Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile?
Abstract
:1. Introduction
2. Drugs Candidates for Repurposing in COVID-19 Infection
2.1. Drugs Inhibiting One or More Steps of SARS-CoV-2 Lifecycle: Virus Attachment and Entry
2.2. Drugs Inhibiting One or More Steps of SARS-CoV-2 Lifecycle: Viral Replication
2.3. Drugs Inhibiting One or More Steps of SARS-CoV-2 Lifecycle: Virion Assembly and Release
2.4. Drugs Potentially Counteracting the Effects of SARS-CoV-2 Infection
3. Sex and Gender Aspects in COVID-19
4. Sex and Gender Aspects in Drug Response in COVID-19
5. Can Male and Female COVID-19 Patients Have the Same Pharmacokinetics as COVID-19 Free Patients?
6. Can Male and Female COVID-19 Patients Have the Same Safety Profile as COVID-19 Free Patients?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gns, H.S.; Gr, S.; Murahari, M.; Krishnamurthy, M. An update on drug repurposing: Re-written saga of the drug’s fate. Biomed. Pharm. 2019, 110, 700–716. [Google Scholar] [CrossRef] [PubMed]
- Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971, 231, 232–235. [Google Scholar] [CrossRef]
- Chast, F. Fabuleux Hasards—Histoire de la Découverte des Médicaments; Préface de Maurice Tubiana, C. Bohuon, C. Monneret. EDP Sciences, Les Ulis. Ann. Pharm. Françaises 2009, 67, 442–443. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Fowkes, F.G.; Belch, J.F.; Ogawa, H.; Warlow, C.P.; Meade, T.W. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet 2011, 377, 31–41. [Google Scholar] [CrossRef]
- Socchi, F.; Bigorre, M.; Normandin, M.; Captier, G.; Bessis, D.; Mondain, M.; Blanchet, C.; Akkari, M.; Amedro, P.; Gavotto, A. Hemangiol(R) in infantile haemangioma: A paediatric post-marketing surveillance drug study. Br. J. Clin. Pharm. 2021, 87, 1970–1980. [Google Scholar] [CrossRef]
- Botting, J. The History of Thalidomide. Drug News Perspect. 2002, 15, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raje, N.; Anderson, K. Thalidomide—A revival story. N. Engl. J. Med. 1999, 341, 1606–1609. [Google Scholar] [CrossRef]
- Fintel, B.; Samaras, A.T.; Carias, E. The Thalidomide Tragedy: Lessons for Drug Safety and Regulation. Available online: https://helix.northwestern.edu/article/thalidomide-tragedy-lessons-drug-safety-and-regulation (accessed on 12 April 2021).
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharm. 2020, 72, 1145–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doan, T.L.; Pollastri, M.; Walters, M.A.; Georg, G.I. The future of drug repositioning. Old drugs, new opportunities. In Annual Reports in Medicinal Chemistry; Academic Press Inc.: Cambridge, MA, USA, 2011; Volume 46, pp. 385–401. [Google Scholar]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Naylor, S.; Kauppi, M.; Schonfeld, J.M. Therapeutic drug repurposing, repositioning and rescue: Part II: Business review. Drug Discov. World 2014, 16, 57–72. [Google Scholar]
- Sarhan, A.A.; Ashour, N.A.; Al-Karmalawy, A.A. The journey of antimalarial drugs against SARS-CoV-2: Review article. Inf. Med. Unlocked 2021, 24, 100604. [Google Scholar] [CrossRef]
- Campesi, I.; Montella, A.; Franconi, F. Letter to the Editor in response to the article ‘Candidate drugs against SARS-CoV-2 and COVID-19’. Pharmacol. Res. 2020, 163, 105285. [Google Scholar] [CrossRef] [PubMed]
- Cavalla, D. Scientific commercial value of drug repurposing. In Drug Repositioning—Approaches and Applications for Neurotherapeutics; Dudley, J., Berliocchi, L.E., Eds.; Taylor & Francis Group: Abingdon, UK, 2016; pp. 3–22. [Google Scholar]
- Mauvais-Jarvis, F.; Berthold, H.K.; Campesi, I.; Carrero, J.J.; Dakal, S.; Franconi, F.; Gouni-Berthold, I.; Heiman, M.L.; Kautzky-Willer, A.; Klein, S.L.; et al. Sex- and gender-based pharmacological response to drugs. Pharm. Rev. 2021, 73, 730–762. [Google Scholar] [CrossRef]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex. Differ. 2020, 11, 32. [Google Scholar] [CrossRef]
- Rastegar-Mojarad, M.; Ye, Z.; Kolesar, J.M.; Hebbring, S.J.; Lin, S.M. Opportunities for drug repositioning from phenome-wide association studies. Nat. Biotechnol. 2015, 33, 342–345. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I.; Colombo, D.; Antonini, P. Sex-Gender variable: Methodological recommendations for increasing scientific value of clinical studies. Cells 2019, 8, 476. [Google Scholar] [CrossRef] [Green Version]
- Franconi, F.; Campesi, I. Sex impact on biomarkers, pharmacokinetics and pharmacodynamics. Curr. Med. Chem. 2017, 24, 2561–2575. [Google Scholar] [CrossRef]
- Madla, C.M.; Gavins, F.K.H.; Merchant, H.; Orlu, M.; Murdan, S.; Basit, A.W. Let’s talk about sex: Differences in drug therapy in males and females. Adv. Drug Deliv Rev. 2021, 175, 113804. [Google Scholar] [CrossRef]
- European Institute for Gender Equality, Concepts and Definitions. 2018. Available online: https://eige.europa.eu/gender-mainstreaming/concepts-and-definitions (accessed on 12 April 2021).
