An Improved LC–MS/MS Method for the Analysis of Thirteen Cytostatics on Workplace Surfaces
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation Parameters of the Chromatographic Method
2.2. Optimization of the Extraction Methodology
2.3. Optimization of the Desorption Methodology
2.4. Global Uncertainty Associated with the Results
2.5. Cytostatics Analysis of Workplace Surfaces
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Safety Considerations on Cytostatic Drugs Handling
3.3. Extraction of Cytostatics from the Gauze
3.4. Desorption of Cytostatics from Contaminated Model Surfaces
3.5. Instrumental Analysis
3.5.1. Validation Procedure: Quality Control/Quality Assurance
3.5.2. Global Uncertainty
3.6. Cytostatics Analysis of Workplace Surfaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Estimation of the Global Uncertainty Associated with the Analytical Results
- U1 is the uncertainty associated with the preparation of standards (estimated using the error propagation law for the different dilution steps from the stock standard solution),
- 2.
- U2 is the uncertainty associated with the calibration curve (calculated for the different mass levels of the standards),
- 3.
- U3 is the uncertainty associated with the precision of the method (estimated as the average result of the relative standard deviation of recovery),
- 4.
- U4 is the uncertainty associated with the accuracy (calculated as the average percent recovery obtained within all the experiments),
Appendix B
References
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 50—Pharmaceutical Drugs; International Agency for Research on Cancer: Lyon, France, 1990; ISBN 978-92-832-1250-8. [Google Scholar]
- NIOSH. NIOSH Alert: Preventing Occupational Exposures to Antineoplastic and Other Hazardous Drugs in Health Care Settings; NIOSH: Cincinnati, OH, USA, 2004. Available online: https://www.cdc.gov/niosh/docs/2004-165/pdfs/2004-165.pdf (accessed on 17 June 2021).
- Kiffmeyer, T.K.; Tuerk, J.; Hahn, M.; Stuetzer, H.; Hadtstein, C.; Heinemann, A.; Eickmann, U. Application and assessment of a regular environmental monitoring of the antineoplastic drug contamination level in pharmacies—The MEWIP project. Ann. Occup. Hyg. 2013, 57, 444–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancharro, P.M.; Iglesias, N.C.-A.; González-Barcala, F.-J.; Gonzaléz, J.D.M. Evidence of exposure to cytostatic drugs in healthcare staff: A review of recent literature. Farm. Hosp. 2016, 40, 604–621. [Google Scholar] [CrossRef]
- IARC. Press Release N° 292. 2020. Available online: https://gco.iarc.fr/ (accessed on 17 June 2021).
- Turci, R.; Sottani, C.; Spagnoli, G.; Minoia, C. Biological and environmental monitoring of hospital personnel exposed to antineoplastic agents: A review of analytical methods. J. Chromatogr. B 2003, 789, 169–209. [Google Scholar] [CrossRef]
- Petit, M.; Curti, C.; Roche, M.; Montana, M.; Bornet, C.; Vanelle, P. Environmental monitoring by surface sampling for cytotoxics: A review. Environ. Monit. Assess. 2017, 189, 52. [Google Scholar] [CrossRef] [Green Version]
- Vyas, N.; Yiannakis, D.; Turner, A.; Sewell, G.J. Occupational exposure to anti-cancer drugs: A review of effects of new technology. J. Oncol. Pharm. Pract. 2014, 20, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu-Martínez, M.A.; Merino, M.R.; Gago, J.M.S.; Sabucedo, L.M.A.; Wanden-Berghe, C.; Sanz-Valero, J. Guidelines for safe handling of hazardous drugs: A systematic review. PLoS ONE 2018, 13, e0197172. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings; NIOSH: Cincinnati, OH, USA, 2016. Available online: https://www.cdc.gov/niosh/docs/2016-161/pdfs/2016-161.pdf (accessed on 17 June 2021).
