Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry
Abstract
:1. Introduction
2. Chalcones from Natural Sources
3. Synthesis of Chalcones
3.1. Conventional Synthesis of Chalcones
3.2. Greener Approaches for the Synthesis of Chalcones
3.2.1. Microwave-Assisted Method
3.2.2. Ultrasound-Irradiated Synthesis
3.2.3. Grinding Technique
3.3. Coupling Reactions
3.4. Miscellaneous Reactions
4. Chalcones against Infectious Diseases
4.1. Anti-Tubercular Activity
4.2. Antiviral Activity
4.3. Antimalarial Activity
4.4. Antibacterial Activity
5. Chalcones for Non-Infectious Diseases
5.1. Anti-Alzheimer’s Activity
5.2. Anticancer Activity
5.2.1. Anti-Breast-Cancer Activity
5.2.2. Anti-Lung-Cancer Activity
5.2.3. Chalcones with Broad-Spectrum Anticancer Activities
5.3. Antidiabetic Activity
5.4. Anti-Parkinson’s Activity
6. SAR Studies
7. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syam, S.; Abdelwahab, S.I.; Al-Mamary, M.A.; Mohan, S. Synthesis of Chalcones with Anticancer Activities. Molecules 2012, 17, 6179–6195. [Google Scholar] [CrossRef] [PubMed]
- Narender, T.; Papi Reddy, K. A Simple and Highly Efficient Method for the Synthesis of Chalcones by Using Borontrifluoride-Etherate. Tetrahedron Lett. 2007, 48, 3177–3180. [Google Scholar] [CrossRef]
- Constantinescu, T.; Lungu, C.N.; Jazvinš’cak, M.; Jembrek, J. Anticancer Activity of Natural and Synthetic Chalcones. Int. J. Mol. Sci. 2021, 22, 11306. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Mostafa, Y.A. A Facile Synthesis, Drug-Likeness, and in Silico Molecular Docking of Certain New Azidosulfonamide–Chalcones and Their in Vitro Antimicrobial Activity. Mon. Für Chem. Chem. Mon. 2020, 151, 417–427. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, D.; Zeng, H.; Ren, X.; Song, B.; Hu, D.; Gan, X. New chalcone derivatives: Synthesis, antiviral activity and mechanism of action. RSC Adv. 2020, 10, 24483–24490. [Google Scholar] [CrossRef]
- Osipova, V.P.; Polovinkina, M.A.; Telekova, L.R.; Velikorodov, A.V.; Stepkina, N.N.; Berberova, N.T. Synthesis and Antioxidant Activity of New Hydroxy Derivatives of Chalcones. Russ. Chem. Bull. 2020, 69, 504–509. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, W.; Huang, Y.; Zeng, X. Licochalcone B, a Chalcone Derivative from Glycyrrhiza Inflata, as a Multifunctional Agent for the Treatment of Alzheimer’s Disease. Nat. Prod. Res. 2020, 34, 736–739. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, W.; Peng, Y.; Jiang, Z.H.; Zhang, L.; Du, Z. Design, Synthesis and Anti-Tumor Activity of Novel Benzimidazole-Chalcone Hybrids as Non-Intercalative Topoisomerase II Catalytic Inhibitors. Molecules 2020, 25, 3180. [Google Scholar] [CrossRef]
- Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Gu, W.; Zyryanov, G.V. Design, Synthesis, Docking and Biological Evaluation of Chalcones as Promising Antidiabetic Agents. Bioorg. Chem. 2020, 95, 103527. [Google Scholar] [CrossRef]
- Maliyakkal, N.; Saleem, U.; Anwar, F.; Shah, M.A.; Ahmad, B.; Umer, F.; Almoyad, M.A.A.; Parambi, D.G.T.; Beeran, A.A.; Nath, L.R.; et al. Ameliorative Effect of Ethoxylated Chalcone-Based MAO-B Inhibitor on Behavioural Predictors of Haloperidol-Induced Parkinsonism in Mice: Evidence of Its Antioxidative Role against Parkinson’s Diseases. Environ. Sci. Pollut. Res. 2022, 29, 7271–7282. [Google Scholar] [CrossRef]
- Hsieh, H.-K.; Tsao, L.-T.; Wang, J.-P.; Lin, C.-N. Synthesis and Anti-Inflammatory Effect of Chalcones. J. Pharm. Pharmacol. 2000, 52, 163–171. [Google Scholar] [CrossRef] [PubMed]
- de Campos-Buzzi, F.; de Campos, J.P.; Tonini, P.P.; Corrêa, R.; Yunes, R.A.; Boeck, P.; Cechinel-Filho, V. Antinociceptive Effects of Synthetic Chalcones Obtained from Xanthoxyline. Arch. der Pharm. 2006, 339, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.I.; Mahmood, A.; Madni, M.; Masood, S.; Kashif, M. Synthesis, Characterization, Theoretical, Anti-Bacterial and Molecular Docking Studies of Quinoline Based Chalcones as a DNA Gyrase Inhibitor. Bioorg. Chem. 2014, 54, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, A.; Altintop, M.D.; Sever, B.; Gençer, H.K.; Kapkaç, H.A.; Atli, Ö.; Baysal, M. A New Series of Pyrrole-Based Chalcones: Synthesis and Evaluation of Antimicrobial Activity, Cytotoxicity, and Genotoxicity. Molecules 2017, 22, 2112. [Google Scholar] [CrossRef] [Green Version]
- Mojarrab, M.; Soltani, R.; Aliabadi, A. Pyridine Based Chalcones: Synthesis and Evaluation of Antioxidant Activity of 1-Phenyl-3-(Pyridin-2-Yl) Prop-2-En-1-One Derivatives. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, A.; Altintop, M.D.; Turan-Zitouni, G.; Çiftçi, G.A.; Ertorun, Ö.; Alataş, Ö.; Kaplancikli, Z.A. Synthesis and Evaluation of New Indole-Based Chalcones as Potential Antiinflammatory Agents. Eur. J. Med. Chem. 2015, 89, 304–309. [Google Scholar] [CrossRef]
- Chavan, H.V.; Adsul, L.K.; Kotmale, A.S.; Dhakane, V.D.; Thakare, V.N.; Bandgar, B.P. Design, Synthesis, Characterization and in Vitro and in Vivo Anti-Inflammatory Evaluation of Novel Pyrazole-Based Chalcones. J. Enzym. Inhib. Med. Chem. 2015, 30, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Naik, N.; Kumar, V.H.; Dias, S.M.; Swami, R.J. Novel 4-methoxy-2-acetyl benzofuran based chalcones: A new perceptivity into their antioxidant potentials. Int. J. Pharm. Pharm. Sci. 2013, 5, 242–247. [Google Scholar]
- Rajeshirke, M.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Enhancement of NLO Properties in OBO Fluorophores Derived from Carbazole-Coumarin Chalcones Containing Carboxylic Acid at the N-Alykl Terminal End. J. Phys. Chem. C 2018, 122, 14313–14325. [Google Scholar] [CrossRef]
- Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives. Molecules 2020, 25, 1047. [Google Scholar] [CrossRef] [Green Version]
- Parikh, K.; Joshi, D. Antibacterial and Antifungal Screening of Newly Synthesized Benzimidazole-Clubbed Chalcone Derivatives. Med. Chem. Res. 2013, 22, 3688–3697. [Google Scholar] [CrossRef]
- Bala, D.; Jinga, L.I.; Popa, M.; Hanganu, A.; Voicescu, M.; Bleotu, C.; Tarko, L.; Nica, S. Design, Synthesis, and Biological Evaluation of New Azulene-Containing Chalcones. Materials 2022, 15, 1629. [Google Scholar] [CrossRef]
- Singh, A.; Rani, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Piperazine-linked 4-aminoquinoline-chalcone/ferrocenyl-chalcone conjugates: Synthesis and antiplasmodial evaluation. Chem. Biol. Drug Des. 2017, 90, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, C.; Guo, S.; Fan, J.; Wang, L.; Shi, D. Chalcone-Analogue Fluorescent Probes for Detecting Thiophenols in Seawater Samples. Talanta 2019, 201, 301–308. [Google Scholar] [CrossRef]
- Malek, S.N.A.; Phang, C.W.; Ibrahim, H.; Wahab, N.A.; Sim, K.S. Phytochemical and Cytotoxic Investigations of Alpinia Mutica Rhizomes. Molecules 2011, 16, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.W.; Wang, J.S.; Wang, Y.H.; Xiao, H.T.; Hu, X.J.; Mu, S.Z.; Yan-Lin, M.; Lin, H.; He, H.P.; Li, N.; et al. Tarennane and Tarennone, Two Novel Chalcone Constituents from Tarenna Attenuata. Planta Med. 2007, 73, 496–498. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Kelsang, N.; Tu, G.; Kong, D.; Lu, J.; Zhang, Y.; Liang, H.; Tu, P.; Zhang, Q. Structurally Diverse Cytotoxic Dimeric Chalcones from Oxytropis Chiliophylla. J. Nat. Prod. 2018, 81, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Funakoshi-Tago, M.; Tanabe, S.; Tago, K.; Itoh, H.; Mashino, T.; Sonoda, Y.; Kasahara, T. Licochalcone A Potently Inhibits Tumor Necrosis Factor α-Induced Nuclear Factor-ΚB Activation through the Direct Inhibition of IκB Kinase Complex Activation. Mol Pharm. 2009, 76, 745–753. [Google Scholar] [CrossRef]
- Tomazela, D.M.; Pupo, M.T.; Passador, E.A.P.; da Silva, M.F.D.G.F.; Vieira, P.C.; Fernandes, J.B.; Rodrigues Fo, E.; Oliva, G.; Pirani, J.R. Pyrano Chalcones and a Flavone from Neoraputia Magnifica and Their Trypanosoma Cruzi Glycosomal Glyceraldehyde-3-Phosphate Dehydrogenase-Inhibitory Activities. Phytochemistry 2000, 55, 643–651. [Google Scholar] [CrossRef]
- Akihisa, T.; Tokuda, H.; Hasegawa, D.; Ukiya, M.; Kimura, Y.; Enjo, F.; Suzuki, T.; Nishino, H. Chalcones and Other Compounds from the Exudates of Angelica Keiskei and Their Cancer Chemopreventive Effects. J. Nat. Prod. 2006, 69, 38–42. [Google Scholar] [CrossRef]
