Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria
Abstract
:1. Introduction
2. Results
2.1. Structure, Antibacterial Activity, and Physicochemical Parameters
2.2. Regression Equation between the MICs and the Physicochemical Parameters
2.3. Antimicrobial Quantitative Relationship
2.4. Regression Equation between the Log10(MIC) and the Physicochemical Parameter
3. Discussion
4. Materials and Methods
4.1. Data and Processing
4.2. Regression Analyses
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Sridhar, D.; Blaser, M.; Wang, M.; Woolhouse, M. Achieving global targets for antimicrobial resistance. Science 2016, 353, 874–875. [Google Scholar] [CrossRef]
- Kurosu, M.; Siricilla, S.; Mitachi, K. Advances in MRSA drug discovery: Where are we and where do we need to be? Exp. Opin. Drug Discov. 2013, 8, 1095–1116. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, L.; Yuan, G.; Wang, Y.; Qu, Y.; Zhou, M. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci. Rep. 2018, 8, 7237. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Ge, X.; Xua, H.; Ma, K.; Zhang, W.; Zan, Y.; Efferth, T.; Xue, Z.; Hua, X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. Phytomedicine 2022, 100, 154073. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Deng, J.; Ye, Q.; Zhang, Z. The antibacterial activity of natural-derived flavonoids. Curr. Top. Med. Chem. 2022, 22, 1009–1019. [Google Scholar] [CrossRef]
- Song, L.; Hu, X.; Ren, X.; Liu, J.; Liu, X. Antibacterial modes of herbal flavonoids combat resistant bacteria. Front. Pharmacol. 2022, 13, 873374. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Yang, Z.Q.; Liu, F.; Peng, W.J.; Qu, S.Q.; Li, Q.; Song, X.B.; Zhu, K.; Shen, J.Z. Antibacterial effect and mode of action of flavonoids from licorice against methicillin-resistant Staphylococcus aureus. Front. Microbiol. 2019, 10, 2489. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Yang, S.; Li, S.M. Naturally occurring prenylated chalcones from plants: Structural diversity, distribution, activities and biosynthesis. Nat. Prod. Rep. 2021, 38, 2236–2260. [Google Scholar] [CrossRef]
- Panda, L.; Duarte-Sierra, A. Recent advancements in enhancing antimicrobial activity of plant-derived polyphenols by biochemical means. Horticulturae 2022, 8, 401. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Echeverría, J.; Opazo, J.; Mendoza, L.; Urzúa, A.; Wilkens, M. Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora. Molecules 2017, 22, 608. [Google Scholar] [CrossRef]
- Magozwi, D.K.; Dinala, M.; Mokwana, N.; Siwe-Noundou, X.; Krause, R.W.M.; Sonopo, M.; McGaw, L.J.; Augustyn, W.A.; Tembu, V.J. Flavonoids from the Genus Euphorbia: Isolation, structure, pharmacological activities and structure-activity relationships. Pharmaceuticals 2021, 14, 428. [Google Scholar] [CrossRef] [PubMed]