- Schierl, R.; Böhlandt, A.; Nowak, D. Guidance Values for Surface Monitoring of Antineoplastic Drugs in German Pharmacies. Ann. Occup. Hyg. 2009, 53, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sessink, P.J.M. Environmental contamination with cytostatic drugs: Past, present and future. Saf. Consid. Oncol. Pharm. 2011. Special Edition. [Google Scholar]
- Silva, J.O. Cytostatic-Drugs Handling in Hospitals: Impact Study of the Contamination at Occupational Environments. Ph.D. Thesis, University of Minho, Braga, Portugal, 2018. Available online: http://hdl.handle.net/1822/59366 (accessed on 17 June 2021).
- Viegas, S.; Pádua, M.; Veiga, A.C.; Carolino, E.; Gomes, M. Antineoplastic drugs contamination of workplace surfaces in two Portuguese hospitals. Environ. Monit. Assess. 2014, 186, 7807–7818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portilha-Cunha, M.F.; Alves, A.; Santos, M.S.F. Cytostatics in Indoor Environment: An Update of Analytical Methods. Pharmaceuticals 2021, 14, 574. [Google Scholar] [CrossRef] [PubMed]
- Dugheri, S.; Bonari, A.; Pompilio, I.; Boccalon, P.; Mucci, N.; Arcangeli, G. A new approach to assessing occupational exposure to antineoplastic drugs in hospital environments. Arch. Ind. Hyg. Toxicol. 2018, 69, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Guichard, N.; Boccard, J.; Rudaz, S.; Bonnabry, P.; Fleury Souverain, S. Wipe-sampling procedure optimisation for the determination of 23 antineoplastic drugs used in the hospital pharmacy. Eur. J. Hosp. Pharm. 2021, 28, 94–99. [Google Scholar] [CrossRef] [PubMed]
- WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD Index. 2021. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 17 June 2021).
- Dal Bello, F.; Santoro, V.; Scarpino, V.; Martano, C.; Aigotti, R.; Chiappa, A.; Davoli, E.; Medana, C. Antineoplastic drugs determination by HPLC-HRMSn to monitor occupational exposure. Drug Test. Anal. 2016, 8, 730–737. [Google Scholar] [CrossRef]
- Roland, C.; Caron, N.; Bussières, J.F. Multicenter study of environmental contamination with cyclophosphamide, ifosfamide, and methotrexate in 66 Canadian hospitals: A 2016 follow-up study. J. Occup. Environ. Hyg. 2017, 14, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Jeronimo, M.; Astrakianakis, G.; Apte, C.; Hon, C.-Y. Wipe sampling method and evaluation of environmental variables for assessing surface contamination of 10 antineoplastic drugs by liquid chromatography/tandem mass spectrometry. Ann. Work Expo. Health 2017, 61, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, E.; Amiand, M.B.; Sorrieul, J.; Bard, J.M.; Bobin-Dubigeon, C. A fully validated simple new method for environmental monitoring by surface sampling for cytotoxics. J. Pharmacol. Toxicol. Methods 2020, 101, 106652. [Google Scholar] [CrossRef] [PubMed]
- Acramel, A.; Chouquet, T.; Plé, A.; Sauvageon, H.; Mourah, S.; Jouenne, F.; Goldwirt, L. Development and validation of a liquid chromatography tandem mass spectrometry quantification method for 14 cytotoxic drugs in environmental samples. Rapid Commun. Mass Spectrom. 2020, 34, e8594. [Google Scholar] [CrossRef] [PubMed]
