Manufacturing Bacteriophages (Part 2 of 2): Formulation, Analytics and Quality Control Considerations
Abstract
:1. Introduction
1.1. General Considerations
1.2. Liquid Formulation
1.3. Encapsulation
1.4. Semi-Solid Formulations
1.5. Solid Formulations
1.6. Scale-Up Considerations
2. Analytical
3. Quality Control
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, R.Y.K.; Kwok, P.C.L.; Khanal, D.; Morales, S.; Kutter, E.; Li, J.; Chan, H.K. Inhalable bacteriophage powders: Glass transition temperature and bioactivity stabilization. Bioeng. Transl. Med. 2020, 5, e10159. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Menendez, E.; Fernandez, L.; Gutierrez, D.; Rodriguez, A.; Martinez, B.; Garcia, P. Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS ONE 2018, 13, e0205728. [Google Scholar] [CrossRef] [PubMed]
- Colom, J.; Cano-Sarabia, M.; Otero, J.; Cortés, P.; Maspoch, D.; Llagostera, M. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl. Environ. Microbiol. 2015, 81, 4841–4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, K.; Malik, D.J. Microencapsulation of bacteriophages using membrane emulsification in different pH-triggered controlled release formulations for oral administration. Pharmaceuticals 2021, 14, 424. [Google Scholar] [CrossRef] [PubMed]
- Hosseinidoust, Z.; Van de Ven, T.G.; Tufenkji, N. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. Langmuir 2011, 27, 5472–5480. [Google Scholar] [CrossRef]
- Curtin, J.J.; Donlan, R.M. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2006, 50, 1268–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, S.S.Y.; Parumasivam, T.; Gao, F.G.; Carrigy, N.B.; Vehring, R.; Finlay, W.H.; Morales, S.; Britton, W.J.; Kutter, E.; Chan, H.-K. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm. Res. 2016, 33, 1486–1496. [Google Scholar] [CrossRef]
- Matinkhoo, S.; Lynch, K.H.; Dennis, J.J.; Finlay, W.H.; Vehring, R. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J. Pharm. Sci. 2011, 100, 5197–5205. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.L.; Petrovski, S.; Hoyle, D.; Chan, H.T.; Lock, P.; Tucci, J. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca. PLoS ONE 2017, 12, e0183510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfadhel, M.; Puapermpoonsiri, U.; Ford, S.J.; McInnes, F.J.; van der Walle, C.F. Lyophilized inserts for nasal administration harboring bacteriophage selective for Staphylococcus aureus: In vitro evaluation. Int. J. Pharm. 2011, 416, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.L.; Petrovski, S.; Chan, H.T.; Angove, M.J.; Tucci, J. Semi-solid and solid dosage forms for the delivery of phage therapy to epithelia. Pharmaceuticals 2018, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Puapermpoonsiri, U.; Ford, S.J.; Van der Walle, C.F. Stabilization of bacteriophage during freeze drying. Int. J. Pharm. 2010, 389, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Malenovská, H. The influence of stabilizers and rates of freezing on preserving of structurally different animal viruses during lyophilization and subsequent storage. J. Appl. Microbiol. 2014, 117, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Łobocka, M.B.; Głowacka, A.; Golec, P. Methods for bacteriophage preservation. In Bacteriophage Therapy; Humana Press: New York, NY, USA, 2018; pp. 219–230. [Google Scholar] [CrossRef]
- Górski, A.; Międzybrodzki, R.; Węgrzyn, G.; Jończyk-Matysiak, E.; Borysowski, J.; Weber-Dąbrowska, B. Phage therapy: Current status and perspectives. Med. Res. Rev. 2020, 40, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Vandenheuvel, D.; Lavigne, R.; Brüssow, H. Bacteriophage therapy: Advances in formulation strategies and human clinical trials. Annu. Rev. Virol. 2015, 2, 599–618. [Google Scholar] [CrossRef]
- Joczyk, E.; Kak, M.; Midzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages—Review. Folia Microbiol. 2011, 56, 191. [Google Scholar] [CrossRef] [Green Version]
