Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models
Abstract
:1. Introduction
2. Results and Discussion
2.1. Choline Salicylate Permeation through Membranes
2.2. Stability of Eye Drops
2.3. Chromatographic Purity of Eye Drops
2.4. The Impact of Tested Eye Drops on SIRC Cell Line Viability
2.5. Analysis of the Stability of HA Solutions and CS with HA Interactions by Size-Exclusion Chromatography
3. Materials and Methods
3.1. Materials
3.2. Equipment and HPLC Conditions
3.2.1. HPLC-UV
3.2.2. SEC-UV/RID
3.2.3. HPLC-MS/MS
3.2.4. Other Equipment
3.3. Methods
3.3.1. Determination of CS in Eye Drops Using UV and HPLC-UV Methods
3.3.2. Chemical Purity by HPLC-UV and HPLC-MS/MS
3.3.3. Analysis of Eye Drops’ pH, Osmolarity, and Viscosity
3.3.4. Sterility Test of Eye Drops
3.3.5. Procedure for the Preparation of CS and HA Eye Drops
3.3.6. Penetration through a Hydrophilic Membrane
3.3.7. Penetration through a Porcine Cornea
3.3.8. Eye Drop Stability
3.3.9. Cytotoxicity of Tested Eye Drops Using the Modified STE Assay
3.3.10. Analysis of the Stability of HA Solutions and CS and HA Interactions by Size-Exclusion Chromatography
3.3.11. Analysis of CS and HA Interactions Using FTIR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, H.; Amaral, M.H.; Lobão, P.; Sousa Lobo, J.M. Applications of Poloxamers in Ophthalmic Pharmaceutical Formulations: An Overview. Expert Opin. Drug Deliv. 2013, 10, 1223–1237. [Google Scholar] [CrossRef]
- Salzillo, R.; Schiraldi, C.; Corsuto, L.; D’Agostino, A.; Filosa, R.; De Rosa, M.; La Gatta, A. Optimization of Hyaluronan-Based Eye Drop Formulations. Carbohydr. Polym. 2016, 153, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Guillaumie, F.; Furrer, P.; Felt-Baeyens, O.; Fuhlendorff, B.L.; Nymand, S.; Westh, P.; Gurny, R.; Schwach-Abdellaoui, K. Comparative Studies of Various Hyaluronic Acids Produced by Microbial Fermentation for Potential Topical Ophthalmic Applications. J. Biomed. Mater. Res. A 2010, 92, 1421–1430. [Google Scholar] [CrossRef]
- Kotla, N.G.; Bonam, S.R.; Rasala, S.; Wankar, J.; Bohara, R.A.; Bayry, J.; Rochev, Y.; Pandit, A. Recent Advances and Prospects of Hyaluronan as a Multifunctional Therapeutic System. J. Control Release 2021, 336, 598–620. [Google Scholar] [CrossRef] [PubMed]
- Dalla Pietà, A.; Carpanese, D.; Grigoletto, A.; Tosi, A.; Dalla Santa, S.; Pedersen, G.K.; Christensen, D.; Meléndez-Alafort, L.; Barbieri, V.; De Benedictis, P.; et al. Hyaluronan Is a Natural and Effective Immunological Adjuvant for Protein-Based Vaccines. Cell Mol. Immunol. 2021, 18, 1197–1210. [Google Scholar] [CrossRef]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef] [PubMed]
- Passi, A.; Vigetti, D. Hyaluronan: Structure, Metabolism, and Biological Properties. In Extracellular Sugar-Based Biopolymers Matrices; Cohen, E., Merzendorfer, H., Eds.; Biologically-Inspired Systems; Springer International Publishing: Cham, Switzerland, 2019; pp. 155–186. ISBN 978-3-030-12919-4. [Google Scholar]
- Fallacara, A.; Vertuani, S.; Panozzo, G.; Pecorelli, A.; Valacchi, G.; Manfredini, S. Novel Artificial Tears Containing Cross-Linked Hyaluronic Acid: An In Vitro Re-Epithelialization Study. Molecules 2017, 22, 2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front. Vet. Sci. 2019, 6, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, J.; Deng, Y.; Tian, B.; Wang, B.; Sun, Y.; Huang, H.; Chen, L.; Ling, S.; Yuan, J. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells. J. Ophthalmol. 2016, 2016, e6538051. [Google Scholar] [CrossRef] [Green Version]
