Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile—Understanding the Effect of Anionic Surfactant
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield Analysis and Moisture Content of Microcapsules
2.2. Encapsulation Efficiency
2.3. Droplet/Particle Size Distribution
2.4. Morphology of Microcapsules
2.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.6. Vitamin E Release Kinetics
3. Materials and Methods
3.1. Materials
3.2. Preparation of Polymer and Surfactant Solutions
3.3. Microencapsulation by Spray Drying
3.4. Yield Analysis and Moisture Content Determination
3.5. Droplet/Particle Size Distribution Characterization
3.6. Scanning Electron Microscopy
3.7. Fourier Transform Infrared Spectroscopy
3.8. Encapsulation Efficiency Determination
3.9. In Vitro Release Study
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delgado, A.; Al-Hamimi, S.; Ramadan, M.F.; De Wit, M.; Durazzo, A.; Nyam, K.L.; Issaoui, M. Contribution of tocols to food sensorial properties, stability, and overall quality. J. Food Qual. 2020, 2020, 8885865. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Cook, W.D.; Fenton, M.E. (Eds.) Handbook of Pharmaceutical Excipients, 7th ed.; Pharmaceutical Press: London, UK, 2012; ISBN 9782705690229. [Google Scholar]
- Inactive Ingredient Search for Approved Drug Products. Available online: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm?event=browseByLetter.page&Letter=A (accessed on 23 December 2021).
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Formation and stabilization of nanoemulsion-based vitamin e delivery systems using natural surfactants: Quillaja saponin and lecithin. J. Food Eng. 2014, 142, 57–63. [Google Scholar] [CrossRef]
- Budinčić, J.M.; Petrović, L.; Đekić, L.; Fraj, J.; Bučko, S.; Katona, J.; Spasojević, L. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr. Polym. 2021, 251, 116988. [Google Scholar] [CrossRef]
- Carlan, I.C.; Estevinho, B.N.; Rocha, F. Study of microencapsulation and controlled release of modified chitosan microparticles containing vitamin B12. Powder Technol. 2017, 318, 162–169. [Google Scholar] [CrossRef]
- Kosaraju, S.L.; D’ath, L.; Lawrence, A. Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydr. Polym. 2006, 64, 163–167. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Shahgol, M.; Estevinho, B.N.; Rocha, F. Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocoll. 2020, 108, 106029. [Google Scholar] [CrossRef]
- Sharipova, A.A.; Aidarova, S.B.; Grigoriev, D.; Mutalieva, B.; Madibekova, G.; Tleuova, A.; Miller, R. Polymer-surfactant complexes for microencapsulation of vitamin E and its release. Colloids Surf. B Biointerfaces 2016, 137, 152–157. [Google Scholar] [CrossRef]
- Hategekimana, J.; Masamba, K.G.; Ma, J.; Zhong, F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015, 124, 172–179. [Google Scholar] [CrossRef]
- Sansone, F.; Mencherini, T.; Picerno, P.; D’Amore, M.; Aquino, R.P.; Lauro, M.R. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J. Food Eng. 2011, 105, 468–476. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Li, J.; Ding, L. Design on key parts of cable-driven hanging transportation system for orchard. Trans. Chin. Soc. Agric. Eng. 2014, 30, 18–24. [Google Scholar] [CrossRef]
- Ahuja, M.; Bhatt, D.C. Polyelectrolyte complex of carboxymethyl gum katira-chitosan: Preparation and characterization. Int. J. Biol. Macromol. 2018, 106, 1184–1191. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Y. Switching Pickering emulsion stabilized by Chitosan-SDS complexes through ion competition. Colloids Surf. A Physicochem. Eng. Asp. 2020, 587, 124316. [Google Scholar] [CrossRef]