- Kosel, J.; Gutiérrez-Aguirre, I.; Rački, N.; Dreo, T.; Ravnikar, M.; Dular, M. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation. Water Res. 2017, 124, 465–471. [Google Scholar] [CrossRef]
- Vinner, G.K.; Richards, K.; Leppanen, M.; Sagona, A.P.; Malik, D.J. Microencapsulation of enteric bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 2019, 11, 475. [Google Scholar] [CrossRef] [Green Version]
- Merril, C.R.; Biswas, B.; Carlton, R.; Jensen, N.C.; Creed, G.J.; Zullo, S.; Adhya, S. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA 1996, 93, 3188–3192. [Google Scholar] [CrossRef] [Green Version]
- Yehl, K.; Lemire, S.; Yang, A.C.; Ando, H.; Mimee, M.; Torres, M.D.T.; de la Fuente-Nunez, C.; Lu, T.K. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 2019, 179, 459–469. [Google Scholar] [CrossRef]
- Michen, B.; Graule, T. Isoelectric points of viruses. J. Appl. Microbiol. 2010, 109, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Elnaggar, Y.S. Multifaceted applications of bile salts in pharmacy: An emphasis on nanomedicine. Int. J. Nanomed. 2015, 10, 3955. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.L.; Bajaj, P.; Whitehead, K.A. Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. Aaps Pharmscitech 2011, 12, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Amis, T.M.; Renukuntla, J.; Bolla, P.K.; Clark, B.A. Selection of cryoprotectant in lyophilization of progesterone-loaded stearic acid solid lipid nanoparticles. Pharmaceutics 2020, 12, 892. [Google Scholar] [CrossRef] [PubMed]
- Cortes, P.; Cano-Sarabia, M.; Colom, J.; Otero, J.; Maspoch, D.; Llagostera, M. Nano/Micro formulations for bacteriophage delivery. In Bacteriophage Therapy; Humana Press: New York, NY, USA, 2018; pp. 271–283. [Google Scholar] [CrossRef]
- Abdelsattar, A.S.; Abdelrahman, F.; Dawoud, A.; Connerton, I.F.; El-Shibiny, A. Encapsulation of E. coli phage ZCEC5 in chitosan–alginate beads as a delivery system in phage therapy. Amb Express 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinquerrui, S.; Mancuso, F.; Vladisavljević, G.T.; Bakker, S.E.; Malik, D.J. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front. Microbiol. 2018, 9, 2172. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.L.; Petrovski, S.; Dyson, Z.A.; Seviour, R.; Tucci, J. The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. PLoS ONE 2016, 11, e0151184. [Google Scholar] [CrossRef] [Green Version]
- Challener, C.A. Balancing the art and science of topical drug formulation. Pharm. Technol. 2021, 45, 20–25. [Google Scholar]
- Carroll-Portillo, A.; Coffman, C.N.; Varga, M.G.; Alcock, J.; Singh, S.B.; Lin, H.C. Standard bacteriophage purification procedures cause loss in numbers and activity. Viruses 2021, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Vandenheuvel, D.; Singh, A.; Vandersteegen, K.; Klumpp, J.; Lavigne, R.; Van den Mooter, G. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. Eur. J. Pharm. Biopharm. 2013, 84, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S. Granulation techniques and technologies: Recent progresses. BioImpacts: BI 2015, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Friess, W.; Winter, G. Meeting the challenges in freeze-drying of pharmaceuticals and biologicals. Eur. J. Pharm. Biopharm. 2013, 85, 161. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.M.; Pikal, M.J. Emerging freeze-drying process development and scale-up issues. Aaps Pharmscitech 2011, 12, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.M.; Jameel, F.; Pikal, M.J. The effect of dryer load on freeze drying process design. J. Pharm. Sci. 2010, 99, 4363–4379. [Google Scholar] [CrossRef]
- Corona, E. Lyophilization—A lyophilization scale-up model: Lessons learned & best practices. Drug Dev. Deliv. 2016, 16, 68–71. Available online: https://drug-dev.com/lyophilization-a-lyophilization-scale-up-model-lessons-learned-best-practices/ (accessed on 27 August 2021).