- Schanté, C.E.; Zuber, G.; Herlin, C.; Vandamme, T.F. Chemical Modifications of Hyaluronic Acid for the Synthesis of Derivatives for a Broad Range of Biomedical Applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Theocharis, D.A.; Skandalis, S.S.; Noulas, A.V.; Papageorgakopoulou, N.; Theocharis, A.D.; Karamanos, N.K. Hyaluronan and Chondroitin Sulfate Proteoglycans in the Supramolecular Organization of the Mammalian Vitreous Body. Connect. Tissue Res. 2008, 49, 124–128. [Google Scholar] [CrossRef]
- Laffleur, F.; Dachs, S. Development of Novel Mucoadhesive Hyaluronic Acid Derivate as Lubricant for the Treatment of Dry Eye Syndrome. Ther. Deliv. 2015, 6, 1211–1219. [Google Scholar] [CrossRef]
- Posarelli, C.; Passani, A.; Del Re, M.; Fogli, S.; Toro, M.D.; Ferreras, A.; Figus, M. Cross-Linked Hyaluronic Acid as Tear Film Substitute. J. Ocul. Pharmacol. Ther. 2019, 35, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, G.A.; Eftimov, P.; Yokoi, N. Contribution of Mucins towards the Physical Properties of the Tear Film: A Modern Update. Int. J. Mol. Sci 2019, 20, 6132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftimov, P.; Yokoi, N.; Melo, A.M.; Daull, P.; Georgiev, G.A. Interactions of Meibum and Tears with Mucomimetic Polymers: A Hint towards the Interplay between the Layers of the Tear Film. Int. J. Mol. Sci. 2021, 22, 2747. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A.; Yokoi, N.; Ivanova, S.; Dimitrov, T.; Andreev, K.; Krastev, R.; Lalchev, Z. Surface Chemistry Study of the Interactions of Hyaluronic Acid and Benzalkonium Chloride with Meibomian and Corneal Cell Lipids. Soft Matter. 2013, 9, 10841–10856. [Google Scholar] [CrossRef]
- Kaya, S.; Schmidl, D.; Schmetterer, L.; Witkowska, K.J.; Unterhuber, A.; dos Santos, V.A.; Baar, C.; Garhöfer, G.; Werkmeister, R.M. Effect of Hyaluronic Acid on Tear Film Thickness as Assessed with Ultra-High Resolution Optical Coherence Tomography. Acta Ophthalmol. 2015, 93, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Szegedi, S.; Scheschy, U.; Schmidl, D.; Aranha dos Santos, V.; Stegmann, H.; Adzhemian, N.; Fondi, K.; Bata, A.M.; Werkmeister, R.M.; Couderc, C.; et al. Effect of Single Instillation of Two Hyaluronic Acid-Based Topical Lubricants on Tear Film Thickness in Patients with Dry Eye Syndrome. J. Ocul. Pharmacol. Ther. 2018, 34, 605–611. [Google Scholar] [CrossRef]
- Li, Y.; Sang, X.; Yang, L.; Wang, X.-R.; Liu, J.-H.; He, X.-J.; Liu, Y.; Lu, X.-H.; Wang, Z.-C. Low Concentration of Sodium Hyaluronate Temporarily Elevates the Tear Film Lipid Layer Thickness in Dry Eye Patients with Lipid Deficiency. Int. J. Ophthalmol. 2018, 11, 389–394. [Google Scholar] [CrossRef]
- Albano, G.D.; Bonanno, A.; Cavalieri, L.; Ingrassia, E.; Di Sano, C.; Siena, L.; Riccobono, L.; Gagliardo, R.; Profita, M. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells. Mediators Inflamm. 2016, 2016, e8727289. [Google Scholar] [CrossRef] [Green Version]
- Hybiak, J.; Broniarek, I.; Kiryczyński, G.; Los, L.D.; Rosik, J.; Machaj, F.; Sławiński, H.; Jankowska, K.; Urasińska, E. Aspirin and Its Pleiotropic Application. Eur J. Pharmacol. 2020, 866, 172762. [Google Scholar] [CrossRef]