- WHO, Gender, Equity and Human Rights. 2018. Available online: https://www.who.int/gender-equity-rights/understanding/gender-definition/en/ (accessed on 12 April 2021).
- National Institute of Health, Sex & Gender. 2018. Available online: https://orwh.od.nih.gov/sex-gender (accessed on 7 November 2018).
- Australian Government, Australian Government Guidelines on the Recognition of Sex and Gender in Attorney General’s Department, Ed. 2018. Available online: https://www.ag.gov.au/Pages/default.aspx (accessed on 12 April 2021).
- Lopes-Ramos, C.M.; Chen, C.Y.; Kuijjer, M.L.; Paulson, J.N.; Sonawane, A.R.; Fagny, M.; Platig, J.; Glass, K.; Quackenbush, J.; DeMeo, D.L. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 2020, 31, 107795. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Campesi, I.; Occhioni, S.; Tonolo, G. Sex-gender differences in diabetes vascular complications and treatment. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 179–196. [Google Scholar] [CrossRef]
- Campesi, I.; Franconi, F.; Montella, A.; Dessole, S.; Capobianco, G. Human umbilical cord: Information mine in sex-specific medicine. Life 2021, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- LaVeist, T.A. Disentangling race and socioeconomic status: A key to understanding health inequalities. J. Urban. Health 2005, 82, iii26–iii34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campesi, I.; Montella, A.; Sotgiu, G.; Dore, S.; Carru, C.; Zinellu, A.; Palermo, M.; Franconi, F. Combined oral contraceptives modify the effect of smoking on inflammatory cellular indexes and endothelial function in healthy subjects. Eur. J. Pharm. 2021, 891, 173762. [Google Scholar] [CrossRef] [PubMed]
- Campesi, I.; Milella, L.; Palermo, M.; Sotgiu, G.; Reggiardo, G.; Franconi, F. Cigarette smoking affects the differences between male and female phenotypes. Am. J. Transl. Res. 2020, 12, 2998–3010. [Google Scholar] [PubMed]
- Madsen, T.; Bourjeily, G.; Hasnain, M. Sex- and gender-based medicine: The need for precise terminology. Gend. Genome 2017, 1, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Mark, S. Sex- and gender-based medicine: Venus, Mars, and beyond. Gend. Med. 2005, 2, 131–136. [Google Scholar] [CrossRef]
- Corella, D.; Coltell, O.; Portoles, O.; Sotos-Prieto, M.; Fernandez-Carrion, R.; Ramirez-Sabio, J.B.; Zanon-Moreno, V.; Mattei, J.; Sorli, J.V.; Ordovas, J.M. A guide to applying the sex-gender perspective to nutritional genomics. Nutrients 2019, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bairey Merz, C.N.; Regitz-Zagrosek, V. The case for sex- and gender-specific medicine. JAMA Intern. Med. 2014, 174, 1348–1349. [Google Scholar] [CrossRef]
- Marino, M.; Masella, R.; Bulzomi, P.; Campesi, I.; Malorni, W.; Franconi, F. Nutrition and human health from a sex-gender perspective. Mol. Asp. Med. 2011, 32, 1–70. [Google Scholar] [CrossRef]
- Ursin, R.L.; Shapiro, J.R.; Klein, S.L. Sex-biased immune responses following SARS-CoV-2 infection. Trends Microbiol. 2020, 28, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Marquez, E.J.; Chung, C.H.; Marches, R.; Rossi, R.J.; Nehar-Belaid, D.; Eroglu, A.; Mellert, D.J.; Kuchel, G.A.; Banchereau, J.; Ucar, D. Sexual-dimorphism in human immune system aging. Nat. Commun 2020, 11, 751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Health 5050, The COVID-19 Sex-Disaggregated Data Tracker. 2021. Available online: https://globalhealth5050.org/the-sex-gender-and-covid-19-project/the-data-tracker/ (accessed on 12 April 2021).