- Fathi, M.; Nasrabadi, M.N.; Varshosaz, J. Characteristics of vitamin E-loaded nanofibres from dextran. Int. J. Food Prop. 2017, 20, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.D.; Rosa, N.F.; Ferreira, A.E.; Boas, L.V.; Bronze, M.R. Rapid determination of α-tocopherol in vegetable oils by fourier transform infrared spectroscopy. Food Anal. Methods 2009, 2, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Onesippe, C.; Lagerge, S. Study of the complex formation between sodium dodecyl sulfate and hydrophobically modified chitosan. Carbohydr. Polym. 2008, 74, 648–658. [Google Scholar] [CrossRef]
- Petrović, L.; Milinković, J.; Fraj, J.; Bučko, S.; Katona, J.; Spasojević, L. Study of interaction between chitosan and sodium lauryl ether sulfate. Colloid Polym. Sci. 2017, 295, 2279–2285. [Google Scholar] [CrossRef]
- Tavares, L.; Zapata Noreña, C.P. Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocoll. 2019, 89, 360–369. [Google Scholar] [CrossRef]
- Dini, E.; Alexandridou, S.; Kiparissides, C. Synthesis and characterization of cross-linked chitosan microspheres for drug delivery applications. J. Microencapsul. 2003, 20, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Gurny, R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 35–52. [Google Scholar] [CrossRef]
- Petrović, L.B.; Milinković, J.R.; Fraj, J.L.; Bučko, S.D.; Katona, J.M. An investigation of chitosan and sodium dodecyl sulfate interactions in acetic media. J. Serbian Chem. Soc. 2016, 81, 575–587. [Google Scholar] [CrossRef]
- Milinković, J.R.; Aleksić, M.V.; Petrović, L.B.; Fraj, J.L.; Bučko, S.D.; Katona, J.M.; Spasojević, L.M. Interfacial properties of chitosan/sodium dodecyl sulfate complexes. Acta Period. Technol. 2017, 48, 221–229. [Google Scholar] [CrossRef]
- Milinković, J.; Petrović, L.; Fraj, J.; Bučko, S.; Katona, J.; Spasojević, L. Interfacial and emulsifying properties of chitosan/sodium lauryl ether sulfate system. Colloids Surf. A Physicochem. Eng. Asp. 2018, 557, 9–13. [Google Scholar] [CrossRef]
- Aloys, H.; Korma, S.; Alice, T.; Chantal, N.; Ali, A.; Abed, S.; Ildephonse, H. Microencapsulation by Complex Coacervation: Methods, Techniques, Benefits, and Applications. Am. J. Food Sci. Nutr. Res. 2016, 3, 188–192. [Google Scholar]
- Butstraen, C.; Salaün, F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr. Polym. 2014, 99, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, Y. Coacervation with surfactants: From single-chain surfactants to gemini surfactants. Adv. Colloid Interface Sci. 2017, 239, 199–212. [Google Scholar] [CrossRef]
- Geetha, G.; Kumar, C.S.; Devanna, N. Characterization of Molecular interactions between Chitosan and Sodium Dodecyl Sulfate (SDS). Int. J. Sci. Tehnol. 2016, 2, 8–15. [Google Scholar]
- Lim, G.P.; Ahmad, M.S. Development of Ca-alginate-chitosan microcapsules for encapsulation and controlled release of imidacloprid to control dengue outbreaks. J. Ind. Eng. Chem. 2017, 56, 382–393. [Google Scholar] [CrossRef]
- Picone, C.S.F.; Cunha, R.L. Chitosan-gellan electrostatic complexes: Influence of preparation conditions and surfactant presence. Carbohydr. Polym. 2013, 94, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Thongngam, M.; McClements, D.J. Characterization of Interactions between Chitosan and an Anionic Surfactant. J. Agric. Food Chem. 2004, 52, 987–991. [Google Scholar] [CrossRef]
- Gao, X.; Chorover, J. Adsorption of sodium dodecyl sulfate (SDS) at ZnSe and α-Fe2O3 surfaces: Combining infrared spectroscopy and batch uptake studies. J. Colloid Interface Sci. 2010, 348, 167–176. [Google Scholar] [CrossRef]