- Yazıcı, A.; Sarı, E.; Ayhan, E.; Şahin, G.; Tıskaoğlu, N.S.; Gürbüzer, T.; Kurt, H.; Ermiş, S.S. The Effect of Low-Dose Aspirin on Dry Eye Parameters and Ocular Surface Disease Index Questionnaire. J. Ocul. Pharmacol 2018, 34, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Thiermeier, N.; Lämmer, R.; Mardin, C.; Hohberger, B. Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression. Biology 2021, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Alsmman, A.H.; Mostafa, E.M.; Mounir, A. Combined Argon Laser and Low Dose Acetylsalicylic Acid in Treatment of Acute Central Serous Chorioretinopathy. Med. Hypothesis Discov. Innov. Ophthalmol. 2018, 7, 126–132. [Google Scholar]
- Wróblewska, K.B.; Plewa, S.; Długaszewska, J.; Froelich, A.; Muszalska-Kolos, I. Design and Evaluation of Pharmaceutical Availability, Stability and Quality of Modified Viscosity Eye Drops with Choline Salicylate. Eur. J. Pharm. Sci. 2021, 159, 105725. [Google Scholar] [CrossRef]
- Wroblewska, K.; Kucinska, M.; Murias, M.; Lulek, J. Characterization of New Eye Drops with Choline Salicylate and Assessment of Their Irritancy by in Vitro Short Time Exposure Tests. Saudi Pharm. J. 2015, 23, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Bothner, H.; Waaler, T.; Wik, O. Limiting Viscosity Number and Weight Average Molecular Weight of Hyaluronate Samples Produced by Heat Degradation. Int. J. Biol. Macromol. 1988, 10, 287–291. [Google Scholar] [CrossRef]
- de Melo, B.A.G.; Santana, M.H.A. Structural Modifications and Solution Behavior of Hyaluronic Acid Degraded with High PH and Temperature. Appl. Biochem. Biotechnol. 2019, 189, 424–436. [Google Scholar] [CrossRef]
- Mondek, J.; Kalina, M.; Simulescu, V.; Pekař, M. Thermal Degradation of High Molar Mass Hyaluronan in Solution and in Powder; Comparison with BSA. Polym. Degrad. Stab. 2015, 120, 107–113. [Google Scholar] [CrossRef]
- Szabó, A.; Szabó, B.; Balogh, E.; Zelkó, R.; Antal, I. Structural Elucidation of Hyaluronic Acid Gels after Heat Sterilisation. Polym Test. 2013, 32, 1322–1325. [Google Scholar] [CrossRef]
- Salamanca, C.H.; Barrera-Ocampo, A.; Lasso, J.C.; Camacho, N.; Yarce, C.J. Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms. Pharmaceutics 2018, 10, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mun, E.A.; Morrison, P.W.J.; Williams, A.C.; Khutoryanskiy, V.V. On the Barrier Properties of the Cornea: A Microscopy Study of the Penetration of Fluorescently Labeled Nanoparticles, Polymers, and Sodium Fluorescein. Mol. Pharm. 2014, 11, 3556–3564. [Google Scholar] [CrossRef]
- Gote, V.; Sikder, S.; Sicotte, J.; Pal, D. Ocular Drug Delivery: Present Innovations and Future Challenges. J. Pharmacol. Exp. Ther. 2019, 370, 602–624. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.R.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front. Bioeng Biotechnol. 2020, 8, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loch, C.; Zakelj, S.; Kristl, A.; Nagel, S.; Guthoff, R.; Weitschies, W.; Seidlitz, A. Determination of Permeability Coefficients of Ophthalmic Drugs through Different Layers of Porcine, Rabbit and Bovine Eyes. Eur J. Pharm. Sci. 2012, 47, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Suri, R.; Beg, S.; Kohli, K. Target Strategies for Drug Delivery Bypassing Ocular Barriers. J. Drug Deliv. Sci. Technol. 2020, 55, 101389. [Google Scholar] [CrossRef]
- Farmakopea Polska, XIIth Ed. (Polish Pharmacopoeia); Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych: Warszawa, Poland, 2020.