- Cui, Y.; Ao, M.; Li, W.; Hu, J.; Yu, L. Anti-Inflammatory Activity of Licochalcone a Isolated from Glycyrrhiza Inflata. Z. Für Nat. Sect. C J. Biosci. 2008, 63, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, A.C.R.F.; Ehrenfried, C.A.; Lopez, B.G.C.; de Araujo, T.M.; Pascoal, V.D.B.; Gilioli, R.; Anheê, G.F.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Stefanello, M.A.; et al. Antiproliferative Activity and Induction of Apoptosis in PC-3 Cells by the Chalcone Cardamonin from Campomanesia Adamantium (Myrtaceae) in a Bioactivity-Guided Study. Molecules 2014, 19, 1843–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuntipaleepun, M.; Chakthong, S.; Ponglimanont, C.; Plodpai, P.; Voravuthikunchai, S.P. Antifungal and Cytotoxic Substances from the Stem Barks of Desmos Chinensis. Chin. Chem. Lett. 2012, 23, 587–590. [Google Scholar] [CrossRef]
- Liu, M.L.; Duan, Y.H.; Hou, Y.L.; Li, C.; Gao, H.; Dai, Y.; Yao, X.S. Nardoaristolones A and B, Two Terpenoids with Unusual Skeletons from Nardostachys Chinensis Batal. Org. Lett. 2013, 15, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.B.; Zhang, K.; Cheng, L.Y.; Mack, P. Butein, a Specific Protein Tyrosine Kinase Inhibitor. Biochem. Biophys. Res. Commun. 1998, 245, 435–438. [Google Scholar] [CrossRef]
- Ren, Y.; Yuan, C.; Qian, Y.; Chai, H.B.; Chen, X.; Goetz, M.; Kinghorn, A.D. Constituents of an Extract of Cryptocarya Rubra Housed in a Repository with Cytotoxic and Glucose Transport Inhibitory Effects. J. Nat. Prod. 2014, 77, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Rees, K.A.; Bermudez, C.; Edwards, D.J.; Elliott, A.G.; Ripen, J.E.; Seta, C.; Huang, J.X.; Cooper, M.A.; Fraser, J.A.; Yeo, T.C.; et al. Flemingin-Type Prenylated Chalcones from the Sarawak Rainforest Plant Desmodium Congestum. J. Nat. Prod. 2015, 78, 2141–2144. [Google Scholar] [CrossRef]
- Inamori, Y.; Baba, K.; Tsujibo, H.; Taniguch, M.; Nakata, K.; Kozawa, M. Antibacterial Activity of Two Chalcones, Xanthoangelol and 4-Hydroxyderricin, Isolated from the Root of Angelica Keiskei KOIDZUMI. Chem. Pharm. Bull. 1991, 39, 1604–1605. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.M.; Endo, E.H.; Cortez, D.A.G.; Nakamura, T.U.; Nakamura, C.V.; Dias Filho, B.P. Antimicrobial Effects of Piper Hispidum Extract, Fractions and Chalcones against Candida Albicans and Staphylococcus Aureus. J. Mycol. Médicale 2016, 26, 217–226. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, N.; Han, S.; Wang, D.; Mo, S.; Yu, L.; Huang, H.; Tsui, K.; Shen, J.; Chen, J. Dietary Compound Isoliquiritigenin Inhibits Breast Cancer Neoangiogenesis via VEGF/VEGFR-2 Signaling Pathway. PLoS ONE 2013, 8, e68566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarkar, S.A.; Kulkarni, R.R.; Dhas, V.V.; Chinchansure, A.A.; Hazra, P.; Joshi, S.P.; Ogale, S.B. Isobutrin from Butea Monosperma (Flame of the Forest): A Promising New Natural Sensitizer Belonging to Chalcone Class. ACS Appl. Mater. Interfaces 2011, 3, 2440–2444. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liang, J.; Zhang, J.; Wang, Y.; Chai, X. Natural Chalcones in Chinese Materia Medica: Licorice. Evidence-Based Complement. Altern. Med. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, H.S.; Bilal, A.; Ullah, R.; Iqbal, M.; Khan, S.; Ahmed, I.; Krohn, K.; Saleem, R.S.Z.; Hussain, H.; Faisal, A. Natural and Semisynthetic Chalcones as Dual FLT3 and Microtubule Polymerization Inhibitors. J. Nat. Prod. 2020, 83, 3111–3121. [Google Scholar] [CrossRef] [PubMed]
- Aoki, N.; Muko, M.; Ohta, E.; Ohta, S. C-Geranylated Chalcones from the Stems of Angelica Keiskei with Superoxide-Scavenging Activity. J. Nat. Prod. 2008, 71, 1308–1310. [Google Scholar] [CrossRef] [PubMed]
- Kil, Y.S.; Choi, S.K.; Lee, Y.S.; Jafari, M.; Seo, E.K. Chalcones from Angelica Keiskei: Evaluation of Their Heat Shock Protein Inducing Activities. J. Nat. Prod. 2015, 78, 2481–2487. [Google Scholar] [CrossRef]
- Daikonya, A.; Katsuki, S.; Kitanaka, S. Antiallergic Agents from Natural Sources 9. Inhibition of Nitric Oxide Production by Novel Chalcone Derivatives from Mallotus Philippinensis (Euphorbiaceae). Chem. Pharm. Bull. 2004, 52, 1326–1329. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.C.; Huang, X.A.; Lai, Z.Y.; Hu, Y.J.; Liu, H.J.; Cai, X.L. A New 3-Benzylchroman Derivative from Sappan Lignum (Caesalpinia Sappan). Molecules 2008, 13, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Phrutivorapongkul, A.; Lipipun, V.; Ruangrungsi, N.; Kirtikara, K.; Nishikawa, K.; Maruyama, S.; Watanabe, T.; Ishikawa, T. Studies on the Chemical Constituents of Stem Bark of Millettia Leucantha: Isolation of New Chalcones with Cytotoxic, Anti-Herpes Simplex Virus and Anti-Inflammatory Activities. Chem. Pharm. Bull. 2003, 51, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Svetaz, L.; Tapia, A.; López, S.N.; Furlán, R.L.E.; Petenatti, E.; Pioli, R.; Schmeda-Hirschmann, G.; Zacchino, S.A. Antifungal Chalcones and New Caffeic Acids Esters from Zuccagnia Punctata Acting against Soybean Infecting Fungi. J. Agric. Food Chem. 2004, 52, 3297–3300. [Google Scholar] [CrossRef]
- Wang, J.P.; Tsao, L.T.; Raung, S.L.; Lin, C.N. Investigation of the Inhibitory Effect of Broussochalcone A on Respiratory Burst in Neutrophils. Eur. J. Pharmacol. 1997, 320, 201–208. [Google Scholar] [CrossRef]
- Ohnogi, H.; Kudo, Y.; Tahara, K.; Sugiyama, K.; Enoki, T.; Hayami, S.; Sagawa, H.; Tanimura, Y.; Aoi, W.; Naito, Y.; et al. Six New Chalcones from Angelica Keiskei Inducing Adiponectin Production in 3T3-L1 Adipocytes. Biosci. Biotechnol. Biochem. 2012, 76, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, H.; Inoue, J.; Tamura, Y.; Mizutani, K. Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2002, 16, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.R.; Tupe, S.G.; Gample, S.P.; Chandgude, M.G.; Sarkar, D.; Deshpande, M.V.; Joshi, S.P. Antifungal Dimeric Chalcone Derivative Kamalachalcone e from Mallotus Philippinensis. Nat. Prod. Res. 2014, 28, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Strathmann, J.; Gerhauser, C. Anti-Proliferative and Apoptosis-Inducing Properties of Xanthohumol, a Prenylated Chalcone from Hops (Humulus Lupulus L.). In Natural Compounds as Inducers of Cell Death; Springer: Dordrecht, The Netherlands, 2012; Volume 1, pp. 69–93. [Google Scholar] [CrossRef]
- McRae, J.M.; Yang, Q.; Crawford, R.J.; Palombo, E.A. Acylated Flavonoid Tetraglycoside from Planchonia Careya Leaves. Phytochem. Lett. 2008, 1, 99–102. [Google Scholar] [CrossRef]
- Chung, M.-I.; Weng, J.-R.; Lai, M.-H.; Yen, M.-H.; Lin, C.-N. A New Chalcone, Xanthones, and a Xanthonolignoid from Hypericum geminiflorum. J. Nat. Prod. 1999, 62, 1033–1035. [Google Scholar] [CrossRef]
- Maxwell, C.A.; Hartwig, U.A.; Joseph, C.M.; Phillips, D.A. A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce Nod Genes of Rhizobium Meliloti. Plant Physiol 1989, 91, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.D.; Athira, C.K.; Manikandan, P.; Ramani, P. One-Pot Synthesis of Modified 4-Aryl-4H-Chromenes and Their Preliminary Anti-Cancer Studies. J. Indian Chem. Soc. 2019, 96, 19–22. [Google Scholar]
- Pandurangan, N.; Bose, C.; Banerji, A. Synthesis and Antioxygenic Activities of Seabuckthorn Flavone-3-Ols and Analogs. Bioorg. Med. Chem. Lett. 2011, 21, 5328–5330. [Google Scholar] [CrossRef]
- Hernawan; Purwono, B.; Triyono; Hanafi, M. The Use of Chitosan as a Solid Base Catalyst for the Chalcones Synthesis. IOP Conf. Ser. Earth Environ. Sci. 2020, 462, 2055. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S.; Velty, A. Activated Hydrotalcites as Catalysts for the Synthesis of Chalcones of Pharmaceutical Interest. J. Catal. 2004, 221, 474–482. [Google Scholar] [CrossRef]
- Mohammad, S.A.G.; Khoerunnisa, F.; Rigolet, S.; Jean Daou, T.; Ling, T.C.; Ng, E.P. Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone. Processes 2020, 8, 96. [Google Scholar] [CrossRef]
- Winter, C.; Caetano, J.N.; Araújo, A.B.C.; Chaves, A.R.; Ostroski, I.C.; Vaz, B.G.; Pérez, C.N.; Alonso, C.G. Activated Carbons for Chalcone Production: Claisen-Schmidt Condensation Reaction. Chem. Eng. J. 2016, 303, 604–610. [Google Scholar] [CrossRef]
- Elamathi, P.; Chandrasekar, G.; Balamurali, M.M. Nanoporous AlSBA-15 Catalysed Claisen–Schmidt Condensation for the Synthesis of Novel and Biologically Active Chalcones. J. Porous Mater. 2020, 27, 817–829. [Google Scholar] [CrossRef]
- Rafiee, E.; Rahimi, F. A Green Approach to the Synthesis of Chalcones via Claisen-Schmidt Condensation Reaction Using Cesium Salts of 12-Tungstophosphoric Acid as a Reusable Nanocatalyst. Mon. Für Chem. Chem. Mon. 2013, 144, 361–367. [Google Scholar] [CrossRef]
- Das, S.; Porashar, B.; Saikia, S.; Borah, R. Brönsted Acidic Ionic Liquids Catalysed Sequential Michael-Like Addition of Indole with Chalcones via Claisen-Schmidt Condensation. ChemistrySelect 2020, 5, 3041–3047. [Google Scholar] [CrossRef]
