The Density of Different Local Anesthetic Solutions, Opioid Adjuvants and Their Clinically Used Combinations: An Experimental Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, W.H.; Hur, M.; Park, S.K.; Yoo, S.; Lim, T.; Yoon, H.K.; Kim, J.T.; Bahk, J.H. Comparison between general, spinal, epidural, and combined spinal-epidural anesthesia for cesarean delivery: A network meta-analysis. Int. J. Obstet. Anesth. 2019, 37, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteside, J.B.; Wildsmith, J.A.W. Spinal anaesthesia: An update. Contin. Educ. Anaesth. Crit. Care Pain 2005, 5, 37–40. [Google Scholar] [CrossRef]
- Meng, T.; Zhong, Z.; Meng, L. Impact of spinal anaesthesia vs. general anaesthesia on peri-operative outcome in lumbar spine surgery: A systematic review and meta-analysis of randomised, controlled trials. Anaesthesia 2017, 72, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.M. Does regional anaesthesia improve outcome? Br. J. Anaesth. 2015, 115, ii26–ii33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopacz, D.J.; Neal, J.M.; Pollock, J.E. The regional anesthesia “learning curve”. What is the minimum number of epidural and spinal blocks to reach consistency? Reg. Anesth. 1996, 21, 182–190. [Google Scholar]
- Kwak, Y.L.; Lee, C.S.; Park, Y.H.; Hong, Y.W. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension*. Anaesthesia 2002, 57, 9–14. [Google Scholar] [CrossRef]
- Batova, R.; Georgiev, S. Impact of spinal needle design and approach to postdural puncture headache and spinal anesthesia failure in obstetrics. Anaesthesiol. Intensive Ther. 2019, 51, 77–82. [Google Scholar] [CrossRef]
- Makito, K.; Mouri, H.; Matsui, H.; Michihata, N.; Fushimi, K.; Yasunaga, H. Spinal epidural hematoma and abscess after neuraxial anesthesia: A historical cohort study using the Japanese Diagnosis Procedure Combination database. Can. J. Anesth. 2021, 68, 42–52. [Google Scholar] [CrossRef]
- Gaballah, K.; Abdallah, S. Effects of oral premedication with tramadol, pregabalin or clonidine on shivering after spinal anaesthesia in patients undergoing hysteroscopic procedures. Anaesthesiol. Intensive Ther. 2020, 52, 187–196. [Google Scholar] [CrossRef]
- Fettes, P.D.W.; Jansson, J.R.; Wildsmith, J.A.W. Failed spinal anaesthesia: Mechanisms, management, and prevention. Br. J. Anaesth. 2009, 102, 739–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sng, B.L.; Lim, Y.; Sia, A.T.H. An observational prospective cohort study of incidence and characteristics of failed spinal anaesthesia for caesarean section. Int. J. Obstet. Anesth. 2009, 18, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Horlocker, T.T.; Wedel, D.J. Density, specific gravity, and baricity of spinal anesthetic solutions at body temperature. Anesth. Analg. 1993, 76, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Hocking, G.; Wildsmith, J.A.W. Intrathecal drug spread. Br. J. Anaesth. 2004, 93, 568–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gola, W.; Zając, M.; Cugowski, A. Adjuvants in peripheral nerve blocks—The current state of knowledge. Anaesthesiol. Intensive Ther. 2020, 52, 323–329. [Google Scholar] [CrossRef]
- Swain, A.; Nag, D.S.; Sahu, S.; Samaddar, D.P. Adjuvants to local anesthetics: Current understanding and future trends. World J. Clin. Cases 2017, 5, 307–323. [Google Scholar] [CrossRef]
- Mugabure Bujedo, B. Key factors governing spinal cord opioid bioavailability in the management of acute pain. Rev. Soc. Española Dolor 2019, 26, 359. [Google Scholar]