- Palamini, M.; Gagné, S.; Caron, N.; Bussières, J.-F. Cross-sectional evaluation of surface contamination with 9 antineoplastic drugs in 93 Canadian healthcare centers: 2019 results. J. Oncol. Pharm. Pract. 2020, 26, 1921–1930. [Google Scholar] [CrossRef]
- Müller-Ramírez, C.; Squibb, K.; McDiarmid, M. Accessible analytical methodology for assessing workplace contamination of antineoplastic drugs in limited-resource oncology health-care settings. J. Anal. Sci. Technol. 2016, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Bobin-Dubigeon, C.; Amiand, M.; Percheron, C.; Audeval, C.; Rochard, S.; Leynia, P.; Bard, J.-M. A New, validated wipe-sampling procedure coupled to LC–MS analysis for the simultaneous determination of 5-fluorouracil, doxorubicin and cyclophosphamide in surface contamination. J. Anal. Toxicol. 2013, 37, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetzel, T.; vom Eyser, C.; Tuerk, J.; Teutenberg, T.; Schmidt, T.C. Micro-liquid chromatography mass spectrometry for the analysis of antineoplastic drugs from wipe samples. Anal. Bioanal. Chem. 2016, 408, 8221–8229. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, M.; Colombo, M.; Astrakianakis, G.; Hon, C.Y. A surface wipe sampling and LC-MS/MS method for the simultaneous detection of six antineoplastic drugs commonly handled by healthcare workers. Anal. Bioanal. Chem. 2015, 407, 7083–7092. [Google Scholar] [CrossRef]
- Da Silva, C.B.P.; Julio, I.P.; Donadel, G.E.; Martins, I. UPLC-MS/MS method for simultaneous determination of cyclophosphamide, docetaxel, doxorubicin and 5-fluorouracil in surface samples. J. Pharmacol. Toxicol. Methods 2016, 82, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.R.; Connor, T.H.; Spasojevic, I.; Kurtz, K.S.; McLaurin, J.L.; B’Hymer, C.; Debord, D.G. Sampling and mass spectrometric analytical methods for five antineoplastic drugs in the healthcare environment. J. Oncol. Pharm. Pract. 2012, 18, 23–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, S.L.R.; Williams, A. EURACHEM/CITAC Guide—Quantifying Uncertainty in Analytical Measurement, 3rd ed.; EURACHEM/CITAC: London, UK, 2012; Available online: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf (accessed on 17 June 2021).
Cytostatic | rt (min) | Molecular Ion (m/z) (Cone Voltage, V) | Transition 1 (CE, eV) | Transition 2 (CE, eV) | Linearity (ng) | Regression Equation | R2 | IDL 1 (pg/cm2) | IQL 1 (pg/cm2) | Accuracy 2 (Mean ± SD, %) | Precision (CV%) 3 |
---|---|---|---|---|---|---|---|---|---|---|---|
BIC | 37.802 | 429.00 [M − H]− (−3.5) | 429.00 → 255.05 (16) | 429.00 → 184.95 (39) | 0.2–20 | Y = 0.270X + 0.001 | 0.9997 | 0.1 | 0.4 | 96 ± 6 | 7 |
CAP | 36.451 | 360.20 [M + H]+ (4.5) | 360.20 → 244.00 (−13) | 360.20 → 174.00 (−23) | 0.2–200 | Y = 0.075X − 0.247 | 0.9976 | 0.3 | 1.0 | 251 ± 81 | 32 |
CYC | 32.068 | 260.90 [M + H]+ (4.5) | 260.90 → 139.95 (−23) | 260.90 → 106.05 (−19) | 0.2–200 | Y = 0.012X + 0.000 | 0.9997 | 1.7 | 5.6 | 87 ± 4 | 5 |
CYPR | 39.603 | 417.20 [M + H]+ (4.5) | 417.20 → 357.15 (−18) | 417.20 → 279.00 (−25) | 1–200 | Y = 0.003X − 0.001 | 0.9993 | 4.0 | 13.3 | 87 ± 10 | 11 |
