A Design of Experiment (DoE) Approach to Model the Yield and Chemical Composition of Ajowan (Trachyspermum ammi L.) Essential Oil Obtained by Microwave-Assisted Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of the MAE Parameters
2.2. Central Composite Design (CCD)
2.3. MAE Optimization and Model Validation
2.4. Comparison of the EO Yield and Chemical Compositions Obtained by MAE and HD
3. Materials and Methods
3.1. Plant Material
3.2. Sample Pre-Treatment
3.3. Microwave-Assisted Extraction (MAE)
3.4. Design of Experiment (DoE)
3.4.1. Screening Design
- EO yield (%), calculated as follows:
- EO density (g/cm3).Determined using an oscillating U-tube density meter (DA-100M, Mettler Toledo, Greifensee, Switzerland) at 20 °C;
- EO refractive index.
3.4.2. Response Surface Methodology (RSM) Design
- EO yield (%), calculated as in the previous section;
- Concentration of the EO marker compounds, namely thymol, p-cymene, γ-terpinene and carvacrol (g/100 g of EO), determined by GC-FID as reported in the Section 3.6.
3.5. GC-MS Analysis
3.6. Thymol Isolation and Identification through NMR Analysis
3.7. Quantification of The Bioactive Markers by Gas Chromatography Coupled with Flame Ionization Detection (GC-FID)
3.8. Hydrodistillation (HD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomar, P.; Malik, C. Botany, Cultivation, Chemical Constituents and Genetic Diversity in Trachyspermum ammi L.: An Aromatic Seed Spice. Int. J. Life Sci. 2014, 3, 114. [Google Scholar] [CrossRef]
- Anilakumar, K.R.; Saritha, V.; Khanum, F.; Bawa, A.S. Ameliorative effect of ajwain extract on hexachlorocyclohexane-induced lipid peroxidation in rat liver. Food Chem. Toxicol. 2009, 47, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Menglan, S.; Fading, P.; Zehui, P.; Watson, M.F.; Cannon, J.F.M.; Holmes-Smith, I.; Kljuykov, I.V.; Phillippe, L.R.; Pimenov, M.G. APIACEAE. In Flora of China. Volume 14: Apiaceae through Ericaceae; Wu, Z., Raven, P.H., Hong, D., Eds.; Science Press: Beijing, China, 2005. [Google Scholar]
- Emami, M.; Nazarinia, M.A.; Rezaeizadeh, H.; Zarshenas, M.M. Standpoints of traditional Persian physicians on geriatric nutrition. J. Evid. Based. Complement. Altern. Med. 2014, 19, 287–291. [Google Scholar] [CrossRef]
- Shirazi, A. Makhzan Al-Adviyah (The Storehouse of Medicaments); Tehran University of Medical Sciences: Theran, Iran, 2009. [Google Scholar]
- Zarshenas, M.M.; Moein, M.; Mohammadi Samani, S.; Petramfar, P. An Overview on Ajwain (Trachyspermum ammi) Pharmacological Effects; Modern and Traditional. J. Nat. Remedies 2014, 14, 98–105. [Google Scholar] [CrossRef]
- Pandey, S.K.; Upadhyay, S.; Tripathi, A.K. Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol. Res. 2009, 105, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-M.; Park, H.-M.; Park, I.-K. Larvicidal Activity of Ajowan (Trachyspermum ammi) and Peru Balsam (Myroxylon pereira) Oils and Blends of Their Constituents against Mosquito, Aedes aegypti, Acute Toxicity on Water Flea, Daphnia magna, and Aqueous Residue. J. Agric. Food Chem. 2012, 60, 5909–5914. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-M.; Jung, C.-S.; Kang, J.; Lee, H.-R.; Kim, S.-W.; Hyun, J.; Park, I.-K. Larvicidal and Acetylcholinesterase Inhibitory Activities of Apiaceae Plant Essential Oils and Their Constituents against Aedes albopictus and Formulation Development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef]
- Seo, S.-M.; Kim, J.; Lee, S.-G.; Shin, C.-H.; Shin, S.-C.; Park, I.-K. Fumigant antitermitic activity of plant essential oils and components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica), caraway (Carum carvi), dill (Anethum graveolens), Geranium (Pelargonium graveolens), and Litsea (Litsea cubeba). J. Agric. Food Chem. 2009, 57, 6596–6602. [Google Scholar] [CrossRef]