- Araya-Cloutier, C.; Vincken, J.P.; van de Schans, M.G.; Hageman, J.; Schaftenaar, G.; den Besten, H.M.; Gruppen, H. QSAR-based molecular signatures of prenylated (iso)flavonoids underlying antimicrobial potency against and membrane-disruption in Gram positive and Gram negative bacteria. Sci. Rep. 2018, 8, 9267. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021, 11, 10471. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Arakawa, T.; Hirayama, Y.; Hayashi, T. Antibacterial and antiandrogen flavonoids from Sophora flavescens. J. Nat. Prod. 1999, 62, 1595–1599. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, K.; Chudík, S.; Klouček, P.; Marek, R.; Cvačka, J.; Urbanová, M.; Julínek, O.; Kokoška, L.; Šlapetová, T.; Holubová, P.; et al. Antibacterial C-geranylflavonoids from Paulownia tomentosa fruits. J. Nat. Prod. 2008, 71, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Navrátilová, A.; Schneiderová, K.; Veselá, D.; Hanáková, Z.; Fontana, A.; Dall’Acqua, S.; Cvačka, J.; Innocenti, G.; Novotná, J.; Urbanová, M.; et al. Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity. Phytochemistry 2013, 89, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Inui, S.; Hosoya, T.; Shimamura, Y.; Masuda, S.; Ogawa, T.; Kobayashi, H.; Shirafuji, K.; Moli, R.T.; Kozone, I.; Shin-ya, K.; et al. Solophenols B−D and solomonin: New prenylated polyphenols isolated from propolis collected from the solomon islands and their antibacterial activity. J. Agric. Food Chem. 2012, 60, 11765–11770. [Google Scholar] [CrossRef]
- Sasaki, H.; Kashiwada, Y.; Shibata, H.; Takaishi, Y. Prenylated flavonoids from Desmodium caudatum and evaluation of their anti-MRSA activity. Phytochemistry 2012, 82, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 1996, 50, 27–34. [Google Scholar] [CrossRef]
- Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 2012, 17, 7284–7293. [Google Scholar] [CrossRef] [PubMed]
- Sufian, A.S.; Ramasamy, K.; Ahmat, N.; Zakaria, Z.A.; Yusof, M.I.M. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. J. Ethnopharmacol. 2013, 146, 198–204. [Google Scholar] [CrossRef]
- Fukai, T.; Marumo, A.; Kaitou, K.; Kanda, T.; Terada, S.; Nomura, T. Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia 2002, 73, 536–539. [Google Scholar] [CrossRef]
- Fukai, T.; Marumo, A.; Kaitou, K.; Kanda, T.; Terada, S.; Nomura, T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci. 2002, 71, 1449–1463. [Google Scholar] [CrossRef]
- Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones (l). Bioorg. Med. Chem. Lett. 1993, 3, 225–230. [Google Scholar] [CrossRef]
- Hatano, T.; Shintani, Y.; Aga, Y.; Shiota, S.; Tsuchiya, T.; Yoshida, T. Phenolic constituents of Licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. 2000, 48, 1286–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Mukwaya, E.; Wong, M.S.; Zhang, Y. A systematic review on biological activities of prenylated flavonoids. Pharm. Biol. 2014, 52, 655–660. [Google Scholar] [CrossRef]
- Veitch, N.C.; Grayer, R.J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 2011, 28, 1626–1695. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant natural flavonoids against multidrug resistant pathogens. Adv. Sci. 2021, 8, 2100749. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Meng, L.; Chen, J.; Jin, H.; Jiang, L. In vitro activity of five flavones from Scutellaria baicalensisin combination with Cefazolin against methicillin resistant Staphylococcus aureus (MRSA). Med. Chem. Res. 2016, 25, 2214–2219. [Google Scholar] [CrossRef]