- Sazegar, M.R.; Mahmoudian, S.; Mahmoudi, A.; Triwahyono, S.; Jalil, A.A.; Mukti, R.R.; Nazirah Kamarudin, N.H.; Ghoreishi, M.K. Catalyzed Claisen–Schmidt Reaction by Protonated Aluminate Mesoporous Silica Nanomaterial Focused on the (E)-Chalcone Synthesis as a Biologically Active Compound. RSC Adv. 2016, 6, 11023–11031. [Google Scholar] [CrossRef]
- Jioui, I.; Dânoun, K.; Solhy, A.; Jouiad, M.; Zahouily, M.; Essaid, B.; Len, C.; Fihri, A. Modified Fluorapatite as Highly Efficient Catalyst for the Synthesis of Chalcones via Claisen–Schmidt Condensation Reaction. J. Ind. Eng. Chem. 2016, 39, 218–225. [Google Scholar] [CrossRef]
- Heidarzadeh, T.; Nami, N.; Zareyee, D. Preparation of (MWCNTs)-COOH/CeO2Hybrid as an Efficient Catalyst for Claisen-Schmidt Condensation. J. Appl. Chem. Res. 2021, 15, 44–57. [Google Scholar]
- Ke, F.; Qiu, L.G.; Zhu, J. Fe3O4@MOF Core-Shell Magnetic Microspheres as Excellent Catalysts for the Claisen-Schmidt Condensation Reaction. Nanoscale 2014, 6, 1596–1601. [Google Scholar] [CrossRef]
- Paul, A.; Devi, M.; Dhar, S.S. Incorporation of Nanosized ZnWO4 and Fe3O4 on Graphitic Carbon Nitride to Fabricate a Novel, Highly Active Magnetically Recoverable Catalyst in Claisen–Schmidt Condensation. J. Phys. Chem. Solids 2020, 136, 109117. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, H.; Han, H.; Liu, Y.; Song, J.; Guo, W.; Chu, W.; Sun, Z. Graphene-Supported ZnO Nanoparticles: An Efficient Heterogeneous Catalyst for the Claisen-Schmidt Condensation Reaction without Additional Base. Tetrahedron Lett. 2017, 58, 3984–3988. [Google Scholar] [CrossRef]
- Srivastava, Y.K. Ecofriendly Microwave Assisted Synthesis of Some Chalcones. Rasayan J. Chem. 2008, 1, 884–886. [Google Scholar]
- Farooq, S.; Ngaini, Z.; Mortadza, N.A. Microwave-Assisted Synthesis and Molecular Docking Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents. Bull. Korean Chem. Soc. 2020, 41, 918–924. [Google Scholar] [CrossRef]
- Calvino, V.; Picallo, M.; López-Peinado, A.J.; Martín-Aranda, R.M.; Durán-Valle, C.J. Ultrasound Accelerated Claisen–Schmidt Condensation: A Green Route to Chalcones. Appl. Surf. Sci. 2006, 252, 6071–6074. [Google Scholar] [CrossRef]
- Perozo-Rondón, E.; Martín-Aranda, R.M.; Casal, B.; Durán-Valle, C.J.; Lau, W.N.; Zhang, X.F.; Yeung, K.L. Sonocatalysis in Solvent Free Conditions: An Efficient Eco-Friendly Methodology to Prepare Chalcones Using a New Type of Amino Grafted Zeolites. Catal. Today 2006, 114, 183–187. [Google Scholar] [CrossRef]
- Homerin, G.; Nica, A.S.; Farce, A.; Dubois, J.; Ghinet, A. Ultrasounds-Mediated 10-Seconds Synthesis of Chalcones as Potential Farnesyltransferase Inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127149. [Google Scholar] [CrossRef]
- Kumar, S.; Lamba, M.S.; Makrandi, J.K. An Efficient Green Procedure for the Synthesis of Chalcones Using C-200 as Solid Support under Grinding Conditions. Green Chem. Lett. Rev. 2008, 1, 123–125. [Google Scholar] [CrossRef]
- Yeshwant, S.M.; Nanded, M.; Nalwar, Y.; Zangade, S.; Mokle, S.; Vibhute, A.; Vibhute, Y. An Efficient and Operationally Simple Synthesis of Some New Chalcones by Using Grinding Technique. Chem. Sci. J. 2009, 2011, 13. [Google Scholar]
- Al-Masum, M.; Ng, E.; Wai, M.C. Palladium-Catalyzed Direct Cross-Coupling of Potassium Styryltrifluoroborates and Benzoyl Chlorides—A One Step Method for Chalcone Synthesis. Tetrahedron Lett. 2011, 52, 1008–1010. [Google Scholar] [CrossRef]
- Diana, E.J.; Kanchana, U.S.; Mathew, T.V.; Anilkumar, G. Recent Developments in the Metal Catalysed Cross-Coupling Reactions for the Synthesis of the Enone System of Chalcones. Appl. Organomet. Chem. 2020, 34, e5987. [Google Scholar] [CrossRef]
- Braun, R.U.; Ansorge, M.; Müller, T.J.J. Coupling-Isomerization Synthesis of Chalcones. Chemistry 2006, 12, 9081–9094. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Ötvös, S.B.; Wu, Y.C.; Mándity, I.M.; Chang, F.R.; Fülöp, F. Highly Selective Continuous-Flow Synthesis of Potentially Bioactive Deuterated Chalcone Derivatives. ChemPlusChem 2015, 80, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.L.N.; Venkatesh, V.; Jadhav, D.N. A Palladium Catalyzed Atom-Efficient Cross-Coupling Reactivity of Triarylbismuths with α,β-Unsaturated Acyl Chlorides. J. Organomet. Chem. 2008, 693, 2494–2498. [Google Scholar] [CrossRef]
- Yamakawa, T.; Kinoshita, H.; Miura, K. Synthetic Utility of Tribenzyltin Hydride and Its Derivatives as Easily Accessible, Removable, and Decomposable Organotin Reagents. J. Organomet. Chem. 2013, 724, 129–134. [Google Scholar] [CrossRef]
- Kim, S.; Bae, S.W.; Lee, J.S.; Park, J. Recyclable Gold Nanoparticle Catalyst for the Aerobic Alcohol Oxidation and C–C Bond Forming Reaction between Primary Alcohols and Ketones under Ambient Conditions. Tetrahedron 2009, 65, 1461–1466. [Google Scholar] [CrossRef]
- Li, C.J. Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. 2009, 42, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of Chalcones and Flavanones Using Julia–Kocienski Olefination. Tetrahedron 2010, 66, 9445–9449. [Google Scholar] [CrossRef]
- Tan, P.; Wang, S.R. Reductive (3 + 2) Annulation of Benzils with Pyrylium Salts: Stereoselective Access to Furyl Analogues of Cis-Chalcones. Org. Lett. 2019, 21, 6029–6033. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-Cancer Chalcones: Structural and Molecular Target Perspectives. Eur. J. Med. Chem. 2015, 98, 69–114. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, V.T.; Kagan, J. The Photochemical Synthesis of 2′-Hydroxychalcones from Phenyl Cinnamates. J. Org. Chem. 1970, 35, 2901–2904. [Google Scholar] [CrossRef]
- Wang, C.Q. Solvent-Free Stereoselective Synthesis of Chalcones via Wittig Reaction of Arsonium Ylide by Grinding. In Advanced Materials Research; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2014; Volume 864, pp. 2132–2135. [Google Scholar]
- Huang, Z.; Wang, L.; Huang, X. Stereoselective Synthesis of α-Bromo-α,β-Unsaturated Ketones via Wittig Reaction. Synth. Commun. 2006, 33, 757–762. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2021, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.M.; Banik, B.K.; Mahato, A.K.; Shanthi, C.N.; Mohantad, B.C. Microwave-assisted synthesis of antitubercular agents: A novel approach. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 779–818. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, R.; Kant, R. Synthesis, Molecular Docking, and Evaluation of Triazole and Chalcone Conjugate as Antitubercular Agent. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Bhoot, D.; Khunt, R.C.; Parekh, H.H. Synthesis and Biological Evaluation of Chalcones and Acetyl Pyrazoline Derivatives Comprising Furan Nucleus as an Antitubercular Agents. Med. Chem. Res. 2012, 21, 3233–3239. [Google Scholar] [CrossRef]
- Muradás, T.C.; Abbadi, B.L.; Villela, A.D.; Macchi, F.S.; Bergo, P.F.; de Freitas, T.F.; Sperotto, N.D.M.; Timmers, L.F.S.M.; de Souza, O.N.; Picada, J.N.; et al. Pre-Clinical Evaluation of Quinoxaline-Derived Chalcones in Tuberculosis. PLoS ONE 2018, 13, e0202568. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.S.; Shaik, A.B.; Routhu, S.R.; Hussaini, S.M.A.; Sunkari, S.; Rao, A.V.S.; Reddy, A.M.; Alarifi, A.; Kamal, A. New Quinoline Linked Chalcone and Pyrazoline Conjugates: Molecular Properties Prediction, Antimicrobial and Antitubercular Activities. ChemistrySelect 2017, 2, 2989–2996. [Google Scholar] [CrossRef]
- Yadav, D.K.; Ahmad, I.; Shukla, A.; Khan, F.; Negi, A.S.; Gupta, A. QSAR and Docking Studies on Chalcone Derivatives for Antitubercular Activity against M.Tuberculosis H37Rv. J. Chemom. 2014, 28, 499–507. [Google Scholar] [CrossRef]
- Mujahid, M.; Yogeeswari, P.; Sriram, D.; Basavanag, U.M.V.; Díaz-Cervantes, E.; Córdoba-Bahena, L.; Robles, J.; Gonnade, R.G.; Karthikeyan, M.; Vyas, R.; et al. Spirochromone-chalcone conjugates as antitubercular agents: Synthesis, bio evaluation and molecular modeling studies. RSC Adv. 2015, 5, 106448–106460. [Google Scholar] [CrossRef]
- Anandam, R.; Jadav, S.S.; Ala, V.B.; Ahsan, M.J.; Bollikolla, H.B. Synthesis of New C-Dimethylated Chalcones as Potent Antitubercular Agents. Med. Chem. Res. 2018, 27, 1690–1704. [Google Scholar] [CrossRef]
- Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, Antimalarial and Antitubercular Activity of Acetylenic Chalcones. Bioorg. Med. Chem. Lett. 2010, 20, 942–944. [Google Scholar] [CrossRef]
