hUMSC vs. hUMSC–Exosome: Which One Is Better for Epilepsy?
Abstract
:1. Introduction
2. The Rise of Seizures in Brain Areas
- A minimum of two unexplained seizures that happen more than 24 h apart.
- One unprovoked seizure and a likelihood of further seizures equal to the overall recurrence risk following two unprovoked seizures of at least 60% happening during the following ten years.
- The identification of an epileptic syndrome.
3. The Pros of hUMSC
4. hUMSC for Epilepsy
5. hUMSC–Exosomes for Epilepsy
6. Comparison of hUMSCs and hUMSC–Exosomes
- (I)
- Lack of intrinsic dangers associated with any cell-based therapy, including stem cells;
- (II)
- Lack of replication potential and risk of malignant transformation;
- (III)
- Lack of immunogenic response to infection and cancer;
- (IV)
- Specific actions.
7. The Route of Treatment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodarzi, P.; Aghayan, H.R.; Soleimani, M.; Norouzi-Javidan, A.; Mohamadi-Jahani, F.; Jahangiri, S.; Emami-Razavi, S.H.; Larijani, B.; Arjmand, B. Stem Cell Therapy for Treatment of Epilepsy. Acta Med. Iran. 2014, 52, 651–655. [Google Scholar] [PubMed]
- Zanirati, G.; Azevedo, P.N.; Marinowic, D.R.; Rodrigues, F.; de Oliveira Dias, A.C.; Venturin, G.T.; Greggio, S.; Simão, F.; DaCosta, J.C. Transplantation of Bone Marrow Mononuclear Cells Modulates Hippocampal Expression of Growth Factors in Chronically Epileptic Animals. CNS Neurosci. 2015, 21, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Louis Elan, D.; Mayer, S.A.; Rowland, L.P. Merritt’s Neurology, 13th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2016; ISBN 978-1-97-514122-6. [Google Scholar]
- Giussani, G.; Cricelli, C.; Mazzoleni, F.; Cricelli, I.; Pasqua, A.; Pecchioli, S.; Lapi, F.; Beghi, E. Prevalence and Incidence of Epilepsy in Italy Based on a Nationwide Database. Neuroepidemiology 2014, 43, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Steinbeck, J.A.; Lusardi, T.; Koch, P.; Lan, J.Q.; Wilz, A.; Segschneider, M.; Simon, R.P.; Brustle, O.; Boison, D. Suppression of Kindling Epileptogenesis by Adenosine Releasing Stem Cell-Derived Brain Implants. Brain 2007, 130, 1276–1288. [Google Scholar] [CrossRef]
- Shetty, A.K. Progress in Cell Grafting Therapy for Temporal Lobe Epilepsy. Neurotherapeutics 2011, 8, 721–735. [Google Scholar] [CrossRef] [Green Version]
- Roper, S.N.; Steindler, D.A. Stem Cells as a Potential Therapy for Epilepsy. Exp. Neurol. 2013, 244, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Song, K.-S.; Kang, H.; Jang, E.-C.; Kim, M.K.; Son, T. Il Antiadhesive Property of Photoreactive Azidophenyl Low-Molecular-Weight Chitosan in Rabbit Laminotomy Model. J. Chem. 2013, 2013, 297159. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Slater, N.; Perkins, A. Epilepsy: Treatment Options. Am. Fam. Physician 2017, 96, 87–96. [Google Scholar]
- Van Dycke, A.; Raedt, R.; Verstraete, A.; Theofilas, P.; Wadman, W.; Vonck, K.; Boison, D.; Boon, P. Astrocytes Derived from Fetal Neural Progenitor Cells as a Novel Source for Therapeutic Adenosine Delivery. Seizure 2010, 19, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Coras, R.; Siebzehnrubl, F.A.; Pauli, E.; Huttner, H.B.; Njunting, M.; Kobow, K.; Villmann, C.; Hahnen, E.; Neuhuber, W.; Weigel, D.; et al. Low Proliferation and Differentiation Capacities of Adult Hippocampal Stem Cells Correlate with Memory Dysfunction in Humans. Brain 2010, 133, 3359–3372. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, Y.; Chen, K.; Wang, X.; Wang, Z.; Lian, H.; Lin, Y.; Rong, X.; Chu, M.; Lin, J.; et al. Exosomes Derived from Umbilical Cord Mesenchymal Stem Cells Alleviate Viral Myocarditis through Activating AMPK/MTOR-mediated Autophagy Flux Pathway. J. Cell Mol. Med. 2020, 24, 7515–7530. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Bapat, A.; Jain, R.; Jeyaraman, N.; Jeyaraman, M. Exosomal Therapy—A New Frontier in Regenerative Medicine. Stem Cell Investig. 2021, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Carpentino, J.E.; Hartman, N.W.; Grabel, L.B.; Naegele, J.R. Region-Specific Differentiation of Embryonic Stem Cell-Derived Neural Progenitor Transplants into the Adult Mouse Hippocampus Following Seizures. J. Neurosci. Res. 2008, 86, 512–524. [Google Scholar] [CrossRef]
- Ghosh, D.; Yan, X.; Tian, Q. Gene Regulatory Networks in Embryonic Stem Cells and Brain Development. Birth Defects Res. C Embryo Today 2009, 87, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.-Y.; Shih, Y.-H.; Tseng, Y.; Ko, T.-L.; Fu, Y.-S.; Lin, Y.-Y. Xenograft of Human Umbilical Mesenchymal Stem Cells from Wharton’s Jelly as a Potential Therapy for Rat Pilocarpine-Induced Epilepsy. Brain Behav. Immun. 2016, 54, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Lai, R.C.; Chen, T.S.; Lim, S.K. Mesenchymal Stem Cell Exosome: A Novel Stem Cell-Based Therapy for Cardiovascular Disease. Regen. Med. 2011, 6, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Thakur, B.K.; Weiss, J.M.; Kim, H.S.; Peinado, H.; Lyden, D. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell 2016, 30, 836–848. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chopp, M.; Meng, Y.; Katakowski, M.; Xin, H.; Mahmood, A.; Xiong, Y. Effect of Exosomes Derived from Multipluripotent Mesenchymal Stromal Cells on Functional Recovery and Neurovascular Plasticity in Rats after Traumatic Brain Injury. J. Neurosurg. 2015, 122, 856–867. [Google Scholar] [CrossRef] [Green Version]
- Schorey, J.S.; Bhatnagar, S. Exosome Function: From Tumor Immunology to Pathogen Biology. Traffic 2008, 9, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Liu, W.; Lian, L.; Xu, Y.; Bai, X.; Xu, S.; Zhang, J. Stroke Treatment: Is Exosome Therapy Superior to Stem Cell Therapy? Biochimie 2020, 179, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in Adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Watanabe, H.; Nagata, E.; Kosakai, A.; Nakamura, M.; Yokoyama, M.; Tanaka, K.; Sasai, H. Disruption of the Epilepsy KCNQ2 Gene Results in Neural Hyperexcitability. J. Neurochem. 2001, 75, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Azizieh, R.; Orduz, D.; Van Bogaert, P.; Bouschet, T.; Rodriguez, W.; Schiffmann, S.N.; Pirson, I.; Abramowicz, M.J. Progressive Myoclonic Epilepsy-Associated Gene KCTD7 Is a Regulator of Potassium Conductance in Neurons. Mol. Neurobiol. 2011, 44, 111–121. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Zhang, K.; Tong, T.; Cui, R. The Progress of Epilepsy after Stroke. Curr. Neuropharmacol. 2017, 16, 71–78. [Google Scholar] [CrossRef]
- Englot, D.J.; Chang, E.F.; Vecht, C.J. Epilepsy and Brain Tumors. Handb. Clin. Neurol. 2016, 134, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.; Pohlmann-Eden, B.; Campbell, L.A.; Abel, H. Pharmacological Treatments for Preventing Epilepsy Following Traumatic Head Injury. Cochrane Database Syst. Rev. 2015, 8, 2015. [Google Scholar] [CrossRef]
- Woo, K.N.; Kim, K.; Ko, D.S.; Kim, H.-W.; Kim, Y.H. Alcohol Consumption on Unprovoked Seizure and Epilepsy: An Updated Meta-Analysis. Drug Alcohol. Depend. 2022, 232, 109305. [Google Scholar] [CrossRef]
