In Vitro Culture of Rosmarinus officinalis L. in a Temporary Immersion System: Influence of Two Phytohormones on Plant Growth and Carnosol Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of the Different Culture Systems
2.2. Evaluation of Different Immersion Frequencies
2.3. Quantification of Carnosol in Callus Extracts Obtained by Maceration
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Material and Culture
3.3. Experimental Design
3.4. Statistical Analysis
3.5. Extraction of Carnosol and TLC Analysis
3.6. Instrumentation and HPLC Conditions
3.7. Preparation of Standards and Samples
3.8. Validation of HPLC Method
3.9. Quantification of Carnosol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmes, K.K.; Bertozzi, S.; Bloom, B.R.; Jha, P.; Gelband, H.; De Maria, L.M.; Horton, S. Major Infectious Diseases: Key Messages from Disease Control Priorities. In Major Infectious Diseases, 3rd ed.; Holmes, K.K., Bertozzi, S., Bloom, B.R., Jha, P., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; pp. 1–27. [Google Scholar]
- Baker, S. A return to the pre-antimicrobial era? Science 2015, 347, 1064–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scire, J.; Hozé, N.; Uecker, H. Aggressive or moderate drug therapy for infectious diseases? Trade-offs between different treatment goals at the individual and population levels. PLoS Comput. Biol. 2019, 15, e1007223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Macías-Alonso, M.; Sancén, S.R.; Marrero, J.G. Carnosic acid and its derivatives: Diterpenes of biological interest. Biomed. J. Sci. Tech. Res. 2019, 16, 12172–12173. [Google Scholar] [CrossRef]
- Macías-Alonso, M.; San Andrés, L.; Córdova-Guerrero, I.; Estolano-Cobián, A.; Díaz-Rubio, L.; Marrero, J.G. Inhibition of squalene synthase of rat liver by abietane diterpenes derivatives. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts. J. Agric. Food Chem. 2012, 60, 9603–9608. [Google Scholar] [CrossRef]
- Zampini, I.C.; Arias, M.E.; Cudmani, N.; Ordóñez, R.M.; Isla, M.I.; Moreno, S. Antibacterial potential of non-volatile constituents of Rosmarinus officinalis against 37 clinical isolates of multidrug-resistant bacteria. BLACPMA 2013, 12, 201–208. [Google Scholar]
- Nakagawa, S.; Hillebrand, G.G.; Nunez, G. Rosmarinus officinalis L. (Rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of Staphylococcus aureus virulence. Antibiotics 2020, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004, 65, 3249–3254. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, K.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis. Biol. Pharm. Bull. 2007, 30, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, N.M.; Fiorilli, G.; Cáceres Guido, P.A.; Moreno, S. Carnosic acid acts synergistically with gentamicin in killing methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine 2016, 23, 1337–1343. [Google Scholar] [CrossRef]
- Paris, A.; Strukelj, B.; Renko, M.; Turk, V.; Pukl, M.; Umek, A.; Korant, B.D. Inhibitory effect of carnosic acid on HIV-1 protease in cell-free assays. J. Nat. Prod. 1993, 56, 1426–1430. [Google Scholar] [CrossRef]
- Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol. Res. 2018, 133, 301–314. [Google Scholar] [CrossRef]
- Histoshi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017, 390, 946–958. [Google Scholar]
- Cui, W.; Yang, K.; Yang, H. Recent progress in the drug development targeting SARS-CoV-2 Main Protease as treatment for COVID-19. Front. Mol. Biosci. 2020, 7, 616341. [Google Scholar] [CrossRef]