- Wang, S.; Chen, C.; Lo, C.; Feng, J.; Lin, H.; Chang, P.; Yang, L.; Chen, L.; Liu, Y.; Kuo, C.; et al. Synthesis and biological evaluation of novel 7-O-lipophilic substituted baicalein derivatives as potential anticancer agents. Med. Chem. Commun. 2015, 6, 1864–1873. [Google Scholar] [CrossRef]
- Donadio, G.; Mensitieri, F.; Santoro, V.; Parisi, V.; Bellone, M.L.; de Tommasi, N.; Izzo, V.; Dal Piaz, F. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics 2021, 13, 660. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.; Lee, J.; Kang, D.; Lee, J.; Shin, S.Y.; Kim, Y. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J. Nat. Prod. 2009, 72, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Rao, V.L.; Gunasekar, D.; Zyryanov, G.V. Isolation of flavonoids from the flowers of Rhynchosia beddomei Baker as prominent antimicrobial agents and molecular docking. Microb. Pathog. 2019, 136, 103667. [Google Scholar] [CrossRef]
- Elmasri, W.A.; Zhu, R.; Peng, W.; Al-Hariri, M.; Kobeissy, F.; Tran, P.; Hamood, A.N.; Hegazy, M.F.; Paré, P.W.; Mechref, Y. Multitargeted flavonoid inhibition of the pathogenic bacterium Staphylococcus aureus: A proteomic characterization. J. Proteome Res. 2017, 16, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.S.; Abdelkader, K.; Gomaa, H.A.M.; Batubara, A.S.; Gamal, M.; Sayed, A.M. Mechanistic study of the antibacterial potential of the prenylated flavonoid auriculasin against Escherichia coli. Arch. Pharm. 2022, 27, e2200360. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Lu, Y.; Zang, X.; Wu, T.; Qi, X.; Pan, S.; Xu, X. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci. Rep. 2016, 6, 23634. [Google Scholar] [CrossRef] [PubMed]
- Machumi, F.; Samoylenko, V.; Yenesew, A.; Derese, S.; Midiwo, J.O.; Wiggers, F.T.; Jacob, M.R.; Tekwani, B.L.; Khan, S.I.; Walker, L.A.; et al. Antimicrobial and antiparasitic abietane diterpenoids from the roots of Clerodendrum eriophyllum. Nat. Prod. Commun. 2010, 5, 841–992. [Google Scholar] [CrossRef]
- Abdissa, N.; Frese, M.; Sewald, N. Antimicrobial abietane-type diterpenoids from Plectranthus punctatus. Molecules 2017, 22, 1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, G.; Zhu, X.; Li, P.; Zhang, Q.; Cao, J. New activity for old drug: In vitro activities of vitamin K3 and menadione sodium bisulfite against methicillin-resistant Staphylococcus aureus. Afr. J. Pharm. Pharmacol. 2014, 8, 364–371. [Google Scholar]
Compounds a | Structure Types | LogP b | LogD7.40 b | MIC (μM) c | Log10(MIC) c |
---|---|---|---|---|---|
2 | Dihydroflavones | 5.09 | 4.92 | 11.3 | 1.0531 |
3 | Dihydroflavones | 7.02 | 6.8 | 8.85 | 0.9469 |
4 | Dihydroflavones | 5.29 | 5.09 | 14.7 | 1.1673 |
6 | Dihydroflavones | 7.02 | 6.81 | 23.7 | 1.3747 |
7 | Dihydroflavones | 4.18 | 4.09 | 25.9 | 1.4133 |
8 | Dihydroflavones | 4.18 | 3.98 | 25.9 | 1.4133 |
9 | Dihydroflavonols | 5.74 | 5.5 | 22.7 | 1.3560 |