- Pessoa, A.; van der Linden, V.; Yeargin-Allsopp, M.; Carvalho, M.D.C.G.; Ribeiro, E.M.; Van Naarden Braun, K.; Durkin, M.S.; Pastula, D.M.; Moore, J.T.; Moore, C.A. Motor Abnormalities and Epilepsy in Infants and Children With Evidence of Congenital Zika Virus Infection. Pediatrics 2018, 141, S167–S179. [Google Scholar] [CrossRef] [Green Version]
- Gailus, B.; Naundorf, H.; Welzel, L.; Johne, M.; Römermann, K.; Kaila, K.; Löscher, W. Long-term Outcome in a Noninvasive Rat Model of Birth Asphyxia with Neonatal Seizures: Cognitive Impairment, Anxiety, Epilepsy, and Structural Brain Alterations. Epilepsia 2021, 62, 2826–2844. [Google Scholar] [CrossRef]
- Saniya, K.; Patil, B.; Chavan, M.; Prakash, K.; Sailesh, K.; Archana, R.; Johny, M. Neuroanatomical Changes in Brain Structures Related to Cognition in Epilepsy: An Update. J. Nat. Sci. Biol. Med. 2017, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, E.; Gupta, A.; Lachhwani, D.K. The Treatment of Epilepsy: Principles & Practice; Lippincott Williams & Wilkins: Ohio, OH, USA, 2006; ISBN 0781749956. [Google Scholar]
- Kaur, H.; Kumar, B.; Medhi, B. Antiepileptic Drugs in Development Pipeline: A Recent Update. eNeurologicalSci 2016, 4, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Malgieri, A.; Kantzari, E.; Patrizi, M.P.; Gambardella, S. Bone Marrow and Umbilical Cord Blood Human Mesenchymal Stem Cells: State of the Art. Int. J. Clin. Exp. Med. 2010, 3, 248–269. [Google Scholar] [PubMed]
- Tian, N.; Boring, M.; Kobau, R.; Zack, M.M.; Croft, J.B. Active Epilepsy and Seizure Control in Adults—United States, 2013 and 2015. MMWR Morb. Mortal Wkly. Rep. 2018, 67, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malek, N.; Heath, C.A.; Greene, J. A Review of Medication Adherence in People with Epilepsy. Acta Neurol. Scand. 2017, 135, 507–515. [Google Scholar] [CrossRef]
- Freeman, J.M.; Kossoff, E.H. Ketosis and the Ketogenic Diet, 2010: Advances in Treating Epilepsy and Other Disorders. Adv. Pediatr. 2010, 57, 315–329. [Google Scholar] [CrossRef]
- Salanova, V. Deep Brain Stimulation for Epilepsy. Epilepsy Behav. 2018, 88, 21–24. [Google Scholar] [CrossRef]
- Wagnon, J.L. Promoting CRISPRa for Targeted Treatment of Epilepsy. Epilepsy Curr. 2020, 20, 227–229. [Google Scholar] [CrossRef]
- Broxmeyer, H.E. Cord Blood Hematopoietic Stem Cell Transplantation; Harvard Stem Cell Institute: Cambridge, MA, USA, 2008. [Google Scholar]
- Shahrokhi, S.; Menaa, F.; Alimoghaddam, K.; McGuckin, C.; Ebtekar, M. Insights and Hopes in Umbilical Cord Blood Stem Cell Transplantations. J. Biomed. Biotechnol. 2012, 2012, 572821. [Google Scholar] [CrossRef] [Green Version]
- Gluckman, E. Hematopoietic Stem-Cell Transplants Using Umbilical-Cord Blood. N. Engl. J. Med. 2001, 344, 1860–1861. [Google Scholar] [CrossRef]
- Revencu, T.; Trifan, V.; Nacu, L.; Gutium, T.; Globa, L.; Motoc, A.G.M.; Nacu, V. Collection, Isolation and Characterization of the Stem Cells of Umbilical Cord Blood. Rom. J. Morphol. Embryol. 2013, 54, 291–297. [Google Scholar] [PubMed]
- Matsumoto, T.; Mugishima, H. Non-Hematopoietic Stem Cells in Umbilical Cord Blood. Int. J. Stem Cells 2009, 2, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019, 2019, 9628536. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hong, Y.; Cho, E.; Kim, G.B.; Kim, I.-S. Extracellular Vesicles as a Platform for Membrane-Associated Therapeutic Protein Delivery. J. Extracell. Vesicles 2018, 7, 1440131. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, M.; Cho, J.-H.; Leung, A.; Savvidis, G.; Ahn, S.; Moon, M.; Lee, P.K.J.; Han, J.J.; Azimi, N.; Kim, K.-S.; et al. HPSC-Derived Maturing GABAergic Interneurons Ameliorate Seizures and Abnormal Behavior in Epileptic Mice. Cell Stem Cell 2014, 15, 559–573. [Google Scholar] [CrossRef] [Green Version]