- Wróblewska, K.B.; Plewa, S.; Dereziński, P.; Muszalska-Kolos, I. Choline Salicylate Analysis: Chemical Stability and Degradation Product Identification. Molecules 2020, 25, 51. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD Guidelines for the Testing of Chemicals, Section 4 Test No. 491: Short Time Exposure In Vitro Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and Ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage; OECD Publishing: Paris, France, 2018; ISBN 978-92-64-24243-2. [Google Scholar]
- Takahashi, Y.; Koike, M.; Honda, H.; Ito, Y.; Sakaguchi, H.; Suzuki, H.; Nishiyama, N. Development of the Short Time Exposure (STE) Test: An in Vitro Eye Irritation Test Using SIRC Cells. Toxicol. In Vitro 2008, 22, 760–770. [Google Scholar] [CrossRef]
- Abdelkader, H.; Pierscionek, B.; Carew, M.; Wu, Z.; Alany, R.G. Critical Appraisal of Alternative Irritation Models: Three Decades of Testing Ophthalmic Pharmaceuticals. Br. Med. Bull. 2015, 113, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Ayaki, M.; Iwasawa, A.; Niwano, Y. Comparative Assessment of the Cytotoxicity of Six Anti-Inflammatory Eyedrops in Four Cultured Ocular Surface Cell Lines, as Determined by Cell Viability Scores. Clin. Ophthalmol. 2012, 6, 1879–1884. [Google Scholar] [CrossRef] [Green Version]
- Ayaki, M.; Iwasawa, A. Cytotoxicity of Prostaglandin Analog Eye Drops Preserved with Benzalkonium Chloride in Multiple Corneoconjunctival Cell Lines. Clin. Ophthalmol. 2010, 4, 919–924. [Google Scholar] [CrossRef] [Green Version]
- Dutot, M.; Pouzaud, F.; Larosche, I.; Brignole-Baudouin, F.; Warnet, J.-M.; Rat, P. Fluoroquinolone Eye Drop–Induced Cytotoxicity: Role of Preservative in P2X7 Cell Death Receptor Activation and Apoptosis. Invest. Ophthalmol. Vis. Sci. 2006, 47, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Kašparová, J.; Arnoldová, K.; Korecká, L.; Česlová, L. Determination of Hyaluronic Acid in Pharmaceutical Products by Spectrophotometry and HPLC Coupled to Fluorescence or Mass Spectrometric Detection. Sci. Pap. Univ. Pardubic. Ser. A 2018, 24, 39–47. [Google Scholar]
- Cleaver, G. SEC Analysis of Hyaluronic Acid, Application Note. Available online: https://www.agilent.com/cs/library/applications/5991-5787EN.pdf (accessed on 9 February 2021).
- European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019.
- Ates, G.; Vanhaecke, T.; Rogiers, V.; Rodrigues, R.M. Assaying Cellular Viability Using the Neutral Red Uptake Assay. In Cell Viability Assays: Methods and Protocols; Gilbert, D.F., Friedrich, O., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; pp. 19–26. ISBN 978-1-4939-6960-9. [Google Scholar]