- Yeom, H.-J.; Kang, J.S.; Kim, G.-H.; Park, I.-K. Insecticidal and Acetylcholine Esterase Inhibition Activity of Apiaceae Plant Essential Oils and Their Constituents against Adults of German Cockroach (Blattella germanica). J. Agric. Food Chem. 2012, 60, 7194–7203. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, M.K. Fumigant Toxicity of Essential Oils from Some Common Spices against Pulse Beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). J. Oleo Sci. 2008, 57, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Habashi, A.S.; Safaralizadeh, M.H.; Safavi, S.A. Fumigant toxicity of Carum copticum L. oil against Tribolium confusum du Val, Rhyzopertha dominica F. and Oryzaphilus surinamensis L. Munis Entomol. Zool. 2011, 6, 282–289. [Google Scholar]
- Piri, A.; Sahebzadeh, N.; Zibaee, A.; Sendi, J.J.; Shamakhi, L.; Shahriari, M. Toxicity and physiological effects of ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 2020, 256, 127103. [Google Scholar] [CrossRef]
- Baran, A.I.; Jahanghiri, F.; Hajipour, N.; Sparagano, O.A.E.; Norouzi, R.; Moharramnejad, S. In vitro acaricidal activity of essential oil and alcoholic extract of Trachyspermum ammi against Dermanyssus gallinae. Vet. Parasitol. 2020, 278, 109030. [Google Scholar] [CrossRef]
- Höferl, M.; Buchbauer, G.; Jirovetz, L.; Schmidt, E.; Stoyanova, A.; Denkova, Z.; Slavchev, A.; Geissler, M. Correlation of Antimicrobial Activities of Various Essential Oils and Their Main Aromatic Volatile Constituents. J. Essent. Oil Res. 2009, 21, 459–463. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran. J. Microbiol. 2011, 3, 194–200. [Google Scholar]
- Sharifi-Rad, M.; Sharifirad, M.; Sharifi-Rad, R. Antibacterial activity of Trachyspermum copticum leaves extract against resistant bacteria to antibiotics. Phytoscience 2013, 1, 1–9. [Google Scholar] [CrossRef]
- Sharifi-Mood, B.; Shafaghat, M.; Metanat, M.; Sepehri Rad, N. The Inhibitory Effect of Ajowan Essential Oil on Bacterial Growth. Int. J. Infect. 2014, 1, e19394. [Google Scholar] [CrossRef]
- Tariq, M.; Gore, M.; Aruna, K. Antibacterial and synergistic activity of ethanolic ajwain (trachyspermum ammi) extract on ESBL and MBL producing uropathogens. Int. J. Pharm. Pharm. Sci. 2014, 6, 278–284. [Google Scholar]
- Kazemi, M. Chemical Composition, Antimicrobial, Antioxidant and Anti-inflammatory Activity of Carum copticum L. Essential Oil. J. Essent. Oil Bear. Plants 2014, 17, 1040–1045. [Google Scholar] [CrossRef]
- Moein, M.R.; Zomorodian, K.; Pakshir, K.; Yavari, F.; Motamedi, M.; Zarshenas, M.M. Trachyspermum ammi (L.) Sprague: Chemical composition of essential oil and antimicrobial activities of respective fractions. J. Evid. Based Complement. Altern. Med. 2015, 20, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, B.; Manmohan, S.; Singh, S.R.; Singh, R.B. Medicinal uses of trachyspermum ammi: A review. Pharma Res. 2011, 5, 247–258. [Google Scholar]
- Gemeda, N.; Woldeamanuel, Y.; Asrat, D.; Debella, A. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: A potential source of botanical food preservative. Asian Pac. J. Trop. Biomed. 2014, 4, S373–S381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitali, L.A.; Beghelli, D.; Biapa Nya, P.C.; Bistoni, O.; Cappellacci, L.; Damiano, S.; Lupidi, G.; Maggi, F.; Orsomando, G.; Papa, F.; et al. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 2016, 9, 775–786. [Google Scholar] [CrossRef]
- Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol bioactivity: A review focusing on practical applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Shapiro, S.; Meier, A.; Guggenheim, B. The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol. Immunol. 1994, 9, 202–208. [Google Scholar] [CrossRef]
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckle, J. How Essential Oils Work. In Clinical Aromatherapy; Buckle, J., Third, E., Eds.; Churchill Livingstone: St. Louis, MI, USA, 2015; pp. 15–36. ISBN 978-0-7020-5440-2. [Google Scholar]
- Kokoska, L.; Kloucek, P.; Novy, O.L. Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Curr. Med. Chem. 2019, 26, 5501–5541. [Google Scholar] [CrossRef] [PubMed]
- FDA. Substances Added to Food (Formerly EAFUS). Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&sort=Sortterm&order=ASC&startrow=1&type=basic&search=thymol (accessed on 15 November 2020).