- Perez-Lopez, F.R.; Tajada, M.; Saviron-Cornudella, R.; Sanchez-Prieto, M.; Chedraui, P.; Teran, E. Coronavirus disease 2019 and gender-related mortality in European countries: A meta-analysis. Maturitas 2020, 141, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Gadi, N.; Wu, S.C.; Spihlman, A.P.; Moulton, V.R. What’s sex got to do with COVID-19? Gender-based differences in the host immune response to coronaviruses. Front. Immunol. 2020, 11, 2147. [Google Scholar] [CrossRef] [PubMed]
- Gostin, L.O.; Hodge, J.G., Jr.; Wiley, L.F. Presidential powers and response to COVID-19. JAMA 2020, 323, 1547–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.J.; Schneeweiss, S.; Tesfaye, H.; D’Andrea, E.; Liu, J.; Lii, J.; Murphy, S.N.; Gagne, J.J. Pharmacotherapy for hospitalized patients with COVID-19: Treatment patterns by disease severity. Drugs 2020, 80, 1961–1972. [Google Scholar] [CrossRef]
- Heustess, A.M.; Allard, M.A.; Thompson, D.K.; Fasinu, P.S. Clinical Management of COVID-19: A review ofpharmacological treatment options. Pharmaceuticals 2021, 14, 520. [Google Scholar] [CrossRef]
- Scavone, C.; Mascolo, A.; Rafaniello, C.; Sportiello, L.; Trama, U.; Zoccoli, A.; Bernardi, F.F.; Racagni, G.; Berrino, L.; Castaldo, G.; et al. Therapeutic strategies to fight COVID-19: Which is the status artis? Br. J. Pharmacol. 2021. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 Spike. iScience 2020, 23, 101400. [Google Scholar] [CrossRef]
- Iacobellis, G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res. Clin. Pract. 2020, 162, 108125. [Google Scholar] [CrossRef]
- Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifiro, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharm. 2020, 11, 588654. [Google Scholar] [CrossRef] [PubMed]
- NHI, COVID-19 Treatment Guidelines. 2020. Available online: https://www.covid19treatmentguidelines.nih.gov (accessed on 12 April 2021).
- He, G.; Massarella, J.; Ward, P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin. Pharm. 1999, 37, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Manjili, R.H.; Zarei, M.; Habibi, M.; Manjili, M.H. COVID-19 as an acute inflammatory disease. J. Immunol. 2020, 205, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, S.; Isgro, V.; La Corte, L.; Atzeni, F.; Trifiro, G. Potential role of anti-interleukin (IL)-6 drugs in the treatment of COVID-19: Rationale, clinical evidence and risks. BioDrugs 2020, 34, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F. Do anti-androgens have potential as therapeutics for COVID-19? Endocrinology 2021, 162, bqab114. [Google Scholar] [CrossRef] [PubMed]
- Montoya, M.C.; Krysan, D.J. Repurposing estrogen receptor antagonists for the treatment of infectious disease. mBio 2018, 9, e02272-18. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, M.M.; Mazhawidza, W.; Dougherty, S.M.; Minna, J.D.; Klinge, C.M. Activity and intracellular location of estrogen receptors alpha and beta in human bronchial epithelial cells. Mol. Cell Endocrinol. 2009, 305, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Getachew, B.; Tizabi, Y. Vitamin D and COVID-19: Role of ACE2, age, gender, and ethnicity. J. Med. Virol. 2021, 93, 5285–5294. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, B.; Fatti, L.M.; Danesi, L.; Gazzano, G.; Croci, M.; Vitale, G.; Gilardini, L.; Bonadonna, S.; Chiodini, I.; Caparello, C.F.; et al. Mortality in an Italian nursing home during COVID-19 pandemic: Correlation with gender, age, ADL, vitamin D supplementation, and limitations of the diagnostic tests. Aging 2020, 12, 24522–24534. [Google Scholar] [CrossRef]
- Correale, J.; Ysrraelit, M.C.; Gaitan, M.I. Gender differences in 1,25 dihydroxyvitamin D3 immunomodulatory effects in multiple sclerosis patients and healthy subjects. J. Immunol. 2010, 185, 4948–4958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanghera, D.K.; Sapkota, B.R.; Aston, C.E.; Blackett, P.R. Vitamin D status, gender differences, and cardiometabolic health disparities. Ann. Nutr. Metab. 2017, 70, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Campesi, I.; Romani, A.; Franconi, F. The sex-gender effects in the road to tailored botanicals. Nutrients 2019, 11, 1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G. Impact of gender difference on vitamin D status and its relationship with the extent of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Al-Horani, H.; Abu Dayyih, W.; Mallah, E.; Hamad, M.; Mima, M.; Awad, R.; Arafat, T. Nationality, gender, age, and body mass index influences on vitamin D concentration among elderly patients and young Iraqi and Jordanian in Jordan. Biochem. Res. Int. 2016, 2016, 8920503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ya’qoub, L.; Elgendy, I.Y.; Pepine, C.J. Sex and gender differences in COVID-19: More to be learned! Heart J. Plus Cardiol. Res. Pract. 2021, 3, 100011. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, Z.; Hammoud, S.H.; Yassine, H.M.; Fardoun, M.; El-Yazbi, A.F.; Eid, A.H. Molecular and biological mechanisms underlying gender differences in COVID-19 severity and mortality. Front. Immunol. 2021, 12, 659339. [Google Scholar] [CrossRef]