Kinetic Model | Equation | Kinetic Parameter | -r |
---|---|---|---|
Zero-order | k = (4.50 ± 0.53)·10−2, mg·min−1 | 0.9949 | |
First-order | k = (5.22 ± 1.09)·10−3, min−1 | 0.9840 | |
Higuchi | KH = (9.42 ± 1.98)·10−1, min−1/2 | 0.9837 | |
Korsmeyer–Peppas | kr = (8.40 ± 0.43)·10−3, min−n, n = 0.80 | 0.9869 |
Solution | Time | Donor Chamber | Porcine Cornea | ||
---|---|---|---|---|---|
mg | % | mg | % | ||
CS (20.4 mg/mL) with HA (0.4%) | 5 min | 17.29 ± 0.25 | 84.8 ± 1.2 | 1.60 ± 0.04 | 7.8 ± 0.2 |
3 h | 16.67 ± 0.01 | 81.7 ± 0.1 | 3.74 ± 0.05 | 18.3 ± 0.2 |
Package | Time, Months | Determined Concentration, % | Percentage of Declared Value, % | pH | Viscosity, mPa·s | Osmolarity, mOsm/L |
---|---|---|---|---|---|---|
Preparation I | ||||||
Bottle | 0 | 2.12 ± 0.09 | 100.0 ± 4.2 | 7.41 ± 0.05 | 9.56 ± 0.06 | 314 ± 2 |
1 | 2.09 ± 0.08 | 98.6 ± 3.8 | 7.41 ± 0.03 | Nd | 312 ± 1 | |
2 | 2.07 ± 0.05 | 98.5 ± 2.4 | 7.41 ± 0.03 | Nd | 313 ± 1 | |
3 | 2.10 ± 0.06 | 96.5 ± 2.8 | 7.40 ± 0.01 | 9.38 ± 0.04 | 311 ± 1 | |
4 | 2.00 ± 0.04 | 96.1 ± 1.9 | 7.41 ± 0.07 | Nd | 312 ± 1 | |
5 | 2.00 ± 0.08 | 96.5 ± 3.8 | 7.40 ± 0.01 | Nd | 311 ± 2 | |
6 | 2.14 ± 0.11 | 98.5 ± 5.2 | 7.41 ± 0.08 | 9.24 ± 0.05 | 312 ± 2 | |
Minims | 0 | 2.12 ± 0.09 | 100.0 ± 4.2 | 7.41 ± 0.05 | 9.56 ± 0.06 | 314 ± 2 |
1 | 2.13 ± 0.04 | 100.5 ± 1.9 | 7.52 ± 0.02 | Nd | 313 ± 2 | |
2 | 2.18 ± 0.05 | 102.8 ± 2.4 | 7.63 ± 0.05 | Nd | 313 ± 2 | |
3 | 2.34 ± 0.09 | 110.4 ± 4.2 | 7.67 ± 0.03 | 7.45 ± 0.02 | 309 ± 2 | |
Preparation II | ||||||
Bottle | 0 | 2.01 ± 0.04 | 100.0 ± 2.0 | 7.80 ± 0.05 | 9.93 ± 0.02 | 298 ± 1 |
6 | 2.01 ± 0.04 | 100.0 ± 2.0 | 7.61 ± 0.05 | 6.91 ± 0.06 | 320 ± 1 | |
Minims | 0 | 2.01 ± 0.04 | 100.0 ± 2.0 | 7.80 ± 0.05 | 9.93 ± 0.01 | 298 ± 1 |
3 | 2.04 ± 0.06 | 101.5 ± 3.0 | 7.65 ± 0.03 | Nd | 300 ± 2 | |
6 | 2.32 ± 0.01 | 115.4 ± 0.5 | 7.50 ± 0.05 | 6.41 ± 0.05 | 298 ± 1 |
Time, Months | Sample | Sample Volume, mL | Direct Inoculation | Membrane Filtration | ||
---|---|---|---|---|---|---|
TSB | TG | TSB | TG | |||
0 | 1 | Whole content—1 mL | No growth | No growth | No growth | No growth |
2 | Whole content—1 mL | No growth | No growth | No growth | No growth | |
3 | Half content—0.5 mL | No growth | No growth | No growth | No growth | |
3 | 1 | Whole content—1 mL | Growth | No growth | No growth | No growth |
2 | Whole content –1 mL | No growth | No growth | No growth | No growth | |
3 | Half content—0.5 mL | No growth | No growth | No growth | No growth |
Package | Time, Months | Determined Concentration, % | Percentage of Declared Value, % | pH | Viscosity, mPa·s | Osmolarity, mOsm/L |