- Umesh, U.; Kundu, D.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn. 2020, 39, 3428–3434. [Google Scholar] [CrossRef]
- Sahu, S.N.; Mishra, B.; Sahu, R.; Pattanayak, S.K. Molecular dynamics simulation perception study of the binding affinity performance for main protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 2020. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Lisiecki, P.; Gonciarz, W.; Kuźma, Ł.; Szemraj, M.; Chmiela, M.; Grzegorczyk-Karolak, I. Transformed shoots of Dracocephalum forrestii W.W. Smith from different bioreactor systems as a rich source of natural phenolic compounds. Molecules 2020, 25, 4533. [Google Scholar] [CrossRef]
- Skalický, V.; Kubeš, M.; Napier, R.; Novák, O. Auxins and cytokinins: The role of subcellular organization on homeostasis. Int. J. Mol. Sci. 2018, 19, 3115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwesh, H.Y.; Alayafi, A.A. In vitro propagation response of Rosmarinus officinalis L. to biotic and abiotic elicitors on phenolic content and photosynthetic pigments. J. Agric. Sci. 2018, 10, 301–307. [Google Scholar]
- Caruso, J.L.; Callahan, J.; DeChant, C.; Jayasimhulu, K.; Winget, G.D. Carnosic acid in green callus and regenerated shoots of Rosmarinus officinalis. Plant Cell Rep. 2000, 19, 500–503. [Google Scholar] [CrossRef]
- Pérez-Mendoza, M.B.; Llorens-Escobar, L.; Vanegas-Espinoza, P.E.; Cifuentes, A.; Ibáñez, E.; Villar-Martínez, A.A.D. Chemical characterization of leaves and calli extracts of Rosmarinus officinalis by UHPLC-MS. Electrophoresis 2020, 41, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Gabor-Potor, S.A.; Pop, L. Rosmarinus officinalis in vitro culture initiation. Analele Universitätii din Oradea. Fasc. Biol. 2007, 14, 73–76. [Google Scholar]
- Misra, P. Induced caulogenesis in long-term callus cultures of Rosmarinus officinalis L. J. Plant Biochem. Biotechnol. 2002, 11, 113–116. [Google Scholar] [CrossRef]
- Grzegorczyk, I.; Wysokinska, H. Liquid shoot culture of Salvia officinalis L. for micropropagation and production of antioxidant compounds; effect of triacontanol. Acta Soc. Bot. Pol. 2008, 77, 99–104. [Google Scholar] [CrossRef]
- Van Staden, A.B.; Lall, N. Medicinal Plants as Alternative Treatments for Progressive Macular Hypomelanosis. In Medicinal Plants for Holistic Health and Well-Being, 1st ed.; Lall, N., Ed.; Elsevier Academic Press: London, UK, 2018; pp. 145–182. [Google Scholar]
- Saha, S.; Kader, A.; Sengupta, C.; Ghosh, P. In vitro propagation of Ocimum gratissimum L. (Lamiaceae) and its evaluation of genetic fidelity using RAPD marker. Am. J. Plant Sci. 2012, 3, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, V.; Ribeiro, H.; Salguero, C.; Sato, A. Influence of growth regulators in biomass production and volatile profile of in vitro plantles of Thymus vulgaris L. J. Agric. Food Chem. 2009, 57, 6392–6395. [Google Scholar]
- Fraternale, D.; Giamperi, L.; Ricci, D.; Rocchi, M.B.L.; Guidi, L.; Epifano, F.; Marcotullio, M.C. The effect of triacontanol on micropropagation and on secretory system of Thymus mastichina. Plant Cell Tissue Organ Cult. 2003, 74, 87–97. [Google Scholar] [CrossRef]
- Zuzarte, M.; Dinis, A.; Cavaleiro, C.; Salgueiro, L.; Canhoto, J. Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Ind. Crops Prod. 2010, 32, 580–587. [Google Scholar] [CrossRef]