10 | Dihydroflavones | 6.52 | 6.33 | 5.9 | 0.7709 |
11 | Dihydroflavones | 6.30 | 6.08 | 5.7 | 0.7559 |
12 | Dihydroflavones | 7.05 | 6.83 | 5.5 | 0.7404 |
13 | Dihydroflavones | 7.27 | 7.09 | 5.7 | 0.7559 |
16 | Dihydroflavones | 7.24 | 7.06 | 9.15 | 0.9614 |
17 | Dihydroflavones | 4.56 | 4.37 | 10.5 | 1.0212 |
20 | Dihydroflavones | 5.56 | 5.34 | 52.8 | 1.7226 |
21 | Dihydroflavones | 6.54 | 6.32 | 9.15 | 0.9614 |
22 | Dihydroflavones | 6.61 | 6.39 | 11.35 | 1.0550 |
23 | Dihydroflavones | 5.18 | 4.96 | 85.05 | 1.9297 |
24 | Dihydroflavonols | 6.25 | 5.97 | 8.05 | 0.9058 |
25 | Dihydroflavones | 7.02 | 6.81 | 13.65 | 1.1351 |
26 | Dihydroflavones | 7.32 | 7.12 | 10.6 | 1.0253 |
27 | Dihydroflavones | 6.72 | 6.51 | 20.4 | 1.3096 |
28 | Dihydroflavones | 3.27 | 3.04 | 233.7 | 2.3687 |
29 | Dihydroflavones | 4.60 | 4.38 | 84.4 | 1.9263 |
30 | Dihydroflavones | 4.27 | 4.05 | 84.1 | 1.9248 |
31 | Dihydroflavones | 4.67 | 4.46 | 186.4 | 2.2704 |
32 | Dihydroflavones | 6.10 | 5.76 | 107.3 | 2.0306 |
33 | Dihydroflavones | 5.63 | 5.29 | 113.6 | 2.0554 |
34 | Flavonols | 4.52 | 3.84 | 140.2 | 2.1467 |
35 | Flavonols | 4.52 | 3.93 | 140.2 | 2.1467 |
36 | Flavonols | 6.20 | 5.53 | 73 | 1.8633 |
37 | Dihydroflavones | 6.72 | 6.51 | 9.5 | 0.9777 |
38 | Dihydroflavones | 7.32 | 7.12 | 14.75 | 1.1688 |
39 | Dihydroflavones | 8.75 | 8.54 | 24.45 | 1.3883 |
40 | Dihydroflavones | 7.32 | 7.13 | 24.6 | 1.3909 |
41 | Dihydroflavones | 5.94 | 5.75 | 90.8 | 1.9581 |
42 | Dihydroflavones | 7.97 | 7.78 | 19 | 1.2788 |
43 | Dihydroflavones | 6.74 | 6.50 | 37.9 | 1.5786 |
44 | Dihydroflavones | 8.84 | 8.64 | 12.25 | 1.0881 |
45 | Dihydroflavonols | 3.79 | 3.67 | 251.75 | 2.4010 |
46 | Dihydroflavonols | 3.79 | 3.53 | 167.8 | 2.2248 |
47 | Dihydroflavonols | 3.92 | 3.59 | 42.1 | 1.6243 |
48 | Dihydroflavonols | 4.67 | 4.35 | 61 | 1.7853 |
49 | Dihydroflavonols | 4.11 | 3.67 | 84.5 | 1.9269 |
52 | Dihydroflavonols | 4.51 | 4.27 | 87.8 | 1.9435 |
53 | Dihydroflavonols | 2.42 | 2.11 | 1734.6 | 3.2392 |
54 | Dihydroflavonols | 4.64 | 4.34 | 88.3 | 1.9460 |
55 | Dihydroflavones | 6.52 | 6.33 | 11.05 | 1.0434 |
56 | Dihydroflavones | 8.76 | 8.70 | 9 | 0.9542 |
57 | Dihydroflavones | 4.72 | 4.51 | 24.25 | 1.3847 |
58 | Dihydroflavones | 6.52 | 6.33 | 14.7 | 1.1673 |
59 | Dihydroflavones | 5.89 | 5.67 | 17.75 | 1.2492 |
60 | Dihydroflavones | 5.89 | 5.68 | 21.3 | 1.3284 |
61 | Dihydroflavones | 6.60 | 6.35 | 22.05 | 1.3434 |
62 | Dihydroflavones | 5.81 | 5.62 | 28.4 | 1.4533 |
63 | Dihydroflavones | 5.81 | 5.62 | 28.4 | 1.4533 |
64 | Dihydroflavones | 4.56 | 4.37 | 35.1 | 1.5453 |
66 | Dihydroflavones | 3.19 | 2.96 | 734.6 | 2.8661 |
67 | Flavones | 4.20 | 3.77 | 184.7 | 2.2665 |
70 | Flavonols | 3.10 | 2.32 | 670.5 | 0.7597 |
72 | Isoflavones | 7.33 | 6.89 | 5.75 | 2.9485 |
73 | Flavonols | 2.83 | 2.16 | 888.1 | 1.5653 |
75 | Dihydroflavonols | 8.63 | 8.17 | 36.75 | 0.7284 |
76 | Flavones | 6.59 | 6.40 | 5.35 | 0.8325 |
77 | Dihydroflavones | 6.60 | 6.42 | 6.8 | 1.4518 |
81 | Chalcones | 4.95 | 4.82 | 28.3 | 1.1508 |
82 | Chalcones | 4.95 | 4.82 | 14.15 | 1.5502 |