---|---|---|---|---|---|---|
Preparation I—controlled conditions (25 °C/60% RH) | ||||||
Bottle | 0 | 2.00 ± 0.07 | 100.0 ± 3.5 | 7.41 ± 0.05 | 9.56 ± 0.06 | 314 ± 2 |
3 | 2.01 ± 0.01 | 100.5 ± 0.5 | 7.39 ± 0.03 | Nd | 314 ± 1 | |
6 | 1.96 ± 0.03 | 98.0 ± 1.5 | 7.21 ± 0.02 | 9.35 ± 0.03 | 308 ± 2 | |
9 | 1.97 ± 0.01 | 98.5 ± 0.5 | 7.33 ± 0.05 | Nd | 310 ± 3 | |
12 | 2.03 ± 0.01 | 101.5 ± 0.5 | 6.99 ± 0.05 | 9.07 ± 0.07 | 311 ± 1 | |
Minims | 0 | 2.00 ± 0.07 | 100.0 ± 3.5 | 7.41 ± 0.05 | 9.56 ± 0.06 | 314 ± 2 |
3 | 2.04 ± 0.01 | 102.0 ± 0.5 | 7.35 ± 0.04 | Nd | 310 ± 1 | |
6 | 2.07 ± 0.01 | 102.5 ± 0.5 | 7.29 ± 0.02 | 8.52 ± 0.05 | 309 ± 1 | |
9 | 2.02 ± 0.04 | 101.0 ± 2.0 | 7.18 ± 0.03 | Nd | 297 ± 3 | |
12 | 2.07 ± 0.12 | 103.5 ± 6.0 | 7.20 ± 0.05 | 7.75 ± 0.08 | 311 ± 2 | |
Preparation I—uncontrolled conditions (2–8 °C) | ||||||
Minims | 0 | 2.00 ± 0.07 | 100.0 ± 3.5 | 7.41 ± 0.05 | 9.56 ± 0.01 | 314 ± 2 |
3 | 2.07 ± 0.02 | 103.5 ± 1.0 | 7.44 ± 0.05 | Nd | 312 ± 1 | |
6 | 2.08 ± 0.02 | 104.0 ± 1.0 | 7.33 ± 0.03 | 9.43 ± 0.04 | 305 ± 2 | |
9 | 2.07 ± 0.02 | 103.5 ± 1.0 | 7.39 ± 0.04 | Nd | 311 ± 1 | |
12 | 2.02 ± 0.01 | 101.0 ± 0.5 | 7.28 ± 0.02 | 9.36 ± 0.07 | 309 ± 2 | |
Preparation II—controlled conditions (25 °C/60% RH) | ||||||
Bottle | 0 | 2.01 ± 0.04 | 100.0 ± 2.0 | 7.80 ± 0.05 | 9.93 ± 0.01 | 298 ± 1 |
6 | 2.10 ± 0.02 | 104.5 ± 1.0 | 7.40 ± 0.05 | 7.71 ± 0.01 | 291 ± 1 | |
Minims | 0 | 2.01 ± 0.04 | 100.0 ± 2.0 | 7.80 ± 0.05 | 9.93 ± 0.04 | 298 ± 1 |
3 | 2.02 ± 0.02 | 100.5 ± 1.0 | 7.65 ± 0.02 | 7.70 ± 0.03 | 295 ± 2 | |
6 | 2.08 ± 0.02 | 103.5 ± 1.0 | 7.68 ± 0.03 | 6.98→ 0.06 | 290 ± 1 |
Storage Conditions | Package | Time, Months | Observed Peaks Outside the CS Main Peak | Sum of Impurities, % | |||
---|---|---|---|---|---|---|---|
P1 tR = 2.8–3.6 min | P2 tR = 5.8–6.4 min | ||||||
P | % | P | % | ||||
40 °C/75% RH | Bottle | 0 | 35650 | 0.21 | 69001 | 0.41 | 0.61 |
6 | 31392 | 1.99 | 57993 | 0.34 | 2.33 | ||
Minims | 0 | 35650 | 0.21 | 69001 | 0.41 | 0.62 | |
3 | 486043 | 2.88 | No | 2.88 | |||
25 °C/60% RH | Bottle | 0 | 35650 | 0.21 | 69001 | 0.41 | 0.61 |
6 | 61142 | 0.36 | 48304 | 0.29 | 0.65 | ||
9 | 35925 | 0.21 | No | 0.21 | |||
12 | 28989 | 0.17 | 37973 | 0.22 | 0.39 | ||
Minims | 0 | 35650 | 0.21 | 69001 | 0.41 | 0.61 | |
6 | 73551 | 0.44 | 51080 | 0.30 | 0.74 | ||
9 | 209457 | 1.24 | No | 1.24 | |||
12 | 13879 | 0.08 | No | 0.08 | |||
2–8 °C | Minims | 0 | 35650 | 0.21 | 69001 | 0.41 | 0.61 |
6 | 43503 | 0.26 | 52962 | 0.31 | 0.57 | ||
9 | 35936 | 0.21 | 50559 | 0.30 | 0.51 | ||