- Escalona, M.; Lorenzo, J.C.; González, B.; Daquinta, M.; Borroto, C.; González, J.L.; Desjardins, Y. Pineapple micropropagation in temporary immersion systems. Plant Cell Rep. 1999, 18, 743–748. [Google Scholar] [CrossRef]
- Etienne, H.P.; Lartaud, M.; Michauxferriere, N.; Carron, M.; Berthouly, M.; Teisson, C. Improvement of somatic embryogenesis in Hevea brasiliensis (Mull Aug) using the temporary immersion technique. In vitro Cell. Dev. Biol. Plant 1997, 33, 81–89. [Google Scholar] [CrossRef]
- Albarrán, J.; Bertrand, B.; Lartaud, M.; Etienne, H. Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffe (Coffea arabica) somatic embryos. Plant Cell Tiss. Organ. Cult. 2005, 81, 27–36. [Google Scholar] [CrossRef]
- Etienne, E.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tiss. Organ. Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Roels, S.; Escalona, M.; Cejas, I.; Noceda, C.; Rodriguez, R.; Canal, M.J.; Sandoval, J.; Debergh, P. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell. Tiss. Organ. Cult. 2005, 82, 57–66. [Google Scholar] [CrossRef]
- Bello-Bello, J.J.; Canto-Flick, A.; Balam-Uc, E.; Gómez-Uc, E.; Robert, M.L.; Iglesias-Andreu, L.G.; Santana-Buzzy, N. Improvement of in vitro proliferation and elongation of habanero pepper shoots (Capsicum chinense Jacq.) by temporary immersion. HortSci 2010, 45, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Singh, J. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. J. Pharmacol. Pharmacother. 2015, 6, 185. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Goncalves, S.; Valentao, P.; Andrade, P.; Romano, A. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem. Toxicol. 2013, 57, 69–74. [Google Scholar] [CrossRef]
- Grzegorczyk, I.; Bilichowski, I.; Mikiciuk-Olasik, E.; Wysokińska, H. In vitro cultures of Salvia officinalis L. as a source of antioxidant compounds. Acta Soc. Bot. Pol. 2005, 74, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.; Seabra, R.; Andrade, P.; Fernándes, M. Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Sci. 2002, 162, 981–987. [Google Scholar] [CrossRef]
- Kuhlmann, A.; Röhl, C. Phenolic antioxidant compounds produced by in vitro cultures of rosemary (Rosmarinus officinalis) and their anti-inflammatory effect on lipopolysaccharide-activated microglia. Pharm. Biol. 2006, 44, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.; Seabra, R.; Andrade, P.; Fernandes, M. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physol. 2003, 160, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and biossays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Marrero, J.G.; Andrés, L.S.; Luis, J.G. Semisynthesis of rosmanol and its derivatives. Easy access to abietatriene diterpenes isolated from the genus Salvia with biological activities. J. Nat. Prod. 2002, 65, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Campíns-Falcó, P.; Verdú-Andrés, J.; Bosch-Reig, F.; Molíns-Legua, C. Generalized H-point standard additions method for analyte determinations in unknown samples. Anal. Chim. Acta 1995, 302, 323–333. [Google Scholar] [CrossRef]
Entry | Culture Medium | PGR 1 (mg L−1) | No. of Shoots 2 |
---|---|---|---|
1 | Solid | 0.2/6-BAP | 5.67 ± 0.58 |
2 | TIS 3 | 0.2/6-BAP | 6.67 ± 1.15 |
3 | Solid | 2.5/6-BAP | 5.00 ± 1.00 |
4 | TIS | 2.5/6-BAP | 15.00 ± 1.73 |
5 | Solid | 5.0/6-BAP | 3.33 ± 1.15 |
6 | TIS | 5.0/6-BAP | 24.33 ± 1.15 |
7 | Solid | 0.5/NAA | 3.45 ± 1.27 |
8 | TIS | 0.5/NAA | 5.67 ± 0.58 |