- Akanno, A.; Guzmán, E.; Ortega, F.; Rubio, R.G. Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: Effect of polymer-surfactant interactions. Phys. Chem. Chem. Phys. 2020, 22, 23360–23373. [Google Scholar] [CrossRef] [PubMed]
- De Seixas-Junior, C.H.; de Carvalho, M.M.; Jacumazo, J.; Piazza, R.D.; Parchen, G.P.; de Freitas, R.A. Interaction of guar gum galactomannans with the anionic surfactant sodium lauryl ether sulphate. Int. J. Biol. Macromol. 2020, 165, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoula, M.; Ben Hlima, H.; Michalet, F.; Bourduche, G.; Chavant, J.-Y.; Gravier, A.; Delattre, C.; Grédiac, M.; Mathias, J.-D.; Abdelkafi, S.; et al. Chitosan-Based Adhesive: Optimization of Tensile Shear Strength in Dry and Wet Conditions. Polysaccharides 2021, 2, 110–120. [Google Scholar] [CrossRef]
- Dima, C.; Pətraşcu, L.; Cantaragiu, A.; Alexe, P.; Dima, Ş. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem. 2016, 195, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga Botrel, D.; Vilela Borges, S.; Victória de Barros Fernandes, R.; Dantas Viana, A.; Maria Gomes da Costa, J.; Reginaldo Marques, G. Evaluation of spray drying conditions on properties of microencapsulated oregano essential oil. Int. J. Food Sci. Technol. 2012, 47, 2289–2296. [Google Scholar] [CrossRef]
- Dubbs, M.D.; Gupta, R.B. Solubility of vitamin E (α-tocopherol) and vitamin K3 (menadione) in ethanol-water mixture. J. Chem. Eng. Data 1998, 43, 590–591. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, Z.; Xiao, Z.; Ji, H. Preparation and controllable release of chitosan/vanillin microcapsules and their application to cotton fabric. Flavour Fragr. J. 2014, 29, 114–120. [Google Scholar] [CrossRef]
- Musale, D.A.; Kumar, A. Effects of surface crosslinking on sieving characteristics of chitosan/poly(acrylonitrile) composite nanofiltration membranes. Sep. Purif. Technol. 2000, 21, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Fagerberg, J.H.; Al-Tikriti, Y.; Ragnarsson, G.; Bergström, C.A. Ethanol Effects on Apparent Solubility of Poorly Soluble Drugs in Simulated Intestinal Fluid. Mol. Pharm. 2012, 9, 1942–1952. [Google Scholar] [CrossRef]
- El-Dossoki, F.I.; Gomaa, E.A.; Hamza, O.K. Solvation thermodynamic parameters for sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) surfactants in aqueous and alcoholic-aqueous solvents. SN Appl. Sci. 2019, 1, 933. [Google Scholar] [CrossRef] [Green Version]
- Sano, M.; Hosoya, O.; Taoka, S.; Seki, T.; Kawaguchi, T.; Sugibayashi, K.; Juni, K.; Morimoto, Y. Relationship between solubility of chitosan in alcoholic solution and its gelation. Chem. Pharm. Bull. 1999, 47, 1044–1046. [Google Scholar] [CrossRef] [Green Version]
- Argelia Diaz, D.; Colgan, S.T.; Langer, C.S.; Bandi, N.T.; Likar, M.D.; Van Alstine, L. Commentary Dissolution Similarity Requirements: How Similar or Dissimilar Are the Global Regulatory Expectations? AAPS J. 2016, 18, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm.-Drug Res. 2010, 67, 217–223. [Google Scholar]
- García, P.; Vega, J.; Jimenez, P.; Santos, J.; Robert, P. Alpha-tocopherol microspheres with cross-linked and acetylated inulin and their release profile in a hydrophilic model. Eur. J. Lipid Sci. Technol. 2013, 115, 811–819. [Google Scholar] [CrossRef]
- Somchue, W.; Sermsri, W.; Shiowatana, J.; Siripinyanond, A. Encapsulation of α-tocopherol in protein-based delivery particles. Food Res. Int. 2009, 42, 909–914. [Google Scholar] [CrossRef]