12 | 11324 | 0.07 | 60556 | 0.36 | 0.44 | ||
Light exposure (250 W/m2; 1.2 × 106 lux·h) | |||||||
Package | Sample | P1 tR = 2.8–4.2 min | P2 tR = 5.8–6.4 min | Sum of impurities, % | |||
P | % | P | % | ||||
Minimis | protected | 35590 | 0.21 | 33639 | 0.20 | 0.41 | |
unprotected | 336527 | 1.99 | No | 1.99 |
Sterilization Conditions | Fresh Solution | Observed Changes During Storage | |||||||
---|---|---|---|---|---|---|---|---|---|
25 °C/60%RH—6 Months | 40 °C/75%RH—6 Months | ||||||||
tR, min | P | Af | tR, min | P | Af | tR, min | P | Af | |
Without sterilization | 6.010 | 560078 | 1.765 | +0.028 | +4.71% | Nc | +0.016 | −4.16% | +0.176 |
105 °C/30 min | 5.998 (−0.012) | 565425 (+0.95%) | 1.848 (+0.083) | +0.003 | +7.56% | +0.327 | +0.081 | −1.27% | +0.024 |
121 °C/20 min | 5.997 (−0.013) | 558036 (−0.36%) | 1.793 (+0.028) | +0.071 | +1.76% | −0.079 | +0.115 | −4.19% | −0.097 |
134 °C/12 min | 6.164 (+0.154) | 546165 (−2.48%) | 1.717 (−0.048) | −0.069 | +1.29% | +0.034 | −0.044 | +1.33% | +0.215 |
Sterilization Conditions | Fresh Solution Viscosity, mPa·s | Observed Changes During Storage | |
---|---|---|---|
25 °C/60%RH—6 Months | 40 °C/75%RH—6 Months | ||
Viscosity, mPa·s | Viscosity, mPa·s | ||
Without sterilization | 15.71 ± 0.01 | 12.19 ± 0.02 | 12.19 ± 0.02 |
105 °C/30 min | 14.57 ± 0.01 | 11.36 ± 0.01 | 10.66 ± 0.01 |
121 °C/20 min | 11.56 ± 0.01 | 7.95 ± 0.01 | 6.98 ± 0.02 |
134 °C/12 min | 6.28 ± 0.01 | 5.56 ± 0.01 | 4.98 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, K.B.; Milanowski, B.; Kucińska, M.; Plewa, S.; Długaszewska, J.; Muszalska-Kolos, I. Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models. Pharmaceuticals 2021, 14, 849. https://doi.org/10.3390/ph14090849
Wróblewska KB, Milanowski B, Kucińska M, Plewa S, Długaszewska J, Muszalska-Kolos I. Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models. Pharmaceuticals. 2021; 14(9):849. https://doi.org/10.3390/ph14090849
Chicago/Turabian StyleWróblewska, Katarzyna Barbara, Bartłomiej Milanowski, Małgorzata Kucińska, Szymon Plewa, Jolanta Długaszewska, and Izabela Muszalska-Kolos. 2021. "Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models" Pharmaceuticals 14, no. 9: 849. https://doi.org/10.3390/ph14090849
APA StyleWróblewska, K. B., Milanowski, B., Kucińska, M., Plewa, S., Długaszewska, J., & Muszalska-Kolos, I. (2021). Novel Formulation of Eye Drops Containing Choline Salicylate and Hyaluronic Acid: Stability, Permeability, and Cytotoxicity Studies Using Alternative Ex Vivo and In Vitro Models. Pharmaceuticals, 14(9), 849. https://doi.org/10.3390/ph14090849