- Poozesh, S.; Bilgili, E. Scale-up of pharmaceutical spray drying using scale-up rules: A review. Int. J. Pharm. 2019, 562, 271–292. [Google Scholar] [CrossRef]
- Ziaee, A.; Albadarin, A.B.; Padrela, L.; Femmer, T.; O’Reilly, E.; Walker, G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. Eur. J. Pharm. Sci. 2019, 127, 300–318. [Google Scholar] [CrossRef]
- FDA/CDER/Beers. Analytical Procedures and Methods Validation for Drugs and Biologics. 2015; p. 18. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/analytical-procedures-and-methods-validation-drugs-and-biologics (accessed on 1 September 2021).
- Duyvejonck, H.; Merabishvili, M.; Pirnay, J.-P.; Vos, D.D.; Verbeken, G.; Belleghem, J.V.; Gryp, T.; Leenheer, J.D.; der Borght, K.V.; Simaey, L.V.; et al. Development of a qPCR platform for quantification of the five bacteriophages within bacteriophage cocktail 2 (BFC2). Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sanders, C.A.; Yajko, D.M.; Nassos, P.S.; Hyun, W.C.; Fulwyler, M.J.; Hadley, W.K. Detection and analysis by dual-laser flow cytometry of bacteriophage T4 DNA inside Escherichia coli. Cytom. J. Int. Soc. Anal. Cytol. 1991, 12, 167–171. [Google Scholar]
- Ács, N.; Gambino, M.; Brøndsted, L. Bacteriophage enumeration and detection methods. Front. Microbiol. 2020, 11, 2662. [Google Scholar] [CrossRef]
- Refardt, D. Real-time quantitative PCR to discriminate and quantify lambdoid bacteriophages of Escherichia coli K-12. Bacteriophage 2012, 2, 98–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cademartiri, R.; Anany, H.; Gross, I.; Bhayani, R.; Griffiths, M.; Brook, M.A. Immobilization of bacteriophages on modified silica particles. Biomaterials 2010, 31, 1904–1910. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, S.; Sui, Z.; Wang, J.; Niu, C. Establishing novel bacteriophage detection method based on imagining flow cytometry. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 252, p. 042116. [Google Scholar] [CrossRef]
- del Rio, B.; Binetti, A.G.; Martín, M.C.; Fernández, M.; Magadan, A.H.; Alvarez, M.A. Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiol. 2007, 24, 75–81. [Google Scholar] [CrossRef]
- Szermer-Olearnik, B.; Boratyński, J. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS ONE 2015, 10, e0122672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirnay, J.-P.; Blasdel, B.G.; Bretaudeau, L.; Buckling, A.; Chanishvili, N.; Clark, J.R.; Corte-Real, S.; Debarbieux, L.; Dublanchet, A.; Vos, D.D.; et al. Quality and safety requirements for sustainable phage therapy products. Pharm. Res. 2015, 32, 2173–2179. [Google Scholar] [CrossRef] [Green Version]
- Lang, A.S.; Zhaxybayeva, O.; Beatty, J.T. Gene transfer agents: Phage-like elements of genetic exchange. Nat. Rev. Microbiol. 2012, 10, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Kotetishvili, M.; Stine, O.C.; Kreger, A.; Morris, J.G., Jr.; Sulakvelidze, A. Multilocus sequence typing for characterization of clinical and environmental Salmonella strains. J. Clin. Microbiol. 2002, 40, 1626–1635. [Google Scholar] [CrossRef] [Green Version]