- Hunt, R.F.; Boychuk, J.A.; Smith, B.N. Neural Circuit Mechanisms of Post–Traumatic Epilepsy. Front. Cell Neurosci. 2013, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.-S.; Cheng, Y.-C.; Lin, M.-Y.A.; Cheng, H.; Chu, P.-M.; Chou, S.-C.; Shih, Y.-H.; Ko, M.-H.; Sung, M.-S. Conversion of Human Umbilical Cord Mesenchymal Stem Cells in Wharton’s Jelly to Dopaminergic Neurons In Vitro: Potential Therapeutic Application for Parkinsonism. Stem Cells 2006, 24, 115–124. [Google Scholar] [CrossRef]
- Mitchell, K.E.; Weiss, M.L.; Mitchell, B.M.; Martin, P.; Davis, D.; Morales, L.; Helwig, B.; Beerenstrauch, M.; Abou-Easa, K.; Hildreth, T.; et al. Matrix Cells from Wharton’s Jelly Form Neurons and Glia. Stem Cells 2003, 21, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hung, S.; Peng, S.; Huang, C.; Wei, H.; Guo, Y.; Fu, Y.; Lai, M.; Chen, C. Mesenchymal Stem Cells in the Wharton’s Jelly of the Human Umbilical Cord. Stem Cells 2004, 22, 1330–1337. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; Ko, T.-L.; Shih, Y.-H.; Lin, M.-Y.A.; Fu, T.-W.; Hsiao, H.-S.; Hsu, J.-Y.C.; Fu, Y.-S. Human Umbilical Mesenchymal Stem Cells Promote Recovery After Ischemic Stroke. Stroke 2011, 42, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-C.; Shih, Y.-H.; Ko, M.-H.; Hsu, S.-Y.; Cheng, H.; Fu, Y.-S. Transplantation of Human Umbilical Mesenchymal Stem Cells from Wharton’s Jelly after Complete Transection of the Rat Spinal Cord. PLoS ONE 2008, 3, e3336. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, S.; He, L.; Tang, F.; Han, X.; Deng, W.; Lin, Z.; Huang, R.; Li, Z. Ameliorating Effect of Umbilical Cord Mesenchymal Stem Cells in a Human Induced Pluripotent Stem Cell Model of Dravet Syndrome. Mol. Neurobiol. 2022, 59, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Herberts, C.A.; Kwa, M.S.; Hermsen, H.P. Risk Factors in the Development of Stem Cell Therapy. J. Transl. Med. 2011, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.; Nam, G.-H.; Hong, Y.; Kim, Y.K.; Kim, D.-H.; Yang, Y.; Kim, I.-S. Comparison of Exosomes and Ferritin Protein Nanocages for the Delivery of Membrane Protein Therapeutics. J. Control Release 2018, 279, 326–335. [Google Scholar] [CrossRef]
- György, B.; Hung, M.E.; Breakefield, X.O.; Leonard, J.N. Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions. Annu. Rev. Pharm. Toxicol. 2015, 55, 439–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; Zhang, H.-X.; He, C.-P.; Fan, S.; Zhu, Y.-L.; Qi, C.; Huang, N.-P.; Xiao, Z.-D.; Lu, Z.-H.; Tannous, B.A.; et al. Surface Functionalized Exosomes as Targeted Drug Delivery Vehicles for Cerebral Ischemia Therapy. Biomaterials 2018, 150, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Ryan, A.E.; Griffin, M.D.; Ritter, T. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Toward Cell-Free Therapeutic Applications. Mol. Ther. 2015, 23, 812–823. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yin, Y.; Lai, R.C.; Tan, S.S.; Choo, A.B.H.; Lim, S.K. Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells Dev. 2014, 23, 1233–1244. [Google Scholar] [CrossRef]
- Lee, C.; Mitsialis, S.A.; Aslam, M.; Vitali, S.H.; Vergadi, E.; Konstantinou, G.; Sdrimas, K.; Fernandez-Gonzalez, A.; Kourembanas, S. Exosomes Mediate the Cytoprotective Action of Mesenchymal Stromal Cells on Hypoxia-Induced Pulmonary Hypertension. Circulation 2012, 126, 2601–2611. [Google Scholar] [CrossRef] [Green Version]