86 | Isoflavones | 5.67 | 5.07 | 35.5 | 2.5715 |
87 | Isoflavones | 3.15 | 2.91 | 372.8 | 2.1166 |
88 | Isoflavones | 5.38 | 5.12 | 130.8 | 1.7239 |
89 | Flavonols | 4.15 | 3.48 | 52.95 | 1.0434 |
91 | Dihydroisoflavane | 6.32 | 6.32 | 11.05 | 1.4031 |
92 | Dihydroisoflavane | 4.41 | 4.4 | 25.3 | 1.4609 |
93 | Dihydroisoflavane | 4.18 | 4.18 | 28.9 | 1.7649 |
94 | Other type | 6.64 | 6.63 | 58.2 | 3.2186 |
97 | Flavonols | 2.62 | 1.95 | 1654.3 | 2.5505 |
113 | Chalcones | 3.23 | 3.10 | 355.2 | 2.6985 |
114 | Chalcones | 3.40 | 3.26 | 499.5 | 2.1318 |
115 | Isoflavones | 5.03 | 4.48 | 135.45 | 2.1649 |
116 | Isoflavones | 4.63 | 4.07 | 146.2 | 2.2399 |
118 | Isoflavones | 5.69 | 5.4 | 45.41 | 1.2940 |
119 | Isoflavones | 7.33 | 7.16 | 19.68 | 1.8510 |
120 | Isoflavones | 5.24 | 4.69 | 70.95 | 2.2398 |
121 | Isoflavones | 4.70 | 4.27 | 173.7 | 1.5786 |
122 | Isoflavones | 7.13 | 6.89 | 37.9 | 2.1149 |
123 | Dihydroisoflavones | 4.56 | 4.27 | 130.3 | 2.1318 |
124 | Dihydroisoflavones | 5.47 | 5.21 | 135.45 | 1.9557 |
125 | Dihydroisoflavones | 5.47 | 5.21 | 90.3 | 2.0964 |
126 | Dihydroisoflavones | 4.83 | 4.67 | 124.85 | 1.2765 |
127 | Dihydroisoflavones | 6.69 | 6.5 | 18.9 | 1.6375 |
128 | Other type | 5.99 | 5.98 | 43.4 | 2.5224 |
130 | Other type | 5.61 | 5.59 | 65.15 | 1.6721 |
133 | Other type | 4.10 | 4.10 | 47 | 0.7597 |
Equation Number | Sample Numbers (n) | Parameters b (x) | Regression Equation (r c) |
---|---|---|---|
(1) | 92 | LogP | y = −0.1285 x6 + 0.7944 x5 + 51.785 x4 − 947.64 x3 + 6638.7 x2 − 21,273 x + 26,087 (0.9703) |
(2) | 92 | LogD7.40 | y = 0.2337 x6 − 9.1209 x5 + 146.54 x4 − 1240.3 x3 + 5837.4 x2 − 14,534 x + 15,094 (0.9462) |
(3) | 66 d | LogP | y = −1.6745 x5 + 56.143 x4 − 741.93 x3 + 4831.8 x2 − 15,531 x + 19,805 (0.9349) |
(4) | 66 d | LogD7.40 | y = −1.1474 x5 + 38.802 x4 − 515.39 x3 + 3361.9 x2−10,789 x + 13,706 (0.9309) |
Equation Number | Coefficient of Determination (R2) | Residual Standard Deviation (s) | Goodness of Fit |
---|---|---|---|
(1) | 0.9413 | 68.1127 | The best one |
(2) | 0.8949 | 91.1187 | The better one |
(3) | 0.8740 | 89.5452 | — |
(4) | 0.8666 | 92.1391 | — |
Structural Segment | Contribution for the Lipophilicity Parameter LogP Value | The Antimicrobial Structure–Activity Relationship of Plant Flavonoids |
---|---|---|
Structural skeleton (Ring C) | (1) The LogP value for Chalcones > dihydrochalcones, flavonols > flavones, dihydroisoflavones, dihydroflavones > isoflavones, dihydroflavonols. (2) When ring C is open, the LogP values remarkably increase, such as chalcones and dihydrochalcones. | Overall consistency with that reported [7,8,13,14]. |
Hydroxyl group | (1) The hydroxyl group substituting on ring A rather than ring B has greater contribution for the LogP value of flavonoids. | (1) Uncertain. |