- Tabandeh, H.; Mortazavi, S.A. An investigation into some effective factors on encapsulation efficiency of alpha-tocopherol in MLVs and the release profile from the corresponding liposomal gel. Iran. J. Pharm. Res. 2013, 12, 19–28. [Google Scholar] [CrossRef]
- Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release 2011, 154, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.S.; Oliveira, J.C.; Crean, A.M. Microencapsulation as a tool for incorporating bioactive ingredients into food. Crit. Rev. Food Sci. Nutr. 2010, 50, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, P.B.; Müllertz, A.; Norling, T.; Kristensen, H.G. The effect of α-tocopherol on the in vitro solubilisation of lipophilic drugs. Int. J. Pharm. 2001, 222, 217–224. [Google Scholar] [CrossRef]
Sample of Microcapsules | Moisture ± σ (%) |
---|---|
Without cross-linking agent | 1.14 ± 0.275a |
Ch:GA 1:1 | 1.27 ± 0.156a |
Ch:GA 1:2 | 1.58 ± 0.321a |
Ch:FA 1:1 | 1.62 ± 0.216a |
Ch:FA 1:2 | 1.49 ± 0.159a |
Sample of Microcapsules | Encapsulation Efficiency (%) |
---|---|
Without cross-linking agent | 126 ± 5.65 a |
Ch:GA 1:1 | 108 ± 3.92 b |
Ch:GA 1:2 | 94 ± 6.14 c |
Ch:FA 1:1 | 104 ± 6.79 b |
Ch:FA 1:2 | 114 ± 2.37 a,b |
Sample | dvs ± σ (µm) |
---|---|
Emulsion stabilized with Ch/SDS complex | 8.18 ± 0.428 a |
Suspension of microcapsules without cross-linking agent | 5.12 ± 0.372 b |
Suspension of microcapsules Ch:FA 1:1 | 4.65 ± 0.299 b |
Suspension of microcapsules Ch:FA 1:2 | 5.95 ± 0.368 c |
Suspension of microcapsules Ch:GA 1:1 | 6.76 ± 0.386 c |
Suspension of microcapsules Ch:GA 1:2 | 6.23 ± 0.513 c |
Profiles Compared | f1 | f2 |
---|---|---|
Without cross-linking agent vs. Ch:GA 1:2 | 18.95 | 43.79 |
Without cross-linking agent vs. Ch:FA 1:2 | 9.88 | 55.34 |
Ch:GA 1:2 vs. Ch:FA 1:2 | 20.04 | 39.76 |
Sample of Microcapsules/Analysis Interval | r2 | |||
---|---|---|---|---|
Higuchi | First Order | Zero Order | Korsmeyer-Peppas | |
Without cross-linking agent (3–10 min) | 0.7227 | 0.3944 | 0.7897 | 0.9051 |
Ch:GA 1:2 (3–10 min) | 0.8205 | 0.9902 | 0.8685 | 0.9938 |
Ch:FA 1:2 (3–10 min) | 0.8739 | 0.6010 | 0.7407 | 0.9809 |
Sample of Microcapsules | K | n |
---|---|---|
Without cross-linking agent | 22.51 | 0.541 |
Ch:GA 1:2 | 25.36 | 0.490 |
Ch:FA 1:2 | 26.91 | 0.364 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milinković Budinčić, J.; Petrović, L.; Đekić, L.; Aleksić, M.; Fraj, J.; Popović, S.; Bučko, S.; Katona, J.; Spasojević, L.; Škrbić, J.; et al. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile—Understanding the Effect of Anionic Surfactant. Pharmaceuticals 2022, 15, 54. https://doi.org/10.3390/ph15010054
Milinković Budinčić J, Petrović L, Đekić L, Aleksić M, Fraj J, Popović S, Bučko S, Katona J, Spasojević L, Škrbić J, et al. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile—Understanding the Effect of Anionic Surfactant. Pharmaceuticals. 2022; 15(1):54. https://doi.org/10.3390/ph15010054
Chicago/Turabian StyleMilinković Budinčić, Jelena, Lidija Petrović, Ljiljana Đekić, Milijana Aleksić, Jadranka Fraj, Senka Popović, Sandra Bučko, Jaroslav Katona, Ljiljana Spasojević, Jelena Škrbić, and et al. 2022. "Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile—Understanding the Effect of Anionic Surfactant" Pharmaceuticals 15, no. 1: 54. https://doi.org/10.3390/ph15010054
APA StyleMilinković Budinčić, J., Petrović, L., Đekić, L., Aleksić, M., Fraj, J., Popović, S., Bučko, S., Katona, J., Spasojević, L., Škrbić, J., & Malenović, A. (2022). Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile—Understanding the Effect of Anionic Surfactant. Pharmaceuticals, 15(1), 54. https://doi.org/10.3390/ph15010054