- Kasetti, A.B.; Singhvi, I.; Nagasuri, R.; Bhandare, R.R.; Shaik, A.B. Thiazole–Chalcone Hybrids as Prospective Antitubercular and Antiproliferative Agents: Design, Synthesis, Biological, Molecular Docking Studies and In Silico ADME Evaluation. Molecules 2021, 26, 2847. [Google Scholar] [CrossRef]
- Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; de Clercq, E.; Shah, A.K. Improved and Rapid Synthesis of New Coumarinyl Chalcone Derivatives and Their Antiviral Activity. Tetrahedron Lett. 2007, 48, 8472–8474. [Google Scholar] [CrossRef]
- Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.E.; Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 2021, 29, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Onyilagha, J.C.; Malhotra, B.; Elder, M.; French, C.J.; Towers, G.N. Comparative studies of inhibitory activities of chalcones on tomato ringspot virus (ToRSV). Can. J. Plant Pathol. 1997, 19, 133–137. [Google Scholar] [CrossRef]
- Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O. Synthesis and Bioevaluation of Substituted Chalcones, Coumaranones and Other Flavonoids as Anti-HIV Agents. Bioorg. Med. Chem. 2016, 24, 2768–2776. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Xie, D.; He, F.; Song, B.; Hu, D. Antiviral Properties and Interaction of Novel Chalcone Derivatives Containing a Purine and Benzenesulfonamide Moiety. Bioorg. Med. Chem. Lett. 2018, 28, 2091–2097. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Wang, Y.; Hu, D.; Song, B. Design, Synthesis, and Antiviral Activity of Novel Chalcone Derivatives Containing a Purine Moiety. Chin. J. Chem. 2017, 35, 665–672. [Google Scholar] [CrossRef]
- Mateeva, N.; Eyunni, S.V.K.; Redda, K.K.; Ononuju, U.; Hansberry, T.D.; Aikens, C.; Nag, A. Functional Evaluation of Synthetic Flavonoids and Chalcones for Potential Antiviral and Anticancer Properties. Bioorg. Med. Chem. Lett. 2017, 27, 2350–2356. [Google Scholar] [CrossRef]
- Duran, N.; Polat, M.F.; Aktas, D.A.; Alagoz, M.A.; Ay, E.; Cimen, F.; Tek, E.; Anil, B.; Burmaoglu, S.; Algul, O. New Chalcone Derivatives as Effective against SARS-CoV-2 Agent. Int. J. Clin. Pract. 2021, 75, e14846. [Google Scholar] [CrossRef]
- Tang, X.; Su, S.; Chen, M.; He, J.; Xia, R.; Guo, T.; Chen, Y.; Zhang, C.; Wang, J.; Xue, W. Novel chalcone derivatives containing a 1, 2, 4-triazine moiety: Design, synthesis, antibacterial and antiviral activities. RSC Adv. 2019, 9, 6011–6020. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Zhou, D.G.; He, F.C.; Chen, J.X.; Chen, Y.Z.; Gan, X.H.; Hu, D.Y.; Song, B.A. Synthesis and Antiviral Bioactivity of Novel Chalcone Derivatives Containing Purine Moiety. Chin. Chem. Lett. 2018, 29, 127–130. [Google Scholar] [CrossRef]
- Gan, X.; Hu, D.; Chen, Z.; Wang, Y.; Song, B. Synthesis and Antiviral Evaluation of Novel 1,3,4-Oxadiazole/Thiadiazole-Chalcone Conjugates. Bioorg. Med. Chem. Lett. 2017, 27, 4298–4301. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, B.M.; Fanelli, A.; Piccinino, D.; De Angelis, M.; Dolfa, C.; Palamara, A.T.; Nencioni, L.; Zippilli, C.; Crucianelli, M.; Saladino, R.; et al. Synthesis of stilbene and chalcone inhibitors of influenza A virus by SBA-15 supported Hoveyda-Grubbs metathesis. Catalysts 2019, 9, 983. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Hu, D.; Dong, L.; Pan, J.; Luo, L.; Zhang, W.; Xue, W.; Jin, L.; Song, B. Synthesis, Antiviral Activity, and 3D-QSAR Study of Novel Chalcone Derivatives Containing Malonate and Pyridine Moieties. Arab. J. Chem. 2019, 12, 2685–2696. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Hu, D.; Li, P.; Xie, D.; Gan, X. Synthesis, antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety. Molecules 2015, 20, 11861–11874. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, S.K.; Mishra, N.; Kumar, B.; Sharma, M.; Bhattacharya, A.; Mishra, L.C.; Bhasin, V.K. Potent Antimalarial Activity of Newly Synthesized Substituted Chalcone Analogs in Vitro. Med. Chem. Res. 2009, 18, 407–420. [Google Scholar] [CrossRef]
- Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone Hybrids as Privileged Scaffolds in Antimalarial Drug Discovery: A Key Review. Eur. J. Med. Chem. 2020, 193, 112215. [Google Scholar] [CrossRef]
- Insuasty, B.; Ramírez, J.; Becerra, D.; Echeverry, C.; Quiroga, J.; Abonia, R.; Robledo, S.M.; Vélez, I.D.; Upegui, Y.; Muñoz, J.A.; et al. An Efficient Synthesis of New Caffeine-Based Chalcones, Pyrazolines and Pyrazolo[3,4-b][1,4]Diazepines as Potential Antimalarial, Antitrypanosomal and Antileishmanial Agents. Eur. J. Med. Chem. 2015, 93, 401–413. [Google Scholar] [CrossRef]
- De Oliveira, M.E.; Cenzi, G.; Nunes, R.R.; Andrighetti, C.R.; Valadão, D.M.D.S.; Dos Reis, C.; Simões, C.M.O.; Nunes, R.J.; Junior, M.C.; Taranto, A.G.; et al. Antimalarial activity of 4-metoxychalcones: Docking studies as falcipain/plasmepsin inhibitors, ADMET and lipophilic efficiency analysis to identify a putative oral lead candidate. Molecules 2013, 18, 15276–15287. [Google Scholar] [CrossRef]
- Yadav, N.; Dixit, S.K.; Bhattacharya, A.; Mishra, L.C.; Sharma, M.; Awasthi, S.K.; Bhasin, V.K. Antimalarial Activity of Newly Synthesized Chalcone Derivatives In Vitro. Chem. Biol. Drug Des. 2012, 80, 340–347. [Google Scholar] [CrossRef]
- Hameed, A.; Masood, S.; Hameed, A.; Ahmed, E.; Sharif, A.; Abdullah, M.I. Anti-Malarial, Cytotoxicity and Molecular Docking Studies of Quinolinyl Chalcones as Potential Anti-Malarial Agent. J. Comput. Mol. Des. 2019, 33, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Gayam, V.; Ravi, S. Cinnamoylated Chloroquine Analogues: A New Structural Class of Antimalarial Agents. Eur. J. Med. Chem. 2017, 135, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, R.; Biot, C.; Delaney, G.; Roussel, P.; Pascual, A.; Pradines, B.; Klahn, A.H. Cyrhetrenyl Chalcones: Synthesis, Characterization and Antimalarial Evaluation. J. Organomet. Chem. 2013, 723, 143–148. [Google Scholar] [CrossRef]
- Syahri, J.; Nasution, H.; Nurohmah, B.A.; Purwono, B.; Yuanita, E.; Zakaria, N.H.; Hassan, N.I. Design, synthesis and biological evaluation of aminoalkylated chalcones as antimalarial agent. Sains Malays. 2020, 49, 2667–2677. [Google Scholar] [CrossRef]
- Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, Synthesis and in Vitro Antimalarial Evaluation of Triazole-Linked Chalcone and Dienone Hybrid Compounds. Bioorg. Med. Chem. 2010, 18, 8243–8256. [Google Scholar] [CrossRef]
- Gutteridge, C.E.; Thota, D.S.; Curtis, S.M.; Kozar, M.P.; Li, Q.; Xie, L.; Zhang, J.; Melendez, V.; Asher, C.O.; Luong, T.T.; et al. In Vitro Biotransformation, in Vivo Efficacy and Pharmacokinetics of Antimalarial Chalcones. Pharmacology 2011, 87, 96–104. [Google Scholar] [CrossRef]
- Kumar, R.; Mohanakrishnan, D.; Sharma, A.; Kaushik, N.K.; Kalia, K.; Sinha, A.K.; Sahal, D. Reinvestigation of Structure–Activity Relationship of Methoxylated Chalcones as Antimalarials: Synthesis and Evaluation of 2,4,5-Trimethoxy Substituted Patterns as Lead Candidates Derived from Abundantly Available Natural β-Asarone. Eur. J. Med. Chem. 2010, 45, 5292–5301. [Google Scholar] [CrossRef]
- Tadigoppula, N.; Korthikunta, V.; Gupta, S.; Kancharla, P.; Khaliq, T.; Soni, A.; Srivastava, R.K.; Srivastava, K.; Puri, S.K.; Raju, K.S.R.; et al. Synthesis and Insight into the Structure-Activity Relationships of Chalcones as Antimalarial Agents. J. Med. Chem. 2013, 56, 31–45. [Google Scholar] [CrossRef]
- Sarveswari, S.; Vijayakumar, V.; Siva, R.; Priya, R. Synthesis of 4-Hydroxy-2(1h)-Quinolone Derived Chalcones, Pyrazolines and Their Antimicrobial, in Silico Antimalarial Evaluations. Appl. Biochem. Biotechnol. 2015, 175, 43–64. [Google Scholar] [CrossRef]
- Tomar, V.; Bhattacharjee, G.; Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S. Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur. J. Med. Chem. 2010, 45, 745–751. [Google Scholar] [CrossRef]
- Syahri, J.; Rullah, K.; Armunanto, R.; Yuanita, E.; Nurohmah, B.A.; Aluwi, M.F.F.M.; Kok, L.; Wai, B.P. Synthesis, biological evaluation, QSAR analysis, and molecular docking of chalcone derivatives for antimalarial activity. Parasite 2016, 4, 8. [Google Scholar] [CrossRef]
- Smit, F.J.; N’Da, D.D. Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg. Med. Chem. 2014, 22, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Jyoti; Gaur, R.; Kumar, Y.; Cheema, H.S.; Kapkoti, D.S.; Darokar, M.P.; Khan, F.; Bhakuni, R.S. Synthesis, Molecular Modelling Studies of Indolyl Chalcone Derivatives and Their Antimalarial Activity Evaluation. Nat. Prod. Res. 2021, 35, 3261–3268. [Google Scholar] [CrossRef] [PubMed]
- Mouzié, C.M.; Guefack, M.-G.F.; Kianfé, B.Y.; Serondo, H.U.; Ponou, B.K.; Siwe-Noundou, X.; Teponno, R.B.; Krause, R.W.M.; Kuete, V.; Tapondjou, L.A. A New Chalcone and Antimicrobial Chemical Constituents of Dracaena Stedneuri. Pharmaceuticals 2022, 15, 725. [Google Scholar] [CrossRef]