- Oni, T.; Gideon, H.P.; Bangani, N.; Tsekela, R.; Seldon, R.; Wood, K.; Wilkinson, K.A.; Goliath, R.T.; Ottenhoff, T.H.; Wilkinson, R.J. Smoking, BCG and employment and the risk of tuberculosis infection in HIV-infected persons in South Africa. PLoS ONE 2012, 7, e47072. [Google Scholar] [CrossRef] [Green Version]
- Anker, M. Addressing Sex and Gender in Epidemic-Prone Infectious Diseases; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of Long-COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar]
- Chamekh, M.; Casimir, G. Understanding gender-bias in critically Ill patients with COVID-19. Front. Med. (Lausanne) 2020, 7, 564117. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bai, H.; Liu, J.; Chen, G.; Liao, Q.; Yang, J.; Wu, P.; Wei, J.; Ma, D.; Chen, G.; et al. Distinct clinical characteristics and risk factors for mortality in female inpatients with Coronavirus Disease 2019 (COVID-19): A sex-stratified, large-scale cohort study in Wuhan, China. Clin. Infect. Dis. 2020, 71, 3188–3195. [Google Scholar] [CrossRef]
- Gender Studies in Product Development: Historical Overview. 2018. Available online: https://www.fda.gov/science-research/womens-health-research/gender-studies-product-development-historical-overview (accessed on 14 April 2021).
- Curno, M.J.; Rossi, S.; Hodges-Mameletzis, I.; Johnston, R.; Price, M.A.; Heidari, S. A systematic review of the inclusion (or exclusion) of women in HIV research: From clinical studies of antiretrovirals and vaccines to cure strategies. J. Acquir. Immune Defic. Syndr. 2016, 71, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, A.H.; McKee, S.A.; Mazure, C.M. Inclusion of women and gender-specific analyses in randomized clinical trials of treatments for depression. J. Women’s Health 2010, 19, 1727–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woitowich, N.C.; Beery, A.; Woodruff, T. A 10-year follow-up study of sex inclusion in the biological sciences. eLife 2020, 9, e56344. [Google Scholar] [CrossRef]
- Brady, E.; Nielsen, M.W.; Andersen, J.P.; Oertelt-Prigione, S. Lack of consideration of sex and gender in clinical trials for COVID-19. Nat. Commun. 2021, 12, 4015. [Google Scholar] [CrossRef] [PubMed]
- Palmer-Ross, A.; Ovseiko, P.V.; Heidari, S. Inadequate reporting of COVID-19 clinical studies: A renewed rationale for the Sex and Gender Equity in Research (SAGER) guidelines. BMJ Glob. Health 2021, 6, e004997. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Ebina, K.; Hashimoto, M.; Yamamoto, W.; Hirano, T.; Hara, R.; Katayama, M.; Onishi, A.; Nagai, K.; Son, Y.; Amuro, H.; et al. Drug tolerability and reasons for discontinuation of seven biologics in elderly patients with rheumatoid arthritis—The ANSWER cohort study. PLoS ONE 2019, 14, e0216624. [Google Scholar] [CrossRef] [Green Version]
- Burmester, G.R.; Rubbert-Roth, A.; Cantagrel, A.; Hall, S.; Leszczynski, P.; Feldman, D.; Rangaraj, M.J.; Roane, G.; Ludivico, C.; Lu, P.; et al. A randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study). Ann. Rheum. Dis. 2014, 73, 69–74. [Google Scholar]
- Harper, A.; Flanagan, K.L. Effect of sex on vaccination outcomes: Important but frequently overlooked. Curr. Opin. Pharm. 2018, 41, 122–127. [Google Scholar] [CrossRef]
- Fischinger, S.; Boudreau, C.M.; Butler, A.L.; Streeck, H.; Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kees, F.; Bucher, M.; Schweda, F.; Gschaidmeier, H.; Faerber, L.; Seifert, R. Neoimmun versus Neoral: A bioequivalence study in healthy volunteers and influence of a fat-rich meal on the bioavailability of Neoimmun. Naunyn Schmiedebergs Arch. Pharmacol. 2007, 375, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency, Guideline on the Investigation of Bioequivalence. 2010. Available online: https://www.ema.europa.eu/en/investigation-bioequivalence (accessed on 13 April 2021).