(2) Generally, the contribution of hydroxyl groups substituting on ring A for the LogP value of flavonoids as: for flavones: 7-OH > 5-OH > 5,7-di-OH; for flavonols: 5-OH ≈ 7-OH > 5,7-di-OH; for chalcone, dihydrochalcones, dihydroisoflavones, dihydroflavones, isoflavones and dihydroflavonols: 5-OH > 5,7-di-OH > 7-OH. | (2) and (3) Overall, the contributions of hydroxyl groups for antimicrobial activity were consistent with that reported [7,8,13,14], while the contributed sequence was not presented. A new SAR was proposed as follows: The hydroxyls will increase the antimicrobial activity, while the molecules must have enough lipophilicity. Otherwise, the increase in hydroxyl would reduce the antimicrobial activity. Namely, the molecular lipophilicity would likely mask the influences on antimicrobial activity from the hydroxyls. | |
(3) Generally, the contribution of hydroxyl groups substituting on ring B for the LogP value of flavonoids as: 2’-OH ≥ 4’-OH (≈ 2’,4’-di-OH) > 3’,4’-di-OH (≈ 3’,4’,5’-tri-OH) > 2’,4’,5’-tri-OH > 2’,4’,6’-tri-OH. | ||
(4) The LogP values will be increased a little or remain unchanged when the hydroxyl groups are methylated. | (4) Antimicrobial activity increases or not depending on the position of methylated hydroxyls and the structural subclass [7,13,14]. | |
Isopentenyl chains | (1) The introductions of isopentenyl groups into the skeleton would remarkably increase the LogP values, while their substituted positions present no obvious influence on the LogP values. In addition, the number increase of isopentenyl units on structural skeleton will remarkably increase the LogP values. However, the dissociations of hydroxyls on structural skeleton will decrease along with the increase of isopentenyl units. | (1) Antimicrobial activity will remarkably increase, which is consistent with that reported [7,8,13,14]. However, a new SAR was proposed as follows: (1) the substituted positions of isopentenyl chains into the skeleton likely present no obvious influence on the antimicrobial activity; (2) the number increase of isopentenyl units on structural skeleton would increase the antimicrobial activity. However, too many isopentenyl units (usually, above 4) would lead to the slight decrease in antimicrobial activity. Both the above SARs were mainly summarized from the data of previous reports [18]. |
(2) The introductions of the hydroxyl group into the isopentenyl side chain would sharply reduce the LogP values. | (2) Antimicrobial activity would sharply reduce, which was first summarized from the data of previous reports [18]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, G.; Xia, X.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria. Pharmaceuticals 2022, 15, 1190. https://doi.org/10.3390/ph15101190
Yuan G, Xia X, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria. Pharmaceuticals. 2022; 15(10):1190. https://doi.org/10.3390/ph15101190
Chicago/Turabian StyleYuan, Ganjun, Xuexue Xia, Yingying Guan, Houqin Yi, Shan Lai, Yifei Sun, and Seng Cao. 2022. "Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria" Pharmaceuticals 15, no. 10: 1190. https://doi.org/10.3390/ph15101190
APA StyleYuan, G., Xia, X., Guan, Y., Yi, H., Lai, S., Sun, Y., & Cao, S. (2022). Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria. Pharmaceuticals, 15(10), 1190. https://doi.org/10.3390/ph15101190