- Lagu, S.B.; Yejella, R.P.; Bhandare, R.R.; Shaik, A.B. Design, Synthesis, and Antibacterial and Antifungal Activities of Novel Trifluoromethyl and Trifluoromethoxy Substituted Chalcone Derivatives. Pharmaceuticals 2020, 13, 375. [Google Scholar] [CrossRef]
- Sivakumar, P.M.; Prabhawathi, V.; Doble, M. Antibacterial Activity and QSAR of Chalcones against Biofilm-Producing Bacteria Isolated from Marine Waters. SAR QSAR Environ. Res. 2010, 21, 247–263. [Google Scholar] [CrossRef]
- Satokata, A.A.C.; Souza, J.H.; Silva, L.L.O.; Santiago, M.B.; Ramos, S.B.; de Assis, L.R.; Theodoro, R.D.S.; e Oliveira, L.R.; Regasini, L.O.; Martins, C.H.G. Chalcones with potential antibacterial and antibiofilm activities against periodontopathogenic bacteria. Anaerobe 2022, 76, 102588. [Google Scholar] [CrossRef]
- Moreira Osório, T.; Delle Monache, F.; Domeneghini Chiaradia, L.; Mascarello, A.; Regina Stumpf, T.; Roberto Zanetti, C.; Bardini Silveira, D.; Regina Monte Barardi, C.; de Fatima Albino Smânia, E.; Viancelli, A.; et al. Antibacterial Activity of Chalcones, Hydrazones and Oxadiazoles against Methicillin-Resistant Staphylococcus Aureus. Bioorg. Med. Chem. Lett. 2012, 22, 225–230. [Google Scholar] [CrossRef]
- Sivakumar, P.M.; Ganesan, S.; Veluchamy, P.; Doble, M. Novel Chalcones and 1,3,5-Triphenyl-2-Pyrazoline Derivatives as Antibacterial Agents. Chem. Biol. Drug Des. 2010, 76, 407–411. [Google Scholar] [CrossRef]
- Li, Y.; Sun, B.; Zhai, J.; Fu, L.; Zhang, S.; Zhang, J.; Liu, H.; Xie, W.; Deng, H.; Chen, Z.; et al. Synthesis and Antibacterial Activity of Four Natural Chalcones and Their Derivatives. Tetrahedron Lett. 2019, 60, 151165. [Google Scholar] [CrossRef]
- Abdula, A.; Abdula, A.M. Synthesis, Characterization and Antibacterial Activity of (E)-Chalcone Derivatives. Eur. J. Chem. 2013, 4, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Sashidhara, K.V.; Rao, K.B.; Kushwaha, P.; Modukuri, R.K.; Singh, P.; Soni, I.; Shukla, P.K.; Chopra, S.; Pasupuleti, M. Novel Chalcone-Thiazole Hybrids as Potent Inhibitors of Drug Resistant Staphylococcus Aureus. ACS Med. Chem. Lett. 2015, 6, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, P.; Sumathi, S. Piperidine Mediated Synthesis of N-heterocyclic Chalcones and Their Antibacterial Activity. J. Heterocycl. Chem. 2009, 47, 81–84. [Google Scholar] [CrossRef]
- Dkhar, L.; Banothu, V.; Pinder, E.; Phillips, R.M.; Kaminsky, W.; Kollipara, M.R. Ru, Rh and Ir Metal Complexes of Pyridyl Chalcone Derivatives: Their Potent Antibacterial Activity, Comparable Cytotoxicity Potency and Selectivity to Cisplatin. Polyhedron 2020, 185, 114606. [Google Scholar] [CrossRef]
- Asiri, A.M.; Khan, S.A. Synthesis and anti-bacterial activities of a bis-chalcone derived from thiophene and its bis-cyclized products. Molecules 2011, 16, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.-D.; Nguyen, T.-T.; Do, T.-H.; Huynh, T.-N.; Tran, C.-D.; Thai, K.-M. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules 2012, 17, 6684–6696. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Jiang, S.M.; Chen, Z.H.; Ye, B.J.; Piao, H.R. Synthesis and Anti-Bacterial Activity of Some Heterocyclic Chalcone Derivatives Bearing Thiofuran, Furan, and Quinoline Moieties. Arch. der Pharm. 2011, 344, 689–695. [Google Scholar] [CrossRef]
- Chu, W.C.; Bai, P.Y.; Yang, Z.Q.; Cui, D.Y.; Hua, Y.G.; Yang, Y.; Yang, Q.Q.; Zhang, E.; Qin, S. Synthesis and Antibacterial Evaluation of Novel Cationic Chalcone Derivatives Possessing Broad Spectrum Antibacterial Activity. Eur. J. Med. Chem. 2018, 143, 905–921. [Google Scholar] [CrossRef] [PubMed]
- Venkataramana Reddy, P.O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P.N.; Shah, K.; Kumar, D. Synthesis and Investigations into the Anticancer and Antibacterial Activity Studies of β-Carboline Chalcones and Their Bromide Salts. Bioorg. Med. Chem. Lett. 2018, 28, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Zheng, C.J.; Sun, L.P.; Piao, H.R. Synthesis of New Chalcone Derivatives Containing a Rhodanine-3-Acetic Acid Moiety with Potential Anti-Bacterial Activity. Eur. J. Med. Chem. 2010, 45, 5739–5743. [Google Scholar] [CrossRef] [PubMed]
- Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K. Synthesis, Characterization, Antibacterial and Antioxidant Studies of Some Heterocyclic Compounds from Triazole-Linked Chalcone Derivatives. ChemistrySelect 2018, 3, 6338–6343. [Google Scholar] [CrossRef]
- Rani, A.; Singh, A.; Kaur, J.; Singh, G.; Bhatti, R.; Gumede, N.; Kisten, P.; Singh, P.; Kumar, V. 1H-1, 2, 3-triazole grafted tacrine-chalcone conjugates as potential cholinesterase inhibitors with the evaluation of their behavioral tests and oxidative stress in mice brain cells. Bioorg. Chem. 2021, 114, 105053. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Synthesis, Biochemistry, and Computational Studies of Brominated Thienyl Chalcones: A New Class of Reversible MAO-B Inhibitors. ChemMedChem 2016, 11, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Rampa, A.; Montanari, S.; Pruccoli, L.; Bartolini, M.; Falchi, F.; Feoli, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Tarozzi, A.; et al. Chalcone-Based Carbamates for Alzheimer’s Disease Treatment. Futur. Med. Chem. 2017, 9, 749–764. [Google Scholar] [CrossRef]
- Thapa, P.; Upadhyay, S.P.; Suo, W.Z.; Singh, V.; Gurung, P.; Lee, E.S.; Sharma, R.; Sharma, M. Chalcone and Its Analogs: Therapeutic and Diagnostic Applications in Alzheimer’s Disease. Bioorg. Chem. 2021, 108, 104681. [Google Scholar] [CrossRef]
- Zhang, X.; Rakesh, K.P.; Bukhari, S.N.A.; Balakrishna, M.; Manukumar, H.M.; Qin, H.L. Multi-Targetable Chalcone Analogs to Treat Deadly Alzheimer’s Disease: Current View and Upcoming Advice. Bioorg. Chem. 2018, 80, 86–93. [Google Scholar] [CrossRef]
- Cong, L.; Dong, X.; Wang, Y.; Deng, Y.; Li, B.; Dai, R. On the Role of Synthesized Hydroxylated Chalcones as Dual Functional Amyloid-β Aggregation and Ferroptosis Inhibitors for Potential Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 166, 11–21. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhou, L.Y.; Tan, R.X.; Liang, G.P.; Fang, S.X.; Li, W.; Xie, M.; Wen, Y.H.; Wu, J.Q.; Chen, Y.P. Design, Synthesis, and Evaluation of Chalcone Derivatives as Multifunctional Agents against Alzheimer’s Disease. Chem. Biodivers. 2021, 18, e2100341. [Google Scholar] [CrossRef]
- Bai, P.; Wang, K.; Zhang, P.; Shi, J.; Cheng, X.; Zhang, Q.; Zheng, C.; Cheng, Y.; Yang, J.; Lu, X.; et al. Development of Chalcone-O-Alkylamine Derivatives as Multifunctional Agents against Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 183, 111737. [Google Scholar] [CrossRef]
- Lee, D.S.; Jeong, G.S. Butein Provides Neuroprotective and Anti-neuroinflammatory Effects through Nrf2/ARE-dependent Haem Oxygenase 1 Expression by Activating the PI3K/Akt Pathway. Br. J. Pharmacol. 2016, 173, 2894. [Google Scholar] [CrossRef] [Green Version]
- Bhullar, K.S.; Rupasinghe, H.P.V. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2013, 2013, 891748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An Important Scaffold for Medicinal Chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef] [PubMed]
- Quattrocchio, F.; Baudry, A.; Lepiniec, L.; Grotewold, E. The regulation of flavonoid biosynthesis. In The Science of Flavonoids; Springer: New York, NY, USA, 2006; pp. 97–122. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; Van Nood, E.L.S.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, N.; Zachariah, S.M.; Ramani, P. 4-Aryl-4H-Chromene-3-Carbonitrile Derivates: Synthesis and Preliminary Anti-Breast Cancer Studies. J. Heterocycl. Chem. 2016, 53, 1778–1782. [Google Scholar] [CrossRef]
- Doroghazi, J.R.; Albright, J.C.; Goering, A.W.; Ju, K.S.; Haines, R.R.; Tchalukov, K.A.; Labeda, D.P.; Kelleher, N.L.; Metcalf, W.W. A Roadmap for Natural Product Discovery Based on Large-Scale Genomics and Metabolomics. Nat. Chem. Biol. 2014, 10, 963–968. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, E.; Baek, K.H.; Kwon, H.B.; Woo, H.; Lee, E.S.; Kwon, Y.; Na, Y. Chalcones, Inhibitors for Topoisomerase I and Cathepsin B and L, as Potential Anti-Cancer Agents. Bioorg. Med. Chem. Lett. 2013, 23, 3320–3324. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of New Chalcone Derivatives Containing Diaryl Ether Moiety as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Bioorg. Chem. 2020, 95, 103565. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Synthesis, Biological Evaluation, and Molecular Modelling of New Naphthalene-Chalcone Derivatives as Potential Anticancer Agents on MCF-7 Breast Cancer Cells by Targeting Tubulin Colchicine Binding Site. J. Enzym. Inhib. Med. Chem. 2020, 35, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Mokale, S.N.; Dube, P.N.; Bhavale, S.A.; Sayed, I.; Begum, A.; Nevase, M.C.; Shelke, V.R.; Mujaheed, A. Synthesis, in-Vitro Screening, and Docking Analysis of Novel Pyrrolidine and Piperidine-Substituted Ethoxy Chalcone as Anticancer Agents. Med. Chem. Res. 2015, 24, 1842–1856. [Google Scholar] [CrossRef]