- Valero, D.; Valverde, J.M.; Martínez-Romero, D.; Guillén, F.; Castillo, S.; Serrano, M. The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety and functional properties of table grapes. Postharvest Biol. Technol. 2006, 41, 317–327. [Google Scholar] [CrossRef]
- Tatlisu, N.B.; Yilmaz, M.T.; Arici, M. Fabrication and characterization of thymol-loaded nanofiber mats as a novel antimould surface material for coating cheese surface. Food Packag. Shelf Life 2019, 21, 100359. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Deng, H.; Guo, Y.; Xue, J. Gelatin films incorporated with thymol nanoemulsions: Physical properties and antimicrobial activities. Int. J. Biol. Macromol. 2020, 150, 161–168. [Google Scholar] [CrossRef]
- Tabari, M.A.; Youssefi, M.R.; Maggi, F.; Benelli, G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet. Parasitol. 2017, 245, 86–91. [Google Scholar] [CrossRef]
- Tak, J.-H.; Isman, M.B. Acaricidal and repellent activity of plant essential oil-derived terpenes and the effect of binary mixtures against Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 2017, 108, 786–792. [Google Scholar] [CrossRef]
- Matos, R.S.; Daemon, E.; de Oliveira Monteiro, C.M.; Sampieri, B.R.; Marchesini, P.B.C.; Delmonte, C.; Camargo-Mathias, M.I. Thymol action on cells and tissues of the synganglia and salivary glands of Rhipicephalus sanguineus sensu lato females (Acari: Ixodidae). Ticks Tick. Borne. Dis. 2019, 10, 314–320. [Google Scholar] [CrossRef]
- Mondet, F.; Goodwin, M.; Mercer, A. Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. J. Comp. Physiol. A 2011, 197, 1055. [Google Scholar] [CrossRef]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.; Sut, S.; Dall’Acqua, S.; Benelli, G.; Maggi, F. Efficacy of Two Monoterpenoids, Carvacrol and Thymol, and Their Combinations against Eggs and Larvae of the West Nile Vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwaurah, P.W.; Kumar, S.; Kumar, N.; Attkan, A.K.; Panghal, A.; Singh, V.K.; Garg, M.K. Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Destandau, E.; Michel, T.; Elfakir, C. Microwave-assisted Extraction. In Natural Product Extraction: Principles and Applications; The Royal Society of Chemistry: London, UK, 2013; pp. 113–156. ISBN 978-1-84973-606-0. [Google Scholar]
- Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of microwave extraction. In Microwave-Assisted Extraction for Bioactive Compounds. Food Engineering Series; Chemat, F., Cravotto, G., Eds.; Springer: Boston, MA, USA, 2012; pp. 15–52. [Google Scholar]
- Delgado-Ospina, J.; Tovar, C.D.G.; Flores, J.C.M.; Orozco, M.S.S. Relationship between refractive index and thymol concentration in essential oils of lippia origanoides kunth. Chil. J. Agric. Anim. Sci. 2016, 32, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Dwivedy, A.K.; Dubey, N.K. Trachyspermum ammi L. essential oil as plant based preservative in food system. Ind. Crops Prod. 2015, 69, 104–109. [Google Scholar] [CrossRef]
- Benelli, G.; Rizzo, R.; Zeni, V.; Govigli, A.; Samková, A.; Sinacori, M.; Lo Verde, G.; Pavela, R.; Cappellacci, L.; Petrelli, R.; et al. Carlina acaulis and Trachyspermum ammi essential oils formulated in protein baits are highly toxic and reduce aggressiveness in the medfly, Ceratitis capitata. Ind. Crops Prod. 2021, 161, 113191. [Google Scholar] [CrossRef]
- Fiorini, D.; Scortichini, S.; Bonacucina, G.; Greco, N.G.; Mazzara, E.; Petrelli, R.; Torresi, J.; Maggi, F.; Cespi, M. Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design. Ind. Crops Prod. 2020, 154, 112688. [Google Scholar] [CrossRef]
- Chen, S.S.; Spiro, M. Kinetics of microwave extraction of rosemary leaves in hexane, ethanol and a hexane + ethanol mixture. Flavour Fragr. J. 1995, 10, 101–112. [Google Scholar] [CrossRef]
- Chemat, S.; Aït-Amar, H.; Lagha, A.; Esveld, D.C. Microwave-assisted extraction kinetics of terpenes from caraway seeds. Chem. Eng. Process. Process Intensif. 2005, 44, 1320–1326. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, M.; Chemat, F.; Smadja, J. An original solvent free microwave extraction of essential oil from spices. Flavour Fragr. J. 2004, 19, 134–138. [Google Scholar] [CrossRef]
- Lewis, G.A.; Mathie, D.; Phan-Tan-Luu, R. Factor Influence Studies. In Pharmaceutical Experimental Design; Marcel Dekker, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Lewis, G.A.; Mathie, D.; Phan-Tan-Luu, R. Response Surface Methodology. In Pharmaceutical Experimental Design; Marcel Dekker, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Forster, M.R. Key concepts in model selection: Performance and generalizability. J. Math. Psychol. 2000, 44, 205–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Simonoff, J.S. Model Building. In Handbook of Regression Analysis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lewis, G.A.; Mathie, D.; Phan-Tan-Luu, R. Optimization. In Pharmaceutical Experimental Design; Marcel Dekker, Inc.: New York, NY, USA, 1999. [Google Scholar]
- What Are Individual Desirability and Composite Desirability? Available online: https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/using-fitted-models/supporting-topics/response-optimization/what-are-individual-desirability-and-composite-desirability/ (accessed on 3 March 2021).