- Parlow, J.L.; Money, P.; Chan, P.S.; Raymond, J.; Milne, B. Addition of opioids alters the density and spread of intrathecal local anesthetics? An in vitro study. Can. J. Anaesth. 1999, 46, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Imbelloni, L.E.; Moreira, A.D.; Gaspar, F.C.; Gouveia, M.A.; Cordeiro, J.A. Assessment of the densities of local anesthetics and their combination with adjuvants: An experimental study. Rev. Bras. Anestesiol. 2009, 59, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.G.; Wissler, R.N. Density of lumbar cerebrospinal fluid in pregnant and nonpregnant humans. Anesthesiology 1996, 85, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, E.; Van Gessel, E.; Fournier, R.; Weber, A.; Gamulin, Z. Cerebrospinal Fluid Density Influences Extent of Plain Bupivacaine Spinal Anesthesia. Anesthesiology 2002, 96, 1325–1330. [Google Scholar] [CrossRef] [Green Version]
- Stienstra, R.; Gielen, M.; Kroon, J.W.; Van Poorten, F. The influence of temperature and speed of injection on the distribution of a solution containing bupivacaine and methylene blue in a spinal canal model. Reg. Anesth. 1990, 15, 6–11. [Google Scholar]
- Patterson, L.; Avery, N.; Chan, P.; Parlow, J.L. The addition of fentanyl does not alter the extent of spread of intrathecal isobaric bupivacaine in clinical practice. Can. J. Anaesth. 2001, 48, 768–772. [Google Scholar] [CrossRef]
- Fettes, P.D.W.; Hocking, G.; Peterson, M.K.; Luck, J.F.; Wildsmith, J.A.W. Comparison of plain and hyperbaric solutions of ropivacaine for spinal anaesthesia. Br. J. Anaesth. 2005, 94, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Imbelloni, L.E.; Gouveia, M.A.; Vieira, E.M.; Cordeiro, J.A. Selective sensory spinal anaesthesia with hypobaric lidocaine for anorectal surgery. Acta Anaesthesiol. Scand. 2008, 52, 1327–1330. [Google Scholar] [CrossRef]
- Dos Santos, M.C.P.; Kawano, E.; Vinagre, R.C.O.; Noé, R.A.M. Avaliação da bupivacaína hipobárica a 0.5% na raquianestesia. Rev. Bras. Anestesiol. 2007, 57, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Bhar, S.; Mukherjee, G. Unilateral versus bilateral spinal anaesthesia in geriatric patients undergoing hemiarthroplasty: A comparative study. Anaesthesiol. Intensive Ther. 2020, 52, 292–296. [Google Scholar] [CrossRef]
- Desai, S.; Lim, Y.; Tan, C.H.; Sia, A.T. A randomised controlled trial of hyperbaric bupivacaine with opioids, injected as either a mixture or sequentially, for spinal anaesthesia for caesarean section. Anaesth. Intensive Care 2010, 38, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Varghese, N.; Venkateswaran, R. Effect of intrathecal dexmedetomidine versus intravenous dexmedetomidine on subarachnoid anesthesia with hyperbaric bupivacaine. J. Anaesthesiol. Clin. Pharmacol. 2020, 36, 381–385. [Google Scholar] [PubMed]
- Araimo Morselli, F.S.M.; Zuccarini, F.; Caporlingua, F.; Scarpa, I.; Imperiale, C.; Caporlingua, A.; De Biase, L.; Tordglione, P. Intrathecal Versus Intravenous Morphine in Minimally Invasive Posterior Lumbar Fusion: A Blinded Randomized Comparative Prospective Study. Spine 2017, 42, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Siddik-Sayyid, S.M.; Aouad, M.T.; Jalbout, M.I.; Zalaket, M.I.; Berzina, C.E.; Baraka, A.S. Intrathecal versus intravenous fentanyl for supplementation of subarachnoid block during cesarean delivery. Anesth. Analg. 2002, 95, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Hare, G.M.T.; Ngan, J.C.S. Density determination of local anaesthetic opioid mixtures for spinal anaesthesia. Can. J. Anaesth. 1998, 45, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Measured Density g/mL (±SD) | Pure LA Density—LA-A Measured Density (g/mL) | Calculated Density (p-Value) | Measured Density—Calculated Density | |
---|---|---|---|---|
CSF | 1.0003 (0.0003) | |||
Fentanyl | 0.99360 (0.00004) | |||
Morphine | 0.99993 (0.00003) | |||
Bupivacaine (Bupi) | 1.02143 (0.00002) | |||
Prilocaine (Prilo) | 1.01867 (0.00009) | |||