- Khanapure, S.; Jagadale, M.; Bansode, P.; Choudhari, P.; Rashinkar, G. Anticancer Activity of Ruthenocenyl Chalcones and Their Molecular Docking Studies. J. Mol. Struct. 2018, 1173, 142–147. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.J.; Sun, J.; Yang, X.H.; Zhao, T.T.; Lu, X.; Gong, H.B.; Zhu, H.L. Design, Synthesis and Biological Evaluation of Novel Chalcone Derivatives as Antitubulin Agents. Bioorg. Med. Chem. 2012, 20, 3212–3218. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.B.; Reddy, M.B.M.; Reddy, R.; Chhajed, S.; Gupta, P.P. Molecular Docking, PKPD, and Assessment of Toxicity of Few Chalcone Analogues as EGFR Inhibitor in Search of Anticancer Agents. Struct. Chem. 2020, 31, 2249–2255. [Google Scholar] [CrossRef]
- Sharma, A.; Chakravarti, B.; Gupt, M.P.; Siddiqui, J.A.; Konwar, R.; Tripathi, R.P. Synthesis and Anti Breast Cancer Activity of Biphenyl Based Chalcones. Bioorg. Med. Chem. 2010, 18, 4711–4720. [Google Scholar] [CrossRef]
- Lu, C.-F.; Wang, S.-H.; Pang, X.-J.; Zhu, T.; Li, H.-L.; Li, Q.-R.; Li, Q.-Y.; Gu, Y.-F.; Mu, Z.-Y.; Jin, M.-J.; et al. Synthesis and biological evaluation of amino chalcone derivatives as antiproliferative agents. Molecules 2020, 25, 5530. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Hager, E.; Pettit, C.; Gurulingappa, H.; Davidson, N.E.; Khan, S.R. Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J. Med.Chem. 2003, 46, 2813–2815. [Google Scholar] [CrossRef] [PubMed]
- Ngameni, B.; Cedric, K.; Mbaveng, A.T.; Erdoğan, M.; Simo, I.; Kuete, V.; Daştan, A. Design, Synthesis, Characterization, and Anticancer Activity of a Novel Series of O-Substituted Chalcone Derivatives. Bioorg. Med. Chem. Lett. 2021, 35, 127827. [Google Scholar] [CrossRef]
- Kumar, D.; Raj, K.K.; Malhotra, S.V.; Rawat, D.S. Synthesis and anticancer activity evaluation of resveratrol–chalcone conjugates. MedChemComm 2014, 5, 528–535. [Google Scholar] [CrossRef]
- Saxena, H.O.; Faridi, U.; Kumar, J.K.; Luqman, S.; Darokar, M.P.; Shanker, K.; Chanotiya, C.S.; Gupta, M.M.; Negi, A.S. Synthesis of Chalcone Derivatives on Steroidal Framework and Their Anticancer Activities. Steroids 2007, 72, 892–900. [Google Scholar] [CrossRef]
- Shenvi, S.; Kumar, K.; Hatti, K.S.; Rijesh, K.; Diwakar, L.; Reddy, G.C. Synthesis, Anticancer and Antioxidant Activities of 2,4,5-Trimethoxy Chalcones and Analogues from Asaronaldehyde: Structure–Activity Relationship. Eur. J. Med. Chem. 2013, 62, 435–442. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Ko, P.W.; Chang, Y.J.; Kapoor, M.; Liang, Y.C.; Chu, H.L.; Lin, H.H.; Horng, J.C.; Hsu, M.H. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules 2019, 24, 3259. [Google Scholar] [CrossRef] [Green Version]
- Kamal, A.; Reddy, J.S.; Ramaiah, M.J.; Dastagiri, D.; Bharathi, E.V.; Sagar, M.V.P.; Pushpavalli, S.N.C.V.L.; Ray, P.; Pal-Bhadra, M. Design, synthesis and biological evaluation of imidazopyridine/pyrimidine-chalcone derivatives as potential anticancer agents. MedChemComm 2010, 1, 355–360. [Google Scholar] [CrossRef]
- Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of Thiazole-Based-Chalcones and 4-Hetarylthiazoles as Potent Anticancer Agents: Synthesis, Docking Study and Anticancer Activity. Bioorg. Chem. 2020, 98, 103761. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.L.; Shang, Z.P.; Jantan, I.; Tan, O.U.; Hussain, M.A.; Sher, M.; Bukhari, S.N.A. Molecular Docking Studies and Biological Evaluation of Chalcone Based Pyrazolines as Tyrosinase Inhibitors and Potential Anticancer Agents. RSC Adv. 2015, 5, 46330–46338. [Google Scholar] [CrossRef]
- Sankappa Rai, U.; Isloor, A.M.; Shetty, P.; Pai, K.S.R.; Fun, H.K. Synthesis and in Vitro Biological Evaluation of New Pyrazole Chalcones and Heterocyclic Diamides as Potential Anticancer Agents. Arab. J. Chem. 2015, 8, 317–321. [Google Scholar] [CrossRef]
- Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of Chalcone Incorporated Quinazoline Derivatives as Anticancer Agents. Saudi Pharm. J. 2017, 25, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, Structure-Activity Relationship and Molecular Docking Studies of Novel Quinoline-Chalcone Hybrids as Potential Anticancer Agents and Tubulin Inhibitors. J. Mol. Struct. 2020, 1202, 127310. [Google Scholar] [CrossRef]
- Kamal, A.; Srinivasulu, V.; Nayak, V.L.; Sathish, M.; Shankaraiah, N.; Bagul, C.; Reddy, N.V.S.; Rangaraj, N.; Nagesh, N. Design and Synthesis of C3-Pyrazole/Chalcone-Linked Beta-Carboline Hybrids: Antitopoisomerase I, DNA-Interactive, and Apoptosis-Inducing Anticancer Agents. ChemMedChem 2014, 9, 2084–2098. [Google Scholar] [CrossRef]
- Alswah, M.; Bayoumi, A.H.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H.E. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo [4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules 2017, 23, 48. [Google Scholar] [CrossRef] [Green Version]
- Suma, V.R.; Sreenivasulu, R.; Rao, M.V.B.; Subramanyam, M.; Ahsan, M.J.; Alluri, R.; Rao, K.R.M. Design, Synthesis, and Biological Evaluation of Chalcone-Linked Thiazole-Imidazopyridine Derivatives as Anticancer Agents. Med. Chem. Res. 2020, 29, 1643–1654. [Google Scholar] [CrossRef]
- Ammar, Y.A.; Fayed, E.A.; Bayoumi, A.H.; Ezz, R.R.; Alsaid, M.S.; Soliman, A.M.; Ghorab, M.M. New Chalcones Bearing Isatin Scaffold: Synthesis, Molecular Modeling and Biological Evaluation as Anticancer Agents. Res. Chem. Intermed. 2017, 43, 6765–6786. [Google Scholar] [CrossRef]
- Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo [1,5-a] pyrimidines as potential anticancer agents. MedChemComm 2017, 8, 1810–1816. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.; Alam, M.A.; Atkinson, T.; Gurrapu, S.; Sravan Kumar, J.; Bicknese, C.; Johnson, J.L.; Williams, M. Synthesis and Evaluation of P-N,N-Dialkyl Substituted Chalcones as Anti-Cancer Agents. Med. Chem. Res. 2013, 22, 4610–4614. [Google Scholar] [CrossRef]
- Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules 2020, 25, 4566. [Google Scholar] [CrossRef] [PubMed]
- Peerzada, M.N.; Khan, P.; Ahmad, K.; Hassan, M.I.; Azam, A. Synthesis, Characterization and Biological Evaluation of Tertiary Sulfonamide Derivatives of Pyridyl-Indole Based Heteroaryl Chalcone as Potential Carbonic Anhydrase IX Inhibitors and Anticancer Agents. Eur. J. Med. Chem. 2018, 155, 13–23. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Mohamed, M.S.; Shouman, S.A.; Fathi, M.M.; Abdelhamid, I.A. Synthesis and Biological Evaluation of a Novel Series of Chalcones Incorporated Pyrazole Moiety as Anticancer and Antimicrobial Agents. Appl. Biochem. Biotechnol. 2012, 168, 1153–1162. [Google Scholar] [CrossRef]
- Pragathi, Y.J.; Veronica, D.; Anitha, K.; Rao, M.V.B.; Raju, R.R. Synthesis and Biological Evaluation of Chalcone Derivatives of 1,2,4-Thiadiazol-Benzo[d]Imidazol-2-Yl)Quinolin-2(1H)-One as Anticancer Agents. Chem. Data Collect. 2020, 30, 100556. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Singh, A.K.; Meena, S.; Lohani, M.; Singh, A.; Arya, R.K.; Cheruvu, S.H.; Sarkar, J.; Gayen, J.R.; Datta, D.; et al. Synthesis of Novel β-Carboline Based Chalcones with High Cytotoxic Activity against Breast Cancer Cells. Bioorg. Med. Chem. Lett. 2014, 24, 2820–2824. [Google Scholar] [CrossRef]
- Gurrapu, N.; Praveen Kumar, E.; Kolluri, P.K.; Putta, S.; Sivan, S.K.; Subhashini, N.J.P. Synthesis, Biological Evaluation and Molecular Docking Studies of Novel 1,2,3-Triazole Tethered Chalcone Hybrids as Potential Anticancer Agents. J. Mol. Struct. 2020, 1217, 128356. [Google Scholar] [CrossRef]
- Coşkun, D.; Tekin, S.; Sandal, S.; Coşkun, M.F. Synthesis, Characterization, and Anticancer Activity of New Benzofuran Substituted Chalcones. J. Chem. 2016, 2016, 7678486. [Google Scholar] [CrossRef] [Green Version]
- Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; et al. A Step-by-Step Synthesis of Triazole-Benzimidazole-Chalcone Hybrids: Anticancer Activity in Human Cells+. J. Mol. Struct. 2020, 1204, 127487. [Google Scholar] [CrossRef]