- Minitab 18 Support Types of Confidence Intervals Used for Prediction. Available online: https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/using-fitted-models/supporting-topics/prediction/confidence-intervals-for-prediction/ (accessed on 3 March 2021).
- Pavela, R.; Benelli, G.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cianfaglione, K.; Bajalan, I.; Morshedloo, M.R.; Lupidi, G.; Romano, D.; et al. Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind. Crops Prod. 2019, 129, 631–640. [Google Scholar] [CrossRef]
Response | Best Model a | Mallow’s Cp | p-Value Regr b | p-Value Lof b | |||
---|---|---|---|---|---|---|---|
Yield (%) | Y = 5.92 − 7.15MP + 0.011ET + 3.49MP2 | 0.940 | 0.914 | 0.813 | 2.83 | *** | ns |
Thymol (g/100 g) | Y = 126.3 − 99.7MP − 0.063ET + 46.3MP2 | 0.914 | 0.878 | 0.807 | 2.43 | *** | ns |
γ-Terpinene (g/100 g) | Y = −16.1 + 54.7MP − 0.058ET − 28.55MP2 + 0.075MP * ET | 0.880 | 0.799 | 0.675 | 4.09 | ** | ns |
p-Cymene (g/100 g) | Y = −25.19 + 55.3MP + 0.125ET − 25.12MP2 − 0.0004ET2 | 0.965 | 0.942 | 0.862 | 4.39 | *** | ns |
Carvacrol (g/100 g) | Y = −0.143 + 0.536MP + 0.004ET − 0.004MP * ET | 0.387 | 0.125 | <0.001 | 2.14 | ns | ns |
Extraction | MAE Conditions | Composite Desirability | Responses Optimized with Desirability | Desirability Function | Other Responses | Predicted Value | 95% Interval of Prediction | |
---|---|---|---|---|---|---|---|---|
Power (W/g) | Time (min) | |||||||
EOPT | 1.37 | 126.4 | 0.88 | Yield | Maximize | 4.0 | 3.7–4.3 | |
Thymol | Maximize | 68.7 | 66.3–71.1 | |||||
γ-terpinene | 10.8 | 9.3–12.4 | ||||||
p-cymene | 13.2 | 12.3–14.0 | ||||||
EV1 | 1.37 | 162.4 | 1 | Yield | Maximize | 4.4 | 4.1–4.7 | |
Thymol | 66.4 | 63.9–69.0 | ||||||
γ-terpinene | 12.5 | 10.5–14.5 | ||||||
p-cymene | 13.7 | 12.7–14.7 | ||||||
EV2 | 1.17 | 162.4 | 0.98 | Yield | Maximize | 4.1 | 3.8–4.3 | |
Thymol | Minimize | 62.7 | 60.5–64.9 | |||||
γ-terpinene | 13.6 | 12.2–15.1 | ||||||
p-cymene | 15.5 | 14.6–16.3 |
Run | Uncoded Variables a | Coded Variables a | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MP (W/g) | ET (min) | WSR (%) | PMT (h) | PMP | EC (No) | MP | ET | WSR | PMT | PMP | EC | |
1 | 0.8 | 50 | 4 | 0 | N | 1 | −1 | −1 | −1 | −1 | −1 | −1 |
2 | 1.2 | 50 | 4 | 0 | Y | 1 | +1 | −1 | −1 | −1 | +1 | −1 |
3 | 0.8 | 120 | 4 | 0 | Y | 2 | −1 | +1 | −1 | −1 | +1 | +1 |
4 | 1.2 | 120 | 4 | 0 | N | 2 | +1 | +1 | −1 | −1 | −1 | +1 |
5 | 0.8 | 50 | 12 | 0 | Y | 2 | −1 | −1 | +1 | −1 | +1 | +1 |
6 | 1.2 | 50 | 12 | 0 | N | 2 | +1 | −1 | +1 | −1 | −1 | +1 |
7 | 0.8 | 120 | 12 | 0 | N | 1 | −1 | +1 | +1 | −1 | −1 | −1 |
8 | 1.2 | 120 | 12 | 0 | Y | 1 | +1 | +1 | +1 | −1 | +1 | −1 |
