Safety of Carica Papaya Leaf Extract, as Empirical Therapy for Thrombocytopenia Associated with Dengue Fever. J. Assoc. Physicians India 2016, 64, 15–20. [Google Scholar]
- Ahmad, N.; Fazal, H.; Ayaz, M.; Abbasi, B.H.; Mohammad, I.; Fazal, L. Dengue Fever Treatment with Carica Papaya Leaves Extracts. Asian Pac. J. Trop. Biomed. 2011, 1, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Mishra, K.P.; Ganju, L. Salidroside Exhibits Anti-Dengue Virus Activity by Upregulating Host Innate Immune Factors. Arch. Virol. 2016, 161, 3331–3344. [Google Scholar] [CrossRef]
- Zandi, K.; Lim, T.H.; Rahim, N.A.; Shu, M.H.; Teoh, B.T.; Sam, S.S.; Danlami, M.B.; Tan, K.K.; Abubakar, S. Extract of Scutellaria Baicalensis Inhibits Dengue Virus Replication. BMC Complement. Altern. Med. 2013, 13, 91. [Google Scholar] [CrossRef] [Green Version]
- Abd Kadir, S.L.; Yaakob, H.; Zulkifli, R.M. Potential Anti-Dengue Medicinal Plants: A Review. J. Nat. Med. 2013, 67, 677–689. [Google Scholar] [CrossRef] [Green Version]
- Sujitha, V.; Murugan, K.; Paulpandi, M.; Panneerselvam, C.; Suresh, U.; Roni, M.; Nicoletti, M.; Higuchi, A.; Madhiyazhagan, P.; Subramaniam, J.; et al. Green-Synthesized Silver Nanoparticles as a Novel Control Tool against Dengue Virus (DEN-2) and Its Primary Vector Aedes Aegypti. Parasitol. Res. 2015, 114, 3315–3325. [Google Scholar] [CrossRef]
- Adachukwu, I.; Ogbonna, A.; Faith, E. Phytochemical Analysis of Paw-Paw (Carica papaya) Leaves. Int. J. Life Sci. Biotechnol. Pharma Res. 2013, 2, 347–351. [Google Scholar]
- Prasetya, A.T.; Mursiti, S.; Maryan, S.; Jati, N.K. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial. IOP Conf. Ser. Mater. Sci. Eng. 2018, 349, 012007. [Google Scholar] [CrossRef]
- Nath, R.; Dutta, M. Phytochemical and Proximate Analysis of Papaya (Carica papaya) Leaves. Sch. J. Agric. Vet. Sci. 2016, 3, 85–8785. [Google Scholar]
- Shubham, S.; Mishra, R.; Gautam, N.; Nepal, M.; Kashyap, N.; Dutta, K. Research Article Phytochemical Analysis of Papaya Leaf Extract: Screening Test. EC Dent. Sci. 2019, 3, 485–490. [Google Scholar]
- Joy Ugo, N.; Raymond Ade, A.; Tochi Joy, A. Nutrient Composition of Carica Papaya Leaves Extracts. J. Food Sci. Nutr. Res. 2019, 2, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Sarala, N.; Paknikar, S.S. Papaya Extract to Treat Dengue: A Novel Therapeutic Option? Ann. Med health Sci. Res. 2014, 4, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Siddique, O.; Sundus, A.; Ibrahim, M.F. Effects of Papaya Leaves on Thrombocyte Counts in Dengue—A Case Report. JPMA J. Pak. Med Assoc. 2014, 64, 364–366. [Google Scholar]
- Schleinkofer, K.; Wang, T.; Wade, R.C. Molecular Docking. Encycl. Ref. Genom. Proteom. Mol. Med. 2006, 443, 1149–1153. [Google Scholar] [CrossRef]
- Sathiyapriya, R.; Vincent, A.; Gnanendra, S.; Geetha, D.; Kalagadda, V.R.; Vanga, R.; Si-Hyun, P. Silver Nanoparticle Synthesis from Carica papaya and Virtual Screening for Anti-Dengue Activity using Molecular Docking. Nanotechnology 2018, 36, 035028. [Google Scholar]
- El Sahili, A.; Lescar, J. Dengue Virus Non-Structural Protein 5. Viruses 2017, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, N.A.N.; Arham, N.A.; Jai, J.; Hadi, A. Plant Extract as Reducing Agent in Synthesis of Metallic Nanoparticles: A Review. Adv. Mater. Res. 2014, 832, 350–355. [Google Scholar] [CrossRef]