- Dong, J.; Huang, G.; Zhang, Q.; Wang, Z.; Cui, J.; Wu, Y.; Meng, Q.; Li, S. Development of benzochalcone derivatives as selective CYP1B1 inhibitors and anticancer agents. MedChemComm 2019, 10, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, B.S.; Patel, H.H.; Mathew, N.S.; Nayak, Y. Synthesis of Newer Piperidinyl Chalcones and Their Anticancer Activity in Human Cancer Cell Lines. Res. Chem. Intermed. 2016, 42, 3673–3688. [Google Scholar] [CrossRef]
- Khan, N.S.; Khan, P.; Ansari, M.F.; Srivastava, S.; Hasan, G.M.; Husain, M.; Hassan, M.I. Thienopyrimidine-Chalcone Hybrid Molecules Inhibit Fas-Activated Serine/Threonine Kinase: An Approach to Ameliorate Antiproliferation in Human Breast Cancer Cells. Mol. Pharm. 2018, 15, 4173–4189. [Google Scholar] [CrossRef] [PubMed]
- Mphahlele, M.J.; Maluleka, M.M.; Parbhoo, N.; Malindisa, S.T. Synthesis, Evaluation for Cytotoxicity and Molecular Docking Studies of Benzo[c]Furan-Chalcones for Potential to Inhibit Tubulin Polymerization and/or EGFR-Tyrosine Kinase Phosphorylation. Int. J. Mol. Sci. 2018, 19, 2552. [Google Scholar] [CrossRef] [Green Version]
- Tatsuzaki, J.; Bastow, K.F.; Nakagawa-Goto, K.; Nakamura, S.; Itokawa, H.; Lee, K.H. Dehydrozingerone, Chalcone, and Isoeugenol Analogues as in Vitro Anticancer Agents. J. Nat. Prod. 2006, 69, 1445–1449. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Xu, L.; Hua, L.; Li, A.; Li, S.; Lu, W.; Pang, Y.; Cao, C.; Liu, X.; Jiao, P. Synthesis and Evaluation of Novel Isoxazolyl Chalcones as Potential Anticancer Agents. Bioorg. Chem. 2014, 54, 38–43. [Google Scholar] [CrossRef]
- Kumar, D.; Maruthi Kumar, N.; Tantak, M.P.; Ogura, M.; Kusaka, E.; Ito, T. Synthesis and Identification of α-Cyano Bis(Indolyl)Chalcones as Novel Anticancer Agents. Bioorg. Med. Chem. Lett. 2014, 24, 5170–5174. [Google Scholar] [CrossRef]
- Rahimzadeh Oskuei, S.; Mirzaei, S.; Reza Jafari-Nik, M.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Design, Synthesis and Biological Evaluation of Novel Imidazole-Chalcone Derivatives as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Bioorg. Chem. 2021, 112, 104904. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Gawande, S.S. Synthesis and Biological Screening of a Combinatorial Library of β-Chlorovinyl Chalcones as Anticancer, Anti-Inflammatory and Antimicrobial Agents. Bioorg. Med. Chem. 2010, 18, 2060–2065. [Google Scholar] [CrossRef]
- Kamal, A.; Mallareddy, A.; Suresh, P.; Shaik, T.B.; Lakshma Nayak, V.; Kishor, C.; Shetti, R.V.C.R.N.C.; Sankara Rao, N.; Tamboli, J.R.; Ramakrishna, S.; et al. Synthesis of Chalcone-Amidobenzothiazole Conjugates as Antimitotic and Apoptotic Inducing Agents. Bioorg. Med. Chem. 2012, 20, 3480–3492. [Google Scholar] [CrossRef]
- Zhao, L.; Mao, L.; Hong, G.; Yang, X.; Liu, T. Design, Synthesis and Anticancer Activity of Matrine–1H-1,2,3-Triazole–Chalcone Conjugates. Bioorg. Med. Chem. Lett. 2015, 25, 2540–2544. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hedblom, A.; Koerner, S.K.; Li, M.; Jernigan, F.E.; Wegiel, B.; Sun, L. Novel Synthetic Chalcones Induce Apoptosis in the A549 Non-Small Cell Lung Cancer Cells Harboring a KRAS Mutation. Bioorg. Med. Chem. Lett. 2016, 26, 5703–5706. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, R.; Zheng, W.; Chen, D.; Yue, X.; Cao, Y.; Qin, W.; Sun, H.; Wang, Y.; Liu, Z.; et al. Synthesis and Evaluation of Anticancer Activity of BOC26P, an Ortho-Aryl Chalcone Sodium Phosphate as Water-Soluble Prodrugs in Vitro and in Vivo. Biomed. Pharmacother. 2017, 96, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, E.H.; Kim, J.; Kim, S.H.; Kim, I. Biological Evaluation of Indolizine-Chalcone Hybrids as New Anticancer Agents. Eur. J. Med. Chem. 2018, 144, 435–443. [Google Scholar] [CrossRef]
- Jain, U.K.; Bhatia, R.K.; Rao, A.R.; Singh, R.; Saxena, A.K.; Sehar, I. Design and Development of Halogenated Chalcone Derivatives as Potential Anticancer Agents. Trop. J. Pharm. Res. 2014, 13, 73–80. [Google Scholar] [CrossRef]
- de Vasconcelos, A.; Campos, V.F.; Nedel, F.; Seixas, F.K.; Dellagostin, O.A.; Smith, K.R.; de Pereira, C.M.P.; Stefanello, F.M.; Collares, T.; Barschak, A.G. Cytotoxic and Apoptotic Effects of Chalcone Derivatives of 2-Acetyl Thiophene on Human Colon Adenocarcinoma Cells. Cell Biochem. Funct. 2013, 31, 289–297. [Google Scholar] [CrossRef]
- Gupta, S.; Maurya, P.; Upadhyay, A.; Kushwaha, P.; Krishna, S.; Siddiqi, M.I.; Sashidhara, K.V.; Banerjee, D. Synthesis and Bio-Evaluation of Indole-Chalcone Based Benzopyrans as Promising Antiligase and Antiproliferative Agents. Eur. J. Med. Chem. 2018, 143, 1981–1996. [Google Scholar] [CrossRef]
- Wu, J.-Z.; Cheng, C.-C.; Shen, L.-L.; Wang, Z.-K.; Wu, S.-B.; Li, W.-L.; Chen, S.-H.; Zhou, R.-P.; Qiu, P.-H. Synthetic chalcones with potent antioxidant ability on H2O2-induced apoptosis in PC12 cells. Int. J. Mol.Sci. 2014, 15, 18525–18539. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Fong, G.; Liu, J.; Wu, Y.-H.; Chang, K.; Park, W.; Kim, J.; Tam, C.; Cheng, L.W.; Land, K.M.; et al. Synthesis and preliminary antimicrobial analysis of isatin–ferrocene and isatin–ferrocenyl chalcone conjugates. ACS Omega 2018, 3, 5808–5813. [Google Scholar] [CrossRef]
- Kurt, B.Z.; Ozten Kandas, N.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and Biological Evaluation of Novel Coumarin-Chalcone Derivatives Containing Urea Moiety as Potential Anticancer Agents. Arab. J. Chem. 2020, 13, 1120–1129. [Google Scholar] [CrossRef]
- Xu, F.; Li, W.; Shuai, W.; Yang, L.; Bi, Y.; Ma, C.; Yao, H.; Xu, S.; Zhu, Z.; Xu, J. Design, Synthesis and Biological Evaluation of Pyridine-Chalcone Derivatives as Novel Microtubule-Destabilizing Agents. Eur. J. Med. Chem. 2019, 173, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Stanojković, T.; Marković, V.; Matić, I.Z.; Mladenović, M.P.; Petrović, N.; Krivokuća, A.; Petković, M.; Joksović, M.D. Highly Selective Anthraquinone-Chalcone Hybrids as Potential Antileukemia Agents. Bioorg. Med. Chem. Lett. 2018, 28, 2593–2598. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.R.; Pallela, V.R.; Cosenza, S.C.; Mallireddigari, M.R.; Patti, R.; Bonagura, M.; Truongcao, M.; Akula, B.; Jatiani, S.S.; Reddy, E.P. Design, Synthesis and Evaluation of (E)-α-Benzylthio Chalcones as Novel Inhibitors of BCR-ABL Kinase. Bioorg. Med. Chem. 2010, 18, 2317–2326. [Google Scholar] [CrossRef]
- Ferrer, R.; Lobo, G.; Gamboa, N.; Rodrigues, J.; Abramjuk, C.; Jung, K.; Lein, M.; Charris, J.E. Synthesis of [(7-Chloroquinolin-4-Yl)Amino]Chalcones: Potential Antimalarial and Anticancer Agents. Sci. Pharm. 2009, 77, 725–742. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kumar, N.M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Synthesis and Biological Evaluation of Indolyl Chalcones as Antitumor Agents. Bioorg. Med. Chem. Lett. 2010, 20, 3916–3919. [Google Scholar] [CrossRef]
- Szliszka, E.; Czuba, Z.P.; Mazur, B.; Sedek, L.; Paradysz, A.; Krol, W. Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int. J. Mol. Sci. 2009, 11, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, A.; Reddy, V.S.; Santosh, K.; Bharath Kumar, G.; Shaik, A.B.; Mahesh, R.; Chourasiya, S.S.; Sayeed, I.B.; Kotamraju, S. Synthesis of Imidazo[2,1-b][1,3,4]Thiadiazole–Chalcones as Apoptosis Inducing Anticancer Agents. Medchemcomm 2014, 5, 1718–1723. [Google Scholar] [CrossRef]
- Wu, C.M.; Lin, K.W.; Teng, C.H.; Huang, A.M.; Chen, Y.C.; Yen, M.H.; Wu, W.B.; Pu, Y.S.; Lin, C.N. Chalcone derivatives inhibit human platelet aggregation and inhibit growth in human bladder cancer cells. Biol. Pharm. Bull. 2014, 37, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Gargantilla, M.; López-Fernández, J.; Camarasa, M.J.; Persoons, L.; Daelemans, D.; Priego, E.M.; Pérez-Pérez, M.J. Inhibition of XPO-1 Mediated Nuclear Export through the Michael-Acceptor Character of Chalcones. Pharmaceuticals 2021, 14, 1131. [Google Scholar] [CrossRef]
- Muchtaridi, M.; Syahidah, H.N.; Subarnas, A.; Yusuf, M.; Bryant, S.D.; Langer, T. Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha. Pharmaceuticals 2017, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.J.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Naidu, V.G.M.; Imran, M.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. Design, Synthesis, Molecular Docking, and Biological Evaluation of Pyrazole Hybrid Chalcone Conjugates as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Pharmaceuticals 2022, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, J.; Hu, J.; Pang, Y.; Huang, L.; Li, X. Synthesis, Biological Evaluation and Mechanism Study of Chalcone Analogues as Novel Anti-Cancer Agents. RSC Adv. 2015, 5, 68128–68135. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Totre, J.V.; Khobragade, C.N. Synthesis and Biological Evaluation of Simple Methoxylated Chalcones as Anticancer, Anti-Inflammatory and Antioxidant Agents. Bioorg. Med. Chem. 2010, 18, 1364–1370. [Google Scholar] [CrossRef]