- Jeyaraman, M.; Muthu, S.; Gulati, A.; Jeyaraman, N.; GS, P.; Jain, R. Mesenchymal Stem Cell–Derived Exosomes: A Potential Therapeutic Avenue in Knee Osteoarthritis. Cartilage 2021, 13, 1572S–1585S. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Z.; Hong, M.M.; Zhang, H.; Chen, C.; Xiao, M.; Wang, J.; Yao, F.; Ba, M.; Liu, J.; et al. Proangiogenic Compositions of Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells. PLoS ONE 2014, 9, e115316. [Google Scholar] [CrossRef] [PubMed]
- Costa-Ferro, Z.S.M.; de Borba Cunha, F.; de Freitas Souza, B.S.; Leal, M.M.T.; da Silva, A.A.; de Bellis Kühn, T.I.B.; Forte, A.; Sekiya, E.J.; Soares, M.B.P.; dos Santos, R.R. Antiepileptic and Neuroprotective Effects of Human Umbilical Cord Blood Mononuclear Cells in a Pilocarpine-Induced Epilepsy Model. Cytotechnology 2014, 66, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waloschková, E.; Gonzalez-ramos, A.; Mikroulis, A.; Kudláček, J.; Andersson, M.; Ledri, M.; Kokaia, M. Human Stem Cell-derived Gabaergic Interneurons Establish Efferent Synapses onto Host Neurons in Rat Epileptic Hippocampus and Inhibit Spontaneous Recurrent Seizures. Int. J. Mol. Sci. 2021, 22, 13243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-X.; Zhao, W.; Gu, P.; Zhou, Y.-J.; Wu, R.-Y.; Zhou, L.-Y.; Chen, H.-X.; Zhang, L.-Q.; Zhang, K.; Xu, H.-J.; et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Alleviate Neuronal Damage in a Rat Model of Parkinson’s Disease by Inhibiting Microglia-Mediated Pyroptosis. Available online: https://assets.researchsquare.com/files/rs-1663711/v1/45906765-6cd8-4674-8456-731b93e7f221.pdf?c=1653666935 (accessed on 4 October 2022).
- Bunggulawa, E.J.; Wang, W.; Yin, T.; Wang, N.; Durkan, C.; Wang, Y.; Wang, G. Recent Advancements in the Use of Exosomes as Drug Delivery Systems. J. Nanobiotechnol. 2018, 16, 81. [Google Scholar] [CrossRef] [Green Version]
- Jan, A.T.; Malik, M.A.; Rahman, S.; Yeo, H.R.; Lee, E.J.; Abdullah, T.S.; Choi, I. Perspective Insights of Exosomes in Neurodegenerative Diseases: A Critical Appraisal. Front. Aging Neurosci. 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.; Divers, R.; Kedar, R.; Mehindru, A.; Mehindru, A.; Borlongan, M.C.; Borlongan, C.V. Discarded Wharton Jelly of the Human Umbilical Cord: A Viable Source for Mesenchymal Stromal Cells. Cytotherapy 2015, 17, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Ao, Q.; Wang, X.; Cao, Y.; Liu, Y.; Zheng, S.G.; Tian, X. Mesenchymal Stem Cell–Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front. Pharmacol. 2021, 11, 590470. [Google Scholar] [CrossRef]
- Dong, R.; Liu, Y.; Yang, Y.; Wang, H.; Xu, Y.; Zhang, Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. Biomed. Res. Int. 2019, 2019, 645823. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Park, H.-K.; Auh, Q.-S.; Nah, H.; Lee, J.S.; Moon, H.-J.; Heo, D.N.; Kim, I.S.; Kwon, I.K. Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 1541. [Google Scholar] [CrossRef] [Green Version]
- Musiał-Wysocka, A.; Kot, M.; Majka, M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transpl. 2019, 28, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Hmadcha, A.; Martin-Montalvo, A.; Gauthier, B.R.; Soria, B.; Capilla-Gonzalez, V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front. Bioeng. Biotechnol. 2020, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.S.; Suh, J.H.; Lee, H.J.; Bang, E.S.; Lee, J.M. Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. Int. J. Mol. Sci. 2020, 21, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Shin, J.Y.; Kim, H.N.; Oh, S.H.; Song, S.K.; Lee, P.H. Mesenchymal Stem Cells Stabilize the Blood–Brain Barrier through Regulation of Astrocytes. Stem Cell Res. 2015, 6, 187. [Google Scholar] [CrossRef] [Green Version]