- Fletcher, C.V.; Jiang, H.; Brundage, R.C.; Acosta, E.P.; Haubrich, R.; Katzenstein, D.; Gulick, R.M. Sex-based differences in saquinavir pharmacology and virologic response in AIDS Clinical Trials Group Study 359. J. Infect. Dis. 2004, 189, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Ribera, E.; Lopez, R.M.; Diaz, M.; Pou, L.; Ruiz, L.; Falco, V.; Crespo, M.; Azuaje, C.; Ruiz, I.; Ocana, I.; et al. Steady-state pharmacokinetics of a double-boosting regimen of saquinavir soft gel plus lopinavir plus minidose ritonavir in human immunodeficiency virus-infected adults. Antimicrob. Agents Chemother. 2004, 48, 4256–4262. [Google Scholar] [CrossRef] [Green Version]
- Pai, M.P.; Schriever, C.A.; Diaz-Linares, M.; Novak, R.M.; Rodvold, K.A. Sex-related differences in the pharmacokinetics of once-daily saquinavir soft-gelatin capsules boosted with low-dose ritonavir in patients infected with human immunodeficiency virus type 1. Pharmacotherapy 2004, 24, 592–599. [Google Scholar] [CrossRef]
- Dickinson, L.; Back, D.J.; Chandler, B. The Impact of gender on saquinavir hard-gel/ritonavir (1000/100 mg bid) pharmacokinetics and PBMC transporter expression in HIV-1 infected individuals. In Proceedings of the 6th International Workshop on Clinical Pharmacology of HIV Therapy, Quebec, QC, Canada, 28–30 April 2005. Abstract 9. [Google Scholar]
- Becker, S.; Tse, M.; Sterman, F. Pharmacokinetics of once-daily saquinavir hard-gel capsule with low-dose ritonavir or full-dose atazanavir in seronegative volunteers: ASPIRE I. In Proceedings of the 12th Conference on Retroviruses and Opportunistic Infections, Boston, MA, USA, 22–25 February 2005. Abstract 655. [Google Scholar]
- Umeh, O.C.; Currier, J.S.; Park, J.G.; Cramer, Y.; Hermes, A.E.; Fletcher, C.V. Sex differences in lopinavir and ritonavir pharmacokinetics among HIV-infected women and men. J. Clin. Pharm. 2011, 51, 1665–1673. [Google Scholar] [CrossRef] [Green Version]
- Csajka, C.; Marzolini, C.; Fattinger, K.; Decosterd, L.A.; Telenti, A.; Biollaz, J.; Buclin, T. Population pharmacokinetics of indinavir in patients infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 2004, 48, 3226–3232. [Google Scholar] [CrossRef] [Green Version]
- Venuto, C.S.; Mollan, K.; Ma, Q.; Daar, E.S.; Sax, P.E.; Fischl, M.; Collier, A.C.; Smith, K.Y.; Tierney, C.; Morse, G.D. Sex differences in atazanavir pharmacokinetics and associations with time to clinical events: AIDS Clinical Trials Group Study A5202. J Antimicrob. Chemother. 2014, 69, 3300–3310. [Google Scholar] [CrossRef] [Green Version]
- Sekar, V.; Ryan, R.; Schaible, D.; Mazikewich, A.; Mrus, J. Pharmacokinetic profile of darunavir (DRV) co-administered with low dose ritonavir in treatment experienced women and men: 4 week analysis in a substudy of the GRACE trial. In Proceedings of the 9th International Workshop on Clinical Pharmacology of HIV Therapy (IWCPHIV), New Orleans, LA, USA, 7–9 April 2008. [Google Scholar]
- Morgan, E.T. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin. Pharm. Ther. 2009, 85, 434–438. [Google Scholar] [CrossRef]
- White, N.J.; Miller, K.D.; Churchill, F.C.; Berry, C.; Brown, J.; Williams, S.B.; Greenwood, B.M. Chloroquine treatment of severe malaria in children. Pharmacokinetics, toxicity, and new dosage recommendations. N. Engl. J. Med. 1988, 319, 1493–1500. [Google Scholar] [CrossRef]
- Roberts, D.J.; Hall, R.I. Drug absorption, distribution, metabolism and excretion considerations in critically ill adults. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1067–1084. [Google Scholar] [CrossRef]