- Moisan, M.; Moineau, S. Multilocus sequence typing scheme for the characterization of 936-like phages infecting Lactococcus lactis. Appl. Environ. Microbiol. 2012, 78, 4646–4653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutti, M.; Corsini, L. Robust approaches for the production of active ingredient and drug product for human phage therapy. Front. Microbiol. 2019, 10, 2289. [Google Scholar] [CrossRef]
- Santos, S.B.; Carvalho, C.M.; Sillankorva, S.; Nicolau, A.; Ferreira, E.C.; Azeredo, J. The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol. 2009, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Taylor and Francis Group. The Rules Governing Medicinal Products in the European Union. In GMP/ISO Quality Audit Manual for Healthcare Manufacturers and Their Suppliers (Volume 2—Regulations, Standards, and Guidelines); CRC Press: Boca Raton, FL, USA, 2004; pp. 257–316. [Google Scholar] [CrossRef]
- Bretaudeau, L.; Tremblais, K.; Aubrit, F.; Meichenin, M.; Arnaud, I. Good manufacturing practice (GMP) compliance for phage therapy medicinal products. Front. Microbiol. 2020, 11, 1161. [Google Scholar] [CrossRef]
Formulation | References |
---|---|
Solid | |
Pill | Gonzalez-Menendez 2018 [3]; Colom 2015 [4] |
Capsule | Richards 2021 [5] |
Bandage | Hossendoust 2011 [6] |
Device | Curtin 2006 [7] |
Aerosol | Leung 2016 [8]; Matinkhoo 2011 [9] |
Troche | Brown 2017 [10] |
Suppository | Brown 2017 [10] |
Semi-Solid | |
Cream | Brown 2017 [10] |
Gel | Alfadhel 2011 [11] |
Ointment | Brown 2017 [10] |
Paste | Brown 2017 [10] |
Liquid | |
Injection | Malik 2017 [2] |
Infusion | Malik 2017 [2] |
Aerosol | Leung 2016 [8] |
Phage | Formulation | Method | Composition | Reference |
---|---|---|---|---|
PEV2 | Solid | Spray-Freeze Dry or Spray-Dry | Salt-magnesium buffer (SMB, 5.2 g/L sodium chloride, 2 g/L magnesium sulfate, 6.35 g/L Tris-HCL, 1.18 g/L Tris base, 0.01% gelatin solution, with pH adjusted to 7.5), D-(+)-Trehalose dihydrate (60% and 40% w/v), mannitol (20% and 40% w/v) and L-leucine (20% w/v). | Leung 2016 [8] |
UAB_Phi20, UAB_Phi78, or UAB_Ph87 | Solid-Liposome Encapsulated | Lyophilized | 3.2% w/v trehalose, MgSO4 (10 mM, pH 6.1), lipid mixture of 1,2-dilauroyl-racglycero- 3-phosphocholine (DLPC), cholesteryl polyethylene glycol 600 sebacate (Chol-PEG600), cholesterol (Chol), and cholesteryl 3-N-(dimethylaminoethyl) carbamate hydrochloride (cholesteryl) (1:0.1:0.2:0.7 molar ratio). | Colom 2015 [4] |
KOX1 | Solid–Suppository | Mixed | Phage concentrated in PBS. Suppository composed by gelatin powder, purified water and Glycerol. Final concentration at 4.5 × 108 PFU/g. | Brown 2017 [10] |
KOX1 | Solid–Troche | Mixed | Phage concentrated in PBS. Silica gel (micronized), stevioside powder, acacia powder and citric acid anhydrous powder, polyethylene glycol base. Phage final concentration 4.5 × 108 PFU/g. | Brown 2017 [10] |
phiIPLA35, phiIPLA88, phiIPLA-RODI and phiIPLA-C1C | Liquid | Mixed | SM buffer (20 mM Tris HCl, 10 mM MgSO4, 10 mM Ca(NO3)2 and 0.1 M NaCl, pH 7.5), 0.8 M trehalose, 0.8 M sucrose, 15% glycerol or 11% skim milk, final titer ranging from 108 to 109 PFU/mL. | Gonzalez-Menendez 2018 [3] |
phiIPLA35, phiIPLA88, phiIPLA-RODI and phiIPLA-C1C | Solid | Lyophilized | SM buffer (20 mM Tris HCl, 10 mM MgSO4, 10 mM Ca(NO3)2 and 0.1 M NaCl, pH 7.5), 22% skim milk, 1.6 M sucrose or 30% sorbitol. | Gonzalez-Menendez 2018 [3] |