- Singh, S.P.; Mishra, A.; Shyanti, R.K.; Singh, R.P.; Acharya, A. Silver Nanoparticles Synthesized Using Carica Papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells. Biol. Trace Elem. Res. 2021, 199, 1316–1331. [Google Scholar] [CrossRef]
- Komal, R.; Arya, V. Biosynthesis and Characterization of Silver Nanoparticles from Aqueous Leaf Extracts of Carica Papaya and Its Antibacterial Activity. Int. J. Nanomater. Biostruct. 2013, 3, 17–20. [Google Scholar]
- Anbarasu, A.; Karnan, P.; Deepa, N.; Usha, R. Carica Papaya Mediated Green Synthesized Silver Nanoparticles. Int. J. Curr. Pharm. Res. 2018, 10, 15. [Google Scholar] [CrossRef]
- Sridevi, A.; Sandhya, A.; Suvarnalatha Devi, P. Characterization and Antibacterial Studies of Leaf Assisted Silver Nanoparticles from Carica Papaya: A Green Synthetic Approach. Int. J. Pharm. Pharm. Sci. 2015, 7, 143–146. [Google Scholar]
- Banala, R.R.; Nagati, V.B.; Karnati, P.R. Green Synthesis and Characterization of Carica papaya Leaf Extract Coated Silver Nanoparticles through X-Ray Diffraction, Electron Microscopy and Evaluation of Bactericidal Properties. Saudi J. Biol. Sci. 2015, 22, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Sar, S.; Upadhayay, M. Biosynthesis and Characterization of Silver Nanoparticle (CPL-Agnps) from Carica papaya Leaf, and Their Antibacterial Activities. IOSR J. Appl. Chem. 2017, 10, 20–23. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.S.; Shaheen, M.S.; El-Nekeety, A.A.; Abdel-Wahhab, M.A. Antioxidant and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Chenopodium Murale Leaf Extract. J. Saudi Chem. Soc. 2014, 18, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Salari, S.; Esmaeilzadeh, S.; Samzadeh-Kermani, A. In-Vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopis Farcta Fruit Extract. Iran. J. Pharm. Res. 2018, 18, 430–445. [Google Scholar]
- Baskaran, C.; Ratha, V.; Velu, S.; Kumaran, K. The Efficacy of Carica papaya Leaf Extract on Some Bacterial and a Fungal Strain by Well Diffusion Method. Asian Pacific J. Trop. Dis. 2012, 2, S658–S662. [Google Scholar] [CrossRef]
- Aruna, A.; Nandhini, R.; Karthikeyan, V.; Bose, P.; Vijayalakshmi, K. Comparative Anti-Diabetic Effect of Methanolic Extract of Insulin. Indo Am. J. Pharm. Res. 2014, 4, 3217–3230. [Google Scholar]
- Yebpella, G.G.; Hammuel, C.; Adeyemi Hassan, M.M.; Magomya, A.M.; Agbaji, A.S.; Shallangwa, G.A. Phytochemical Screening and a Comparative Study of Antibacterial Activity of Aloe Vera Green Rind, Gel and Leaf Pulp Extracts. Int. Res. J. Microbiol. 2011, 2, 382–386. [Google Scholar]
- Kaushik, S.; Sharma, V.; Chhikara, S.; Yadav, J.P.; Kaushik, S. Anti-Chikungunya Activity of Green Synthesized Silver Nanoparticles Using Carica papaya Leaves in Animal Cell Culture Model. Asian J. Pharm. Clin. Res. 2019, 12, 170–174. [Google Scholar]
- Haggag, E.G.; Elshamy, A.M.; Rabeh, M.A.; Gabr, N.M.; Salem, M.; Youssif, K.A.; Samir, A.; Bin Muhsinah, A.; Alsayari, A.; Abdelmohsen, U.R. Antiviral Potential of Green Synthesized Silver Nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomed. 2019, 14, 6217–6229. [Google Scholar] [CrossRef] [Green Version]