- Chang, K.C.; Bell, T.D.; Lauer, B.A.; Chai, H. Altered theophylline pharmacokinetics during acute respiratory viral illness. Lancet 1978, 1, 1132–1133. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Tateishi, T.; Okano, Y.; Matuda, T.; Akimoto, Y.; Miyoshi, T.; Kobayashi, S.; Koitabashi, Y. Higher incidence of elevated body temperature or increased C-reactive protein level in asthmatic children showing transient reduction of theophylline metabolism. J. Clin. Pharm. 2000, 40, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.J.; Furukawa, C.T.; Koup, J.R.; Shapiro, G.G.; Pierson, W.E.; Bierman, C.W. Altered theophylline clearance during an influenza B outbreak. Pediatrics 1982, 69, 476–480. [Google Scholar]
- Williams, S.J.; Baird-Lambert, J.A.; Farrell, G.C. Inhibition of theophylline metabolism by interferon. Lancet 1987, 2, 939–941. [Google Scholar] [CrossRef]
- Lee, E.B.; Daskalakis, N.; Xu, C.; Paccaly, A.; Miller, B.; Fleischmann, R.; Bodrug, I.; Kivitz, A. Disease-Drug Interaction of Sarilumab and Simvastatin in Patients with Rheumatoid Arthritis. Clin. Pharm. 2017, 56, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, C.; Kuhn, B.; Zhang, X.; Kivitz, A.J.; Grange, S. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin. Pharm. Ther. 2011, 89, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Han, Y.H.; Yang, Z.; Rodrigues, A.D. Effect of interferon-alpha2b on the expression of various drug-metabolizing enzymes and transporters in co-cultures of freshly prepared human primary hepatocytes. Xenobiotica 2011, 41, 476–485. [Google Scholar] [CrossRef]
- Aitken, A.E.; Morgan, E.T. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab. Dispos. 2007, 35, 1687–1693. [Google Scholar] [CrossRef]
- Dickmann, L.J.; Patel, S.K.; Rock, D.A.; Wienkers, L.C.; Slatter, J.G. Effects of interleukin-6 (IL-6) and an anti-IL-6 monoclonal antibody on drug-metabolizing enzymes in human hepatocyte culture. Drug Metab. Dispos. 2011, 39, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Schoergenhofer, C.; Hobl, E.L.; Schellongowski, P.; Heinz, G.; Speidl, W.S.; Siller-Matula, J.M.; Schmid, M.; Sunder-Plassmann, R.; Stimpfl, T.; Hackl, M.; et al. Clopidogrel in Critically Ill Patients. Clin. Pharmacol. Ther. 2018, 103, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharm. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, X.; Eyler, R.F.; Liang, Y.; Liu, L.; Mueller, B.A.; Zhu, H.J. Association of oseltamivir activation with gender and carboxylesterase 1 genetic polymorphisms. Basic Clin. Pharm. Toxicol. 2016, 119, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://medsafe.govt.nz/profs/Datasheet/a/Actemrainf.pdf (accessed on 13 April 2021).
- Schoergenhofer, C.; Jilma, B.; Stimpfl, T.; Karolyi, M.; Zoufaly, A. Pharmacokinetics of lopinavir and ritonavir in patients hospitalized with Coronavirus Disease 2019 (COVID-19). Ann. Intern. Med. 2020, 20, 670–672. [Google Scholar] [CrossRef]
- Gregoire, M.; Le Turnier, P.; Gaborit, B.J.; Veyrac, G.; Lecomte, R.; Boutoille, D.; Canet, E.; Imbert, B.M.; Bellouard, R.; Raffi, F. Lopinavir pharmacokinetics in COVID-19 patients. J. Antimicrob. Chemother. 2020, 75, 2702–2704. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharm. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Available online: https://emedicine.medscape.com/article/166724-overview (accessed on 13 April 2021).