- Fukumura, S.; Sasaki, M.; Kataoka-Sasaki, Y.; Oka, S.; Nakazaki, M.; Nagahama, H.; Morita, T.; Sakai, T.; Tsutsumi, H.; Kocsis, J.D.; et al. Intravenous Infusion of Mesenchymal Stem Cells Reduces Epileptogenesis in a Rat Model of Status Epilepticus. Epilepsy Res. 2018, 141, 56–63. [Google Scholar] [CrossRef]
- Abdanipour, A.; Tiraihi, T.; Mirnajafi-Zadeh, J. Improvement of the Pilocarpine Epilepsy Model in Rat Using Bone Marrow Stromal Cell Therapy. Neurol. Res. 2011, 33, 625–632. [Google Scholar] [CrossRef]
- Costa-Ferro, Z.S.M.; Vitola, A.S.; Pedroso, M.F.; Cunha, F.B.; Xavier, L.L.; Machado, D.C.; Soares, M.B.P.; Ribeiro-dos-Santos, R.; DaCosta, J.C. Prevention of Seizures and Reorganization of Hippocampal Functions by Transplantation of Bone Marrow Cells in the Acute Phase of Experimental Epilepsy. Seizure 2010, 19, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Huicong, K.; Zheng, X.; Furong, W.; Zhouping, T.; Feng, X.; Qi, H.; Xiaoyan, L.; Xiaojiang, H.; Na, Z.; Ke, X.; et al. The Imbalanced Expression of Adenosine Receptors in an Epilepsy Model Corrected Using Targeted Mesenchymal Stem Cell Transplantation. Mol. Neurobiol. 2013, 48, 921–930. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Long, Q.; Upadhya, D.; Hattiangady, B.; Kim, D.-K.; An, S.Y.; Shuai, B.; Prockop, D.J.; Shetty, A.K. Intranasal MSC-Derived A1-Exosomes Ease Inflammation, and Prevent Abnormal Neurogenesis and Memory Dysfunction after Status Epilepticus. Proc. Natl. Acad. Sci. USA 2017, 114, E3536–E3545. [Google Scholar] [CrossRef] [Green Version]
- Voulgari-Kokota, A.; Fairless, R.; Karamita, M.; Kyrargyri, V.; Tseveleki, V.; Evangelidou, M.; Delorme, B.; Charbord, P.; Diem, R.; Probert, L. Mesenchymal Stem Cells Protect CNS Neurons against Glutamate Excitotoxicity by Inhibiting Glutamate Receptor Expression and Function. Exp. Neurol. 2012, 236, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Salari, V.; Mengoni, F.; Del Gallo, F.; Bertini, G.; Fabene, P.F. The Anti-Inflammatory Properties of Mesenchymal Stem Cells in Epilepsy: Possible Treatments and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 9683. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.-J.; Shang, C.-Z.; Li, G.; Niu, Q.; Luo, Y.-C.; Yang, Y.; Meng, H.-P.; Yin, H.-J.; Zhang, H.-X.; Zhao, M.-L.; et al. The Distribution of Transplanted Umbilical Cord Mesenchymal Stem Cells in Large Blood Vessel of Experimental Design With Traumatic Brain Injury. J. Craniofacial. Surg. 2017, 28, 1615–1619. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Liu, R.; Jiang, J.; Peng, J.; Yang, C.; Zhang, W.; Wang, S.; Song, J. What Is the Impact of Human Umbilical Cord Mesenchymal Stem Cell Transplantation on Clinical Treatment? Stem Cell Res. 2020, 11, 519. [Google Scholar] [CrossRef]
- Qi, L.; Xue, X.; Sun, J.; Wu, Q.; Wang, H.; Guo, Y.; Sun, B. The Promising Effects of Transplanted Umbilical Cord Mesenchymal Stem Cells on the Treatment in Traumatic Brain Injury. J. Craniofacial Surg. 2018, 29, 1689–1692. [Google Scholar] [CrossRef]
Animal Model | Agents | Result | References |
---|---|---|---|
Pilocarpine-induced epilepsy rat model | hUMSC from Wharton’s Jelly | Intra-hippocampal transplantation of hUMSCs can suppress the spontaneous recurrent seizures in a pilocarpine TLE model. hUMSC transplantation has therapeutic benefits for the development of epilepsy. | [17] |