9 | 0.8 | 50 | 4 | 4 | N | 2 | −1 | −1 | −1 | +1 | −1 | +1 |
10 | 1.2 | 50 | 4 | 4 | Y | 2 | +1 | −1 | −1 | +1 | +1 | +1 |
11 | 0.8 | 120 | 4 | 4 | Y | 1 | −1 | +1 | −1 | +1 | +1 | −1 |
12 | 1.2 | 120 | 4 | 4 | N | 1 | +1 | +1 | −1 | +1 | −1 | −1 |
13 | 0.8 | 50 | 12 | 4 | Y | 1 | −1 | −1 | +1 | +1 | +1 | −1 |
14 | 1.2 | 50 | 12 | 4 | N | 1 | +1 | −1 | +1 | +1 | −1 | −1 |
15 | 0.8 | 120 | 12 | 4 | N | 2 | −1 | +1 | +1 | +1 | −1 | +1 |
16 | 1.2 | 120 | 12 | 4 | Y | 2 | +1 | +1 | +1 | +1 | +1 | +1 |
Run | Point Type a | Uncoded Variables b | Coded Variables b | ||
---|---|---|---|---|---|
ET (min) | MP (W/g) | ET | MP | ||
1 | F | 90 | 1 | −1 | −1 |
2 | F | 90 | 1.31 | −1 | 1 |
3 | F | 150 | 1 | 1 | −1 |
4 | F | 150 | 1.31 | 1 | 1 |
5 | A | 120 | 0.94 | 0 | −1.41421 |
6 | A | 120 | 1.37 | 0 | 1.41421 |
7 | A | 78 | 1.155 | −1.41421 | 0 |
8 | A | 162 | 1.155 | 1.41421 | 0 |
9 | C | 120 | 1.155 | 0 | 0 |
10 | C | 120 | 1.155 | 0 | 0 |
11 | C | 120 | 1.155 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzara, E.; Scortichini, S.; Fiorini, D.; Maggi, F.; Petrelli, R.; Cappellacci, L.; Morgese, G.; Morshedloo, M.R.; Palmieri, G.F.; Cespi, M. A Design of Experiment (DoE) Approach to Model the Yield and Chemical Composition of Ajowan (Trachyspermum ammi L.) Essential Oil Obtained by Microwave-Assisted Extraction. Pharmaceuticals 2021, 14, 816. https://doi.org/10.3390/ph14080816
Mazzara E, Scortichini S, Fiorini D, Maggi F, Petrelli R, Cappellacci L, Morgese G, Morshedloo MR, Palmieri GF, Cespi M. A Design of Experiment (DoE) Approach to Model the Yield and Chemical Composition of Ajowan (Trachyspermum ammi L.) Essential Oil Obtained by Microwave-Assisted Extraction. Pharmaceuticals. 2021; 14(8):816. https://doi.org/10.3390/ph14080816
Chicago/Turabian StyleMazzara, Eugenia, Serena Scortichini, Dennis Fiorini, Filippo Maggi, Riccardo Petrelli, Loredana Cappellacci, Giuseppe Morgese, Mohammad Reza Morshedloo, Giovanni Filippo Palmieri, and Marco Cespi. 2021. "A Design of Experiment (DoE) Approach to Model the Yield and Chemical Composition of Ajowan (Trachyspermum ammi L.) Essential Oil Obtained by Microwave-Assisted Extraction" Pharmaceuticals 14, no. 8: 816. https://doi.org/10.3390/ph14080816
APA StyleMazzara, E., Scortichini, S., Fiorini, D., Maggi, F., Petrelli, R., Cappellacci, L., Morgese, G., Morshedloo, M. R., Palmieri, G. F., & Cespi, M. (2021). A Design of Experiment (DoE) Approach to Model the Yield and Chemical Composition of Ajowan (Trachyspermum ammi L.) Essential Oil Obtained by Microwave-Assisted Extraction. Pharmaceuticals, 14(8), 816. https://doi.org/10.3390/ph14080816