- Wiedermann, C.J. Hypoalbuminemia as surrogate and culprit of infections. Int. J. Mol. Sci. 2021, 22, 4496. [Google Scholar] [CrossRef]
- Aziz, M.; Fatima, R.; Lee-Smith, W.; Assaly, R. The association of low serum albumin level with severe COVID-19: A systematic review and meta-analysis. Crit. Care 2020, 24, 255. [Google Scholar] [CrossRef]
- Yang, J.; Shi, D.; Yang, D.; Song, X.; Yan, B. Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2. Mol. Pharmacol. 2007, 72, 686–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Aragie, T.G.; Masresha, S.A. Sex difference in coronavirus disease (COVID-19): A systematic review and meta-analysis. BMJ Open 2020, 10, e040129. [Google Scholar] [CrossRef]
- Maideen, N.M.P. Tobacco smoking and its drug interactions with comedications involving CYP and UGT enzymes and nicotine. World J. Pharm. 2019, 8, 14–25. [Google Scholar] [CrossRef]
- Zevin, S.; Benowitz, N.L. Drug interactions with tobacco smoking. Update Clin. Pharm. 1999, 36, 425–438. [Google Scholar] [CrossRef]
- de Graan, A.J.; Loos, W.J.; Friberg, L.E.; Baker, S.D.; van der Bol, J.M.; van Doorn, L.; Wiemer, E.A.; van der Holt, B.; Verweij, J.; Mathijssen, R.H. Influence of smoking on the pharmacokinetics and toxicity profiles of taxane therapy. Clin. Cancer Res. 2012, 18, 4425–4432. [Google Scholar] [CrossRef] [Green Version]
- Ashare, R.L.; Wetherill, R.R. The intersection of sex Differences, tobacco use, and inflammation: Implications for psychiatric disorders. Curr. Psychiatry Rep. 2018, 20, 75. [Google Scholar] [CrossRef]
- Hazell, L.; Shakir, S.A. Under-reporting of adverse drug reactions: A systematic review. Drug Saf. 2006, 29, 385–396. [Google Scholar] [CrossRef]
- Turner, R.M.; Pirmohamed, M. Cardiovascular pharmacogenomics: Expectations and practical benefits. Clin. Pharm. Ther. 2014, 95, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.F.; Alfirevic, A.; Pirmohamed, M. Pharmacogenomics: Current state-of-the-art. Genes 2014, 5, 430–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, S.T.; Denig, P.; Ekhart, C.; Burgers, J.S.; Kleefstra, N.; Mol, P.G.M.; van Puijenbroek, E.P. Sex differences in adverse drug reactions reported to the National Pharmacovigilance Centre in the Netherlands: An explorative observational study. Br. J. Clin. Pharm. 2019, 85, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.; Caster, O.; Rochon, P.A.; den Ruijter, H. Reported adverse drug reactions in women and men: Aggregated evidence from globally collected individual case reports during half a century. EClinicalMedicine 2019, 17, 100188. [Google Scholar] [CrossRef] [Green Version]
- Zopf, Y.; Rabe, C.; Neubert, A.; Gassmann, K.G.; Rascher, W.; Hahn, E.G.; Brune, K.; Dormann, H. Women encounter ADRs more often than do men. Eur. J. Clin. Pharm. 2008, 64, 999–1004. [Google Scholar] [CrossRef]
- Rademaker, M. Do women have more adverse drug reactions? Am. J. Clin. Dermatol. 2001, 2, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Giardina, C.; Cutroneo, P.M.; Mocciaro, E.; Russo, G.T.; Mandraffino, G.; Basile, G.; Rapisarda, F.; Ferrara, R.; Spina, E.; Arcoraci, V. Adverse drug reactions in hospitalized patients: Results of the FORWARD (Facilitation of Reporting in Hospital Ward) study. Front. Pharm. 2018, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Holm, L.; Ekman, E.; Jorsater Blomgren, K. Influence of age, sex and seriousness on reporting of adverse drug reactions in Sweden. Pharmacoepidemiol. Drug Saf. 2017, 26, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Montastruc, J.L.; Lafaurie, M.; de Canecaude, C.; Durrieu, G.; Sommet, A.; Montastruc, F.; Bagheri, H. Fatal adverse drug reactions: A worldwide perspective in the World Health Organization pharmacovigilance database. Br. J. Clin. Pharmacol. 2021. [Google Scholar] [CrossRef]
- Fink, A.L.; Klein, S.L. The evolution of greater humoral immunity in females than males: Implications for vaccine efficacy. Curr. Opin. Physiol. 2018, 6, 16–20. [Google Scholar] [CrossRef]
- Fink, A.L.; Klein, S.L. Sex and gender impact immune responses to vaccines among the elderly. Physiology 2015, 30, 408–416. [Google Scholar] [CrossRef]
- Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA vaccine against SARS-CoV-2–Preliminary report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Bar-Zeev, N.; Moss, W.J. Encouraging results from phase 1/2 COVID-19 vaccine trials. Lancet 2020, 396, 448–449. [Google Scholar] [CrossRef]
- Zekarias, A.; Watson, S.; Vidlin, S.H.; Grundmark, B. Sex differences in reported adverse drug reactions to COVID-19 drugs in a global database of individual case safety reports. Drug Saf. 2020, 43, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, S.W. Impact of age and sex on QT prolongation in patients receiving psychotropics. Can. J. Psychiatry 2015, 60, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzerini, P.E.; Boutjdir, M.; Capecchi, P.L. COVID-19, arrhythmic risk, and inflammation: Mind the gap! Circulation 2020, 142, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef] [PubMed]
- CredibleMeds®. Available online: https://crediblemeds.org/pdftemp/pdf/CombinedList.pdf (accessed on 23 April 2021).