- Senthilvel, P.; Lavanya, P.; Kumar, K.M.; Swetha, R.; Anitha, P.; Bag, S.; Sarveswari, S. Flavonoid from Carica Papaya Inhibits NS2B-NS3 Protease and Prevents Dengue 2 Viral Assembly. Bioinformation 2013, 9, 889. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Makkar, H.P.S. Measurement of Total Phenolics and Tannins Using Folin-Ciocalteu Method. Quantif. Tann. Tree Shrub Foliage 2003, 2, 49–51. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.; Abubakar, S. Antiviral Activity of Four Types of Bioflavonoid against Dengue Virus Type-2. Virol. J. 2011, 8, 560. [Google Scholar] [CrossRef] [Green Version]
Samples | Flavonoids (mg rutin/g Extract) | Total Phenolics (mg GAE/g Extract) |
---|---|---|
Aqueous extract AgNPs | 119.84 ± 13.16 | 5.86 ± 0.16 |
Methanol extract AgNPs | 179.70 ± 9.42 | 92.02 ± 0.53 |
Crude aqueous extract | 43.73 ± 2.36 | 2.76 ± 0.13 |
Crude Methanol extract | 56.39 ± 4.09 | 53.24 ± 8.18 |
Compounds | Residues | NS5 Domain | Hydrogen Bonding | Bond Length (Å) | Binding Energy (kcal/mol) |
---|---|---|---|---|---|
Protocatechuic acid | Trp 475 | C-ter | 1 | 3.06 | −6.65 |
Ser 601 | C-ter | 3 | 2.95, 2.98, 3.01 | ||
Thr 606 | C-ter | 2 | 3.0, 3.09 | ||
E-Chlorogenic | Lys 356 | C-ter | 1 | 2.92 | −7.35 |
Arg 353 | C-ter | 1 | 2.93 | ||
Met 116 | N-ter | 2 | 3.00, 3.21 | ||
Tyr 89 | N-ter | 1 | 3.11 | ||
Leu 126 | N-ter | 1 | 2.73 | ||
Quercetin | Arg 353 | C-ter | 1 | 2.94 | −7.07 |
Tyr 89 | N-ter | 1 | 3.23 | ||
Val 124 | N-ter | 2 | 3.18, 2.95 | ||
Leu 126 | N-ter | 1 | 2.96 | ||
Kaempferol | Tyr 89 | N-ter | 1 | 3.19 | −7.01 |
Met 116 | N-ter | 1 | 2.99 | ||
Leu 126 | N-ter | 1 | 3.12 | ||
Val 124 | N-ter | 1 | 2.89 | ||
Arg 353 | C-ter | 1 | 3.02 | ||
Gly 470 | C-ter | 1 | 3.05 | ||
5,7 Dimethoxycoumarin | Gly 470 | C-ter | 1 | 3.1 | −7.75 |
Arg 353 | C-ter | 1 | 3.01 | ||
Lys 356 | C-ter | 1 | 3.09 | ||
Tyr 89 | N-ter | 1 | 2.7 |
Extracts | Conc. 10 µg/mL | 20 µg/mL | 30 µg/mL | 40 µg/mL | IC50 (µg/mL) |
---|---|---|---|---|---|
Methanol AgNPs | 92.59% ± 0.18 | 100.00% ± 0.0 | 100.00% ± 0.0 | 100.00% ± 0.0 | 9.20 |
Aqueous AgNPs | 14.49% ± 0.24 | 20.29% ± 0.28 | 23.19% ± 0.29 | 28.99% ± 0.31 | 126.20 |
Methanol crude | 47.44% ± 0.35 | 53.85% ± 0.35 | 64.1% ± 0.33 | 82.05% ± 0.27 | 13.09 |
Aqueous crude | 10.13% ± 0.21 | 11.39% ± 0.22 | 13.92% ± 0.24 | 26.58% ± 0.31 | 182.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bere, A.W.; Mulati, O.; Kimotho, J.; Ng’ong’a, F. Carica papaya Leaf Extract Silver Synthesized Nanoparticles Inhibit Dengue Type 2 Viral Replication In Vitro. Pharmaceuticals 2021, 14, 718. https://doi.org/10.3390/ph14080718
Bere AW, Mulati O, Kimotho J, Ng’ong’a F. Carica papaya Leaf Extract Silver Synthesized Nanoparticles Inhibit Dengue Type 2 Viral Replication In Vitro. Pharmaceuticals. 2021; 14(8):718. https://doi.org/10.3390/ph14080718
Chicago/Turabian StyleBere, Antonia Windkouni, Omuyundo Mulati, James Kimotho, and Florence Ng’ong’a. 2021. "Carica papaya Leaf Extract Silver Synthesized Nanoparticles Inhibit Dengue Type 2 Viral Replication In Vitro" Pharmaceuticals 14, no. 8: 718. https://doi.org/10.3390/ph14080718
APA StyleBere, A. W., Mulati, O., Kimotho, J., & Ng’ong’a, F. (2021). Carica papaya Leaf Extract Silver Synthesized Nanoparticles Inhibit Dengue Type 2 Viral Replication In Vitro. Pharmaceuticals, 14(8), 718. https://doi.org/10.3390/ph14080718