7.5 mg Bupi + 25 µg Fentanyl | 1.01513 (0.00053) | 0.00630 * | 1.01447 (0.003) # | 0.00065 |
7.5 mg Bupi + 100 µg Morphine | 1.02020 (0.00017) | 0.00123 * | 1.02009 (0.059) | 0.00011 |
10 mg Bupi + 10 µg Fentanyl | 1.01899 (0.00004) | 0.00244 * | 1.01890 (0.0001) # | 0.00009 |
10 mg Bupi + 100 µg Morphine | 1.02044 (0.00005) | 0.00099 * | 1.02041 (0.065) | 0.00003 |
10 mg Bupi + 100 µg Morphine + 10 µg Fentanyl | 1.01830 (0.00023) | 0.00313 * | 1.01808 (0.015) # | 0.00022 |
15 mg Bupi + 25 µg Fentanyl | 1.01770 (0.00047) | 0.00373 * | 1.01746 (0.144) | 0.00024 |
Measured Density (g/mL) (±SD) | Pure LA Density—LA-A Measured Density (g/mL) | Calculated Density (p-Value) | Measured Density—Calculated Density | |
---|---|---|---|---|
CSF | 1.0003 (0.0003) | |||
Lidocaine (Lido) | 1.00011 (0.00002) | |||
Ropivacaine (Ropi) | 0.99966 (0.00009) | |||
Fentanyl | 0.99360 (0.00004) | |||
Morphine | 0.99993 (0.00003) | |||
7.5 mg Ropi + 25 µg Fentanyl | 0.99824 (0.00011) | 0.00142 * | 0.99814 (0.016) | 0.00010 |
7.5 mg Ropi + 100 µg Morphine | 0.99975 (0.00005) | −0.00009 | 0.99968 (0.001) # | 0.00008 |
15 mg Ropi + 25 µg Fentanyl | 0.99890 (0.00010) | 0.00076 * | 0.99879 (0.007) # | 0.00010 |
15 mg Ropi + 100 µg Morphine | 0.99970 (0.00005) | −0.00004 | 0.99967 (0.11) | 0.00003 |
40 mg Lido + 25 µg Fentanyl | 0.99883 (0.00004) | 0.00128 * | 0.99881 (0.282) | 0.00002 |
40 mg Lido + 100 µg Morphine | 1.00002 (0.00004) | 0.00009 | 1.00010 (0.0001) # | −0.00009 |
60 mg Lido + 25 µg Fentanyl | 0.99915 (0.00006) | 0.00096 * | 0.99918 (0.187) | −0.00003 |
60 mg Lido + 100 µg Morphine | 0.99999 (0.00004) | 0.00012 | 1.00010 (0.00001) # | −0.00011 |
Local Anesthetic | Dose (Volume) | Adjuvant: Dose (Volume) | |||||
---|---|---|---|---|---|---|---|
Isobaric Fentanyl 0.05 mg/mL | 0.1% Morphine | Isobaric Fentanyl + 0.1% Morphine | |||||
0.5% hyperbaric bupivacaine | 7.5 mg (1.5 mL) | 25 µg (0.5 mL) | 2 mL | 100 µg (0.1 mL) | 1.6 mL | - | - |
10 mg (2 mL) | 10 µg (0.2 mL) | 2.2 mL | 100 µg (0.1 mL) | 2.1 mL | 10 µg + 100 µg (0.2 mL) (0.1 mL) | 2.3 mL | |
15 mg (3 mL) | 25 µg (0.5 mL) | 3.5 mL | 100 µg (0.1 mL) | 3.1 mL | - | - | |
0.5% isobaric ropivacaine | 7.5 mg (1.5 mL) | 25 ug (0.5 mL) | 2 mL | 100 µg (0.1 mL) | 1.6 mL | - | - |
15 mg (3 ml) | 25 ug (0.5 mL) | 3.5 mL | 100 µg (0.1 mL) | 3.1 mL | - | - | |
2% hyperbaric prilocaine | 40 mg (2 mL) | 25 ug (0.5 mL) | 2.5 mL | 100 µg (0.1 mL) | 2.1 mL | - | - |
60 mg (3 mL) | 25 ug (0.5 mL) | 3.5 mL | - | - | - | - | |
2% isobaric lidocaine | 40 mg (2 mL) | 25 ug (0.5 mL) | 2.5 mL | 100 µg (0.1 mL) | 2.1 mL | - | - |
60 mg (3 mL) | 25 ug (0.5 mL) | 3.5 mL | 100 µg (0.1 mL) | 3.1 mL | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasinski, T.; Migon, D.; Sporysz, K.; Kamysz, W.; Owczuk, R. The Density of Different Local Anesthetic Solutions, Opioid Adjuvants and Their Clinically Used Combinations: An Experimental Study. Pharmaceuticals 2021, 14, 801. https://doi.org/10.3390/ph14080801
Jasinski T, Migon D, Sporysz K, Kamysz W, Owczuk R. The Density of Different Local Anesthetic Solutions, Opioid Adjuvants and Their Clinically Used Combinations: An Experimental Study. Pharmaceuticals. 2021; 14(8):801. https://doi.org/10.3390/ph14080801
Chicago/Turabian StyleJasinski, Tomasz, Dorian Migon, Krystian Sporysz, Wojciech Kamysz, and Radoslaw Owczuk. 2021. "The Density of Different Local Anesthetic Solutions, Opioid Adjuvants and Their Clinically Used Combinations: An Experimental Study" Pharmaceuticals 14, no. 8: 801. https://doi.org/10.3390/ph14080801
APA StyleJasinski, T., Migon, D., Sporysz, K., Kamysz, W., & Owczuk, R. (2021). The Density of Different Local Anesthetic Solutions, Opioid Adjuvants and Their Clinically Used Combinations: An Experimental Study. Pharmaceuticals, 14(8), 801. https://doi.org/10.3390/ph14080801