- Lazzerini, P.E.; Acampa, M.; Capecchi, P.L.; Fineschi, I.; Selvi, E.; Moscadelli, V.; Zimbone, S.; Gentile, D.; Galeazzi, M.; Laghi-Pasini, F. Antiarrhythmic potential of anticytokine therapy in rheumatoid arthritis: Tocilizumab reduces corrected QT interval by controlling systemic inflammation. Arthritis Care Res. 2015, 67, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drew, J. Concerning the side effects of antimalarial drugs used in the extended treatment of rheumatic disease. MJA 1962, 2, 618–620. [Google Scholar] [CrossRef]
- Garcia, P.; Revet, A.; Yrondi, A.; Rousseau, V.; Degboe, Y.; Montastruc, F. Psychiatric disorders and hydroxychloroquine for Coronavirus Disease 2019 (COVID-19): A VigiBase study. Drug Saf. 2020, 43, 1315–1322. [Google Scholar] [CrossRef]
- Capuano, A.; Scavone, C.; Racagni, G.; Scaglione, F. NSAIDs in patients with viral infections, including COVID-19: Victims or perpetrators? Pharmacol. Res. 2020, 157, 104849. [Google Scholar] [CrossRef]
- Pastor-Barriuso, R.; Perez-Gomez, B.; Hernan, M.A.; Perez-Olmeda, M.; Yotti, R.; Oteo, J.; Sanmartin, J.L.; Leon-Gomez, I.; Fernandez-Garcia, A.; Fernandez-Navarro, P.; et al. Infection fatality risk for SARS-CoV-2: A nationwide seroepidemiological study in the non-institutionalized population of Spain. BMJ 2020, 371, m4509. [Google Scholar] [CrossRef] [PubMed]
Drug | Pharmacokinetic Parameters | Men vs. Women | References |
---|---|---|---|
Saquinavir | AUC 0–12h Cmin | 25% higher in women 3-fold higher in women | [86] |
AUC 0–24h, Cmin, Cmax | Higher in women | [87] | |
AUC 0–24h Cmin, Cmax, CL | Higher in women NS | [88] | |
AUC 0–12h, Cmin, Cmax, | Higher in women with low significance | [89] | |
AUC 0–24h, Cmax, | Higher in women | [90] | |
Ritonavir | AUC 0–24h, Cmax, Cmin, CL AUC, Cmax Median apparent oral CL | NS Higher in women Lower in women | [88] [91] |
AUC0–12h, Cmax | Higher in women | [87] | |
AUC 0–24h, Cmax, | Higher in women | [90] | |
Indinavir | CL, Cmin (after correction for deviation from 70 kg of body weight) | Lower in women Lower in women | [92] |
Lopinavir | AUC 0–12h, Cmin, Cmax | NS | [87] |
Atazanavir | AUC 24h, Cmax CL | NS Lower in women | [90] [93] |
Darunavir | AUC 12h | NS | [94] |
Targets | Inflammatory Triggers |
---|---|
CYP2C8, CYP3A4 | LPS, TNF-α, IL-1β, IL-6 |
CYP1A2, CYP2B6, CYP2C9 | IL-6, IFN-γ |
CYP2B6 | IFN-γ |
CES1 and 2 | IL-6 |
mRNA encoding CYP1A2, CYP2B6, CYP2E1, UGT2B7, SULT1A1, OAT2, CYP3A4, MRP2 | IFN-a2B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campesi, I.; Racagni, G.; Franconi, F. Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile? Pharmaceuticals 2021, 14, 730. https://doi.org/10.3390/ph14080730
Campesi I, Racagni G, Franconi F. Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile? Pharmaceuticals. 2021; 14(8):730. https://doi.org/10.3390/ph14080730
Chicago/Turabian StyleCampesi, Ilaria, Giorgio Racagni, and Flavia Franconi. 2021. "Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile?" Pharmaceuticals 14, no. 8: 730. https://doi.org/10.3390/ph14080730
APA StyleCampesi, I., Racagni, G., & Franconi, F. (2021). Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile? Pharmaceuticals, 14(8), 730. https://doi.org/10.3390/ph14080730