9 | Solid | 1.0/NAA | 1.33 ± 1.15 |
10 | TIS | 1.0/NAA | 9.08 ± 1.07 |
11 | Solid | 2.5/NAA | 4.67 ± 2.31 |
12 | TIS | 2.5/NAA | 6.67 ± 1.15 |
Entry | Immersion Frequencies | Immersion Time (min) | No. of Shoots 1 |
---|---|---|---|
1 | every 12 h | 1 | 170.33 ± 29.40 |
2 | every 24 h | 1 | 3.33 ± 1.15 |
3 | every 12 h | 5 | 22.00 ± 30.41 |
4 | every 24 h | 5 | 5.33 ± 3.06 |
5 | every 12 h | 10 | 5.67 ± 0.58 |
6 | every 24 h | 10 | 7.00 ± 7.94 |
Chromatographic Parameter | Result | Acceptance Criteria |
---|---|---|
Number of theorical plates (N) | 2862.3 ± 18.9 | N > 2000 |
Tailing factor (T) | 1.07 ± 0.01 | T ≤ 2 |
Retention factor (k) | 3.01 ± 0.01 | k > 2 |
Carnosol Sample Solution (µg/mL) | Quantified Concentration ± SD (µg/mL) | Recovery ± SD (%) | RSD (%) |
---|---|---|---|
Intra-day precision | |||
50 | 47.74 ± 0.51 | 95.5 | 1.07 |
100 | 97.9 ± 1.34 | 97.9 | 1.37 |
190 | 191.1 ± 1.40 | 100.6 | 0.73 |
Inter-day precision | |||
50 | 48.65 ± 0.75 | 97.3 | 1.54 |
100 | 98.48 ± 0.94 | 98.5 | 0.95 |
190 | 190.11 ± 1.49 | 100.1 | 0.78 |
Entry | Treatment | Retention Time (min) | Retention Factor | Absorbance (AU) | Carnosol Concentration (μg mL−1) 1 | Carnosol Concentration as mg g−1 DW 2 |
---|---|---|---|---|---|---|
1 | 6-BAP (2.5 mgL−1) | 9.16 ± 0.001 | 2.77 | 0.400 ± 0.001 | 77.71 ± 0.13 | 0.7771 |
2 | 6-BAP (2.5 mgL−1) + 28.87 μg mL−1 CA | 9.13 ± 0.004 | 2.76 | 0.527 ± 0.006 | 101.56 ± 1.24 | - |
3 | 6-BAP (2.5 mgL−1) + 53.33 μg mL−1 CA | 9.15 ± 0.002 | 2.77 | 0.650 ± 0.001 | 126.27 ± 0.30 | - |
4 | 6-BAP (5.0 mgL−1) | 8.97 ± 0.023 | 2.69 | 0.387 ± 0.001 | 75.74 ± 0.33 | 0.7574 |
5 | 6-BAP (5.0 mgL−1) + 28.87 μg mL−1 CA | 9.01 ± 0.009 | 2.71 | 0.463 ± 0.004 | 90.61 ± 0.78 | - |
6 | 6-BAP (5.0 mgL−1) + 53.33 μg mL−1 CA | 9.00 ± 0.012 | 2.70 | 0.551 ± 0.001 | 107.1 ± 0.75 | - |
7 | Wild plant | 9.11 ± 0.004 | 2.75 | 0.050 ± 0.001 | 9.68 ± 0.21 | 0.0968 |
8 | CA (173.24 μg mL−1) | 9.21 ± 0.011 | 2.79 | 0.892 ± 0.001 | 173.24 ± 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villegas-Sánchez, E.; Macías-Alonso, M.; Osegueda-Robles, S.; Herrera-Isidrón, L.; Nuñez-Palenius, H.; González-Marrero, J. In Vitro Culture of Rosmarinus officinalis L. in a Temporary Immersion System: Influence of Two Phytohormones on Plant Growth and Carnosol Production. Pharmaceuticals 2021, 14, 747. https://doi.org/10.3390/ph14080747
Villegas-Sánchez E, Macías-Alonso M, Osegueda-Robles S, Herrera-Isidrón L, Nuñez-Palenius H, González-Marrero J. In Vitro Culture of Rosmarinus officinalis L. in a Temporary Immersion System: Influence of Two Phytohormones on Plant Growth and Carnosol Production. Pharmaceuticals. 2021; 14(8):747. https://doi.org/10.3390/ph14080747
Chicago/Turabian StyleVillegas-Sánchez, Eder, Mariana Macías-Alonso, Soraya Osegueda-Robles, Lisset Herrera-Isidrón, Hector Nuñez-Palenius, and Joaquín González-Marrero. 2021. "In Vitro Culture of Rosmarinus officinalis L. in a Temporary Immersion System: Influence of Two Phytohormones on Plant Growth and Carnosol Production" Pharmaceuticals 14, no. 8: 747. https://doi.org/10.3390/ph14080747
APA StyleVillegas-Sánchez, E., Macías-Alonso, M., Osegueda-Robles, S., Herrera-Isidrón, L., Nuñez-Palenius, H., & González-Marrero, J. (2021). In Vitro Culture of Rosmarinus officinalis L. in a Temporary Immersion System: Influence of Two Phytohormones on Plant Growth and Carnosol Production. Pharmaceuticals, 14(8), 747. https://doi.org/10.3390/ph14080747