phiIPLA35, phiIPLA88, phiIPLA-RODI and phiIPLA-C1C | Solid-Alginate Encapsulated | Droplet Encapsulation | SM buffer (20 mM Tris HCl, 10 mM MgSO4, 10 mM Ca(NO3)2 and 0.1 M NaCl, pH 7.5), 50 mM HEPES pH 7.5 containing 2% (w/v) sodium alginate, 0.1 M CaCl2. | Gonzalez-Menendez 2018 [3] |
phiIPLA35, phiIPLA88, phiIPLA-RODI and phiIPLA-C1C | Solid-Alginate Microencapsulated | Emulsification | SM buffer (20 mM Tris HCl, 10 mM MgSO4, 10 mM Ca(NO3)2 and 0.1 M NaCl, pH 7.5), 50 mM HEPES pH 7.5 containing 3% (w/v) sodium alginate, 30 mM CaCl2, Miglyol 812 containing 3% (w/v) Span 80, and 50 μL of glacial acetic acid. | Gonzalez-Menendez 2018 [3] |
phiIPLA35, phiIPLA88, phiIPLA-RODI and phiIPLA-C1C | Solid | Spray Dried | SM buffer (20 mM Tris HCl, 10 mM MgSO4, 10 mM Ca(NO3)2 and 0.1 M NaCl, pH 7.5), trehalose (15% final concentration) or skim milk (11% final concentration). | Gonzalez-Menendez 2018 [3] |
Area | Method | Attribute | Potential Use | Reference |
---|---|---|---|---|
Potency | qPCR | Adventitious phages | Release Testing; In Process | Refardt, 2012 [46] |
Quantification of phage particles | Release Testing; In Process | Refardt, 2012 [46]; Immamovic, 2010 [47]; uyvejonck, 2019 [43] | ||
Infectivity | Release Testing; In Process | Immamovic 2010 [47] | ||
Imaging Flow Cytometry | Determination of phage viability | Release Testing; In Process | Yang, 2019 [48] | |
Quantification of phage particles | Release Testing; In Process | Yang, 2019 [48] | ||
Double-Agar Overlay | Infectivity | Release Testing | Sanders, 1991 [44] | |
Identity | qPCR | Phage identification | Release Testing; In process | Refardt, 2012 [46]; Immamovic, 2010 [47]; Duyvejonck, 2019 [43] |
Fluorescence-activated Single Cell Sorting (FACS) | Phage identification | Release Testing; In process | Yang, 2019 [48] | |
Multiplex PCR | Phage identification | Release Testing; In process | Delrio [49] | |
Purity | qPCR | Identification of adventitious agents | Release Testing; In process | Duyvejonck, 2019 [43] |
Safety | qPCR | Presence of latent phages | Release Testing; In process | Refardt, 2012 [46] |
End-point chromogenic Limulus Amebocyte Lysate | Amount of endotoxins present | Release Testing; In process | Szermer-Olearnik 2015 [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes de Souza, C.; Tanir, T.; Orellana, M.; Escalante, A.; Koeris, M.S. Manufacturing Bacteriophages (Part 2 of 2): Formulation, Analytics and Quality Control Considerations. Pharmaceuticals 2021, 14, 895. https://doi.org/10.3390/ph14090895
Moraes de Souza C, Tanir T, Orellana M, Escalante A, Koeris MS. Manufacturing Bacteriophages (Part 2 of 2): Formulation, Analytics and Quality Control Considerations. Pharmaceuticals. 2021; 14(9):895. https://doi.org/10.3390/ph14090895
Chicago/Turabian StyleMoraes de Souza, Carolina, Tayfun Tanir, Marvin Orellana, Aster Escalante, and Michael Sandor Koeris. 2021. "Manufacturing Bacteriophages (Part 2 of 2): Formulation, Analytics and Quality Control Considerations" Pharmaceuticals 14, no. 9: 895. https://doi.org/10.3390/ph14090895
APA StyleMoraes de Souza, C., Tanir, T., Orellana, M., Escalante, A., & Koeris, M. S. (2021). Manufacturing Bacteriophages (Part 2 of 2): Formulation, Analytics and Quality Control Considerations. Pharmaceuticals, 14(9), 895. https://doi.org/10.3390/ph14090895