DOX | 34.483 | 544.00 [M + H]+ (4.5) | 544.00 → 397.00 (−13) | 544.00 → 361.00 (−28) | 1–200 | Y = 0.003X − 0.011 | 0.9982 | 0.9 | 3.1 | 24 ± 11 | 46 |
ETO | 35.103 | 589.20 [M + H]+ (4.5) | 589.20 → 228.95 (−20) | 589.20 → 185.10 (−37) | 0.2–100 | Y = 0.005X − 0.001 | 0.9998 | 0.4 | 1.2 | 84 ± 10 | 11 |
FLU | 38.796 | 275.00 [M − H]− (−3.5) | 275.00 → 201.95 (24) | 275.00 → 205.05 (21) | 0.2–20 | Y = 0.059X + 0.019 | 0.9995 | 0.3 | 1.1 | 96 ± 14 | 14 |
IFO | 30.343 | 260.90 [M + H]+ (4.5) | 260.90 → 92.05 (−26) | 260.90 → 153.95 (−23) | 0.2–20 | Y = 0.014X + 0.002 | 0.9998 | 1.6 | 5.3 | 82 ± 4 | 5 |
IMA | 27.613 | 494.30 [M + H]+ (4.5) | 494.30 → 394.05 (−27) | 494.30 → 217.10 (−27) | 0.2–200 | Y = 0.050X + 0.010 | 0.9993 | 2.0 4 | 6.7 4 | 54 ± 14 | 25 |
MEG | 39.874 | 385.10 [M + H]+ (4.5) | 385.10 → 267.10 (−20) | 385.10 → 325.15 (−15) | 0.2–200 | Y = 0.018X − 0.004 | 0.9998 | 0.6 | 1.9 | 83 ± 7 | 8 |
MMF | 32.750 | 434.10 [M + H]+ (4.5) | 434.10 → 114.05 (−27) | 434.10 → 194.95 (−36) | 0.2–200 | Y = 0.131X − 0.021 | 0.9998 | 0.1 | 0.4 | 71 ± 7 | 10 |
PAC | 39.091 | 876.20 [M + H]+ (4.5) | 876.20 → 308.00 (−30) | 876.20 → 591.15 (−28) | 0.2–40 | Y = 0.015X + 0.003 | 0.9987 | 0.4 | 1.2 | 68 ± 17 | 25 |
PRE | 36.017 | 359.10 [M + H]+ (4.5) | 359.10 → 146.95 (−26) | 359.10 → 341.15 (−13) | 1–200 | Y = 0.004X − 0.002 | 0.9999 | 1.8 | 6.0 | 78 ± 6 | 8 |
CYC-d4 | 31.930 | 265.00 [M + H]+ (4.5) | 265.00 → 140.00 (−24) | 265.00 → 63.00 (−43) |
Cytostatic. | Preparation Unit | Administration Unit | ||
---|---|---|---|---|
Maximum | Mean ± SD (Frequency) | Maximum | Mean ± SD (Frequency) | |
BIC | – | – | – | – |
CAP | 33 | 33 ± 0 (1/12) | – | – |
CYC | 174 | 60 ± 58 (10/12) | 11 | 6 ± 3 (6/16) |
CYPR | – | – | 168 | 91 ± 55 (3/16) |
DOX | – | – | – | – |
ETO | – | – | 37 | 37 ± 0 (1/16) |
FLU | – | – | – | – |
IFO | 22 | 13 ± 7 (4/12) | 4 | 4 ± 0 (1/16) |
IMA | – | – | – | – |
MEG | 7 | 7 ± 0 (1/12) | 5 | 4 ± 1 (5/16) |
MMF | 2 | 2 ± 0 (1/12) | 3 | 3 ± 0 (1/16) |
PAC | – | – | – | – |
PRE | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portilha-Cunha, M.F.; Ramos, S.; Silva, A.M.T.; Norton, P.; Alves, A.; Santos, M.S.F. An Improved LC–MS/MS Method for the Analysis of Thirteen Cytostatics on Workplace Surfaces. Pharmaceuticals 2021, 14, 754. https://doi.org/10.3390/ph14080754
Portilha-Cunha MF, Ramos S, Silva AMT, Norton P, Alves A, Santos MSF. An Improved LC–MS/MS Method for the Analysis of Thirteen Cytostatics on Workplace Surfaces. Pharmaceuticals. 2021; 14(8):754. https://doi.org/10.3390/ph14080754
Chicago/Turabian StylePortilha-Cunha, Maria Francisca, Sara Ramos, Adrián M. T. Silva, Pedro Norton, Arminda Alves, and Mónica S. F. Santos. 2021. "An Improved LC–MS/MS Method for the Analysis of Thirteen Cytostatics on Workplace Surfaces" Pharmaceuticals 14, no. 8: 754. https://doi.org/10.3390/ph14080754
APA StylePortilha-Cunha, M. F., Ramos, S., Silva, A. M. T., Norton, P., Alves, A., & Santos, M. S. F. (2021). An Improved LC–MS/MS Method for the Analysis of Thirteen Cytostatics on Workplace Surfaces. Pharmaceuticals, 14(8), 754. https://doi.org/10.3390/ph14080754