Pilocarpine-induced epilepsy rat model | Human umbilical blood mononuclear cells | hUMCs provide prominent antiepileptic and neuroprotective effects in the experimental model of epilepsy and reinforces that early interventions can protect the brain against the establishment of epilepsy | [66] |
Kainate-induced TLE rat model | GABAergic interneuron precursors from human embryonic stem cells (hESCs) | Decreased the frequency and duration of spontaneous recurrent seizures | [67] |
Parkinson’s disease rats induced by 6-hydroxydopamine (6-OHDA) | hUMSC–exosomes | Exosomes were absorbed by dopaminergic neurons and microglia in the affected side, and exosome treatment inhibited microglia activation and prevented nigralstriatal dopamine neuron damage | [68] |
Factors | MSC–Exosomes | MSCs | References |
---|---|---|---|
Stress responses and immunological rejection increase the chance of necrosis. | Low risk | High risk | [72,73] |
Incorporation with new compositions or methods of carrying certain substances or drugs | Exosomes can be used as carrier particles for specific components and can be combined with existing or newly created compositions or procedures | Currently, there is no method that is able to combine MSCs with other therapeutic substances | [72,73] |
Tumorigenicity potential | Low risk | High risk | [72,74,75] |
Isolation and purification methods | Difficulty in isolation and purification of exosomes with specific bioactive molecules | Easy to isolate and purify | |
Immune problems/compatibility | Excellent immune-compatibility and non-cytotoxic | Minimal risk of immune problems | [72,74] |
Ethical and political issues | Relatively free from ethical and political issues | Have ethical and political issues | [74] |
Mechanism of action | Targeting efficiency through specific proteins in the exosome membranes and natural homing ability. Good delivery vehicle for both hydrophobic and hydrophilic drugs | Multilineal differentiation and highly proliferative | [72,74,76] |
Stability upon freezing and thawing | Stable | Less stable | [74] |
The risk of transmitting genetic and infectious diseases | No/low risk | Higher than exosomes | [74] |
Previous research | Limited and insufficient research on exosome-based therapeutics | Adequate research on MSC-based therapies | [74,77] |
Ability to pass the BBB (blood–brain barrier) | Exosomes pass more easily through the BBB | MSC has relative difficulty passing the BBB | [72,78] |
Clearance from blood | Rapid clearance from blood after administration | Slow clearance from blood after administration | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hastuti, S.; Idroes, R.; Imran, I.; Ramli, Y.; Abas, A.H.; Tallei, T.E. hUMSC vs. hUMSC–Exosome: Which One Is Better for Epilepsy? Pharmaceuticals 2022, 15, 1247. https://doi.org/10.3390/ph15101247
Hastuti S, Idroes R, Imran I, Ramli Y, Abas AH, Tallei TE. hUMSC vs. hUMSC–Exosome: Which One Is Better for Epilepsy? Pharmaceuticals. 2022; 15(10):1247. https://doi.org/10.3390/ph15101247
Chicago/Turabian StyleHastuti, Sri, Rinaldi Idroes, Imran Imran, Yetty Ramli, Abdul Hawil Abas, and Trina Ekawati Tallei. 2022. "hUMSC vs. hUMSC–Exosome: Which One Is Better for Epilepsy?" Pharmaceuticals 15, no. 10: 1247. https://doi.org/10.3390/ph15101247
APA StyleHastuti, S., Idroes, R., Imran, I., Ramli, Y., Abas, A. H., & Tallei, T. E. (2022). hUMSC vs. hUMSC–Exosome: Which One Is Better for Epilepsy? Pharmaceuticals, 15(10), 1247. https://doi.org/10.3390/ph15101247