- Venkatarao, V.; Kumar, L.; Jha, A.; Sridhar, G. Synthesis and Biological Evaluation of Chalcone Fused Quinoline Derivatives as Anticancer Agents. Chem. Data Collect. 2019, 22, 100236. [Google Scholar] [CrossRef]
- Konidala, S.K.; Kotra, V.; Danduga, R.C.S.R.; Kola, P.K. Coumarin-Chalcone Hybrids Targeting Insulin Receptor: Design, Synthesis, Anti-Diabetic Activity, and Molecular Docking. Bioorg. Chem. 2020, 104, 104207. [Google Scholar] [CrossRef]
- Adelusi, T.I.; Du, L.; Chowdhury, A.; Xiaoke, G.; Lu, Q.; Yin, X. Signaling Pathways and Proteins Targeted by Antidiabetic Chalcones. Life Sci. 2021, 284, 118982. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, R.; Kaur, M. Bio-Medical Potential of Chalcone Derivatives and Their Metal Complexes as Antidiabetic Agents: A Review. J. Coord. Chem. 2021, 74, 725–742. [Google Scholar] [CrossRef]
- Cai, C.Y.; Rao, L.; Rao, Y.; Guo, J.X.; Xiao, Z.Z.; Cao, J.Y.; Huang, Z.S.; Wang, B. Analogues of Xanthones—Chalcones and Bis-Chalcones as α-Glucosidase Inhibitors and Anti-Diabetes Candidates. Eur. J. Med. Chem. 2017, 130, 51–59. [Google Scholar] [CrossRef]
- Shin, J.; Jang, M.G.; Park, J.C.; Koo, Y.D.; Lee, J.Y.; Park, K.S.; Chung, S.S.; Park, K. Antidiabetic Effects of Trihydroxychalcone Derivatives via Activation of AMP-Activated Protein Kinase. J. Ind. Eng. Chem. 2018, 60, 177–184. [Google Scholar] [CrossRef]
- Shukla, P.; Satyanarayana, M.; Verma, P.C.; Tiwari, J.; Dwivedi, A.P.; Srivastava, R.; Rehuja, N.; Srivastava, S.P.; Gautam, S.; Tamrakar, A.K.; et al. Chalcone-based aryloxypropanolamine as a potential antidiabetic and antidyslipidaemic agent. Curr. Sci. 2017, 112, 1675–1689. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and Their Therapeutic Targets for the Management of Diabetes: Structural and Pharmacological Perspectives. Eur. J. Med. Chem. 2015, 92, 839–865. [Google Scholar] [CrossRef] [PubMed]
- Shinde, R.S.; Salunke, S.D. Facile synthesis of some triazine based chalcones as potential antioxidant and anti-diabetic agents. J. Chem. Pharm. 2015, 7, 114–120. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Hsieh, T.J.; El-Shazly, M.; Chuang, D.W.; Tsai, Y.H.; Yen, C.T.; Wu, S.F.; Wu, Y.C.; Chang, F.R. Synthesis of Chalcone Derivatives as Potential Anti-Diabetic Agents. Bioorg. Med. Chem. Lett. 2012, 22, 3912–3915. [Google Scholar] [CrossRef] [PubMed]
- Chinthala, Y.; Thakur, S.; Tirunagari, S.; Chinde, S.; Domatti, A.K.; Arigari, N.K.; Srinivas, K.V.N.S.; Alam, S.; Jonnala, K.K.; Khan, F.; et al. Synthesis, Docking and ADMET Studies of Novel Chalcone Triazoles for Anti-Cancer and Anti-Diabetic Activity. Eur. J. Med. Chem. 2015, 93, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Tarozzi, A.; Królicka, E.; Kie, K.; Ła, D. Chalcones as Potential Ligands for the Treatment of Parkinson’s Disease. Pharmaceuticals 2022, 15, 847. [Google Scholar] [CrossRef]
- Hammuda, A.; Shalaby, R.; Rovida, S.; Edmondson, D.E.; Binda, C.; Khalil, A. Design and Synthesis of Novel Chalcones as Potent Selective Monoamine Oxidase-B Inhibitors. Eur. J. Med. Chem. 2016, 114, 162–169. [Google Scholar] [CrossRef]
- Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H.; Marathakam, A.; Unnikrishnan, M.K.; Carradori, S. Emerging Therapeutic Potentials of Dual-Acting MAO and AChE Inhibitors in Alzheimer’s and Parkinson’s Diseases. Arch. Pharm. Chem. Life Sci. 2019, 352, 1900177. [Google Scholar] [CrossRef]
- Hitge, R.; Smit, S.; Petzer, A.; Petzer, J.P. Evaluation of Nitrocatechol Chalcone and Pyrazoline Derivatives as Inhibitors of Catechol-O-Methyltransferase and Monoamine Oxidase. Bioorg. Med. Chem. Lett. 2020, 30, 127188. [Google Scholar] [CrossRef]
- Parambi, D.G.T.; Saleem, U.; Shah, M.A.; Anwar, F.; Ahmad, B.; Manzar, A.; Itzaz, A.; Harilal, S.; Uddin, M.S.; Kim, H.; et al. Exploring the Therapeutic Potentials of Highly Selective Oxygenated Chalcone Based MAO-B Inhibitors in a Haloperidol-Induced Murine Model of Parkinson’s Disease. Neurochem. Res. 2020, 45, 2786–2799. [Google Scholar] [CrossRef]
- Sasidharan, R.; Manju, S.L.; Uçar, G.; Baysal, I.; Mathew, B. Identification of Indole-Based Chalcones: Discovery of a Potent, Selective, and Reversible Class of MAO-B Inhibitors. Arch. Pharm. 2016, 349, 627–637. [Google Scholar] [CrossRef]
- Sasidharan, R.; Baek, S.C.; Sreedharannair Leelabaiamma, M.; Kim, H.; Bijo, M. Imidazole Bearing Chalcones as a New Class of Monoamine Oxidase Inhibitors. Biomed. Pharmacother. 2018, 106, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.M.; Rangarajan, T.M.; Chaudhary, R.; Singh, R.P.; Singh, M.; Singh, R.P.; Tondo, A.R.; Gambacorta, N.; Nicolotti, O.; Mathew, B.; et al. Novel class of chalcone oxime ethers as potent monoamine oxidase-B and acetylcholinesterase inhibitors. Molecules 2020, 25, 2356. [Google Scholar] [CrossRef] [PubMed]
- Padhye, S.; Ahmad, A.; Oswal, N.; Dandawate, P.; Rub, R.A.; Deshpande, J.; Swamy, K.V.; Sarkar, F.H. Fluorinated 2′-Hydroxychalcones as Garcinol Analogs with Enhanced Antioxidant and Anticancer Activities. Bioorg. Med. Chem. Lett. 2010, 20, 5818–5821. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, I.S.; Moon, A. 2-Hydroxychalcone and Xanthohumol Inhibit Invasion of Triple Negative Breast Cancer Cells. Chem. Interact. 2013, 203, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Gul, H.I.; Yamali, C.; Gunesacar, G.; Sakagami, H.; Okudaira, N.; Uesawa, Y.; Kagaya, H. Cytotoxicity, apoptosis, and QSAR studies of phenothiazine derived methoxylated chalcones as anticancer drug candidates. Med. Chem. Res. 2018, 27, 2366–2378. [Google Scholar] [CrossRef]
- Prabhakar, V.; Balasubramanian, R.; Sathe, P.; Krishna, C.M.; Juvekar, A. In Vitro Anticancer Activity of Monosubstituted Chalcone Derivatives. Int. J. Tumor Ther. 2014, 3, 1–9. [Google Scholar] [CrossRef]
- Schmitt, F.; Draut, H.; Biersack, B.; Schobert, R. Halogenated naphthochalcones and structurally related naphthopyra-zolines with antitumor activity. Bioorg. Med. Chem. Lett. 2016, 26, 5168–5171. [Google Scholar] [CrossRef]
- Mai, C.W.; Yaeghoobi, M.; Abd-Rahman, N.; Kang, Y.B.; Pichika, M.R. Chalcones with Electron-Withdrawing and Electron-Donating Substituents: Anticancer Activity against TRAIL Resistant Cancer Cells, Structure–Activity Relationship Analysis and Regulation of Apoptotic Proteins. Eur. J. Med. Chem. 2014, 77, 378–387. [Google Scholar] [CrossRef]
- Echeverria, C.; Santibañez, J.F.; Donoso-Tauda, O.; Escobar, C.A.; Ramirez-Tagle, R. Structural Antitumoral Activity Relationships of Synthetic Chalcones. Int. J. Mol. Sci. 2009, 10, 221–231. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone Synthesis, Properties and Medicinal Applications: A Review. Environ. Chem. Lett. 2020, 18, 433–458. [Google Scholar] [CrossRef]
Homocyclic chalcone derivatives (breast cancer cell lines; IC50 values in µM) | |||||
Hydroxylated chalcones | Methoxylated chalcones | Chalcones with extended functionality | |||
124 | 1.37 | 128 | 7.3 | 134 | 0.03 |
125 | - | 129 | 2.54 | 135 | 3.5 |
126 | 4.4 | 130 | 30.55 | 136 | - |
127 | 91.4 | 131 | 23.45 | 137 | <10 |
- | - | 132 | 2.2 | - | - |
- | - | 133 | 1.2 | - | - |
Heterocyclic chalcone derivatives (breast cancer cell lines; IC50 values in µM) | |||||
Furano-based chalcones | Imidazole-based chalcones | Thiazole-based chalcones | |||
138 | 2.2 | 142 | 8.91 | 145 | 1.97 |
139 | 0.00035–0.59 | 143 | 0.56 | 146 | 0.18 |
140 | 1.45 | 144 | 5.89 | 147 | 12 |
141 | 1.8 | - | - | - | - |
Pyrimidine-based chalcones | Indole-based chalcones | Oxazoline/pyrazole/quinoline/pyridine-based chalcones | |||
148 | 7.4 | 151 | 31.66 | 154 | 0.35 |
149 | 6.52 | 152 | 2.25 | 155 | 3.9 |
150 | 0.14 | 153 | 12 | 156 | 2.32 |
- | - | - | - | 157 | 1.8 |
Compound Number | Structure of Chalcones | Types of Cancer |
---|---|---|
173 | Cervical cancer (0.027 ± 0.01 µM), prostate cancer (0.031 ± 0.05 µM), leukemia (0.031 ± 0.12 µM), lung cancer (0.026 ± 0.03 µM) [236] | |
174 | Lung cancer, colon cancer, renal adenocarcinoma, pancreatic carcinoma [237] | |
175 | Lung cancer (1.39–3.17 µM), breast cancer (1.97–4.14 µM), hepatocarcinoma (1.56–3.79 µM) [186] | |
176 | Breast cancer (2.2 ± 0.3 µM), prostate cancer(0.9 ± 0.5 µM), lung cancer (1.10 ± 0.5 µM), pancreatic carcinoma (1.2 ± 0.2 µM) [187] | |
177 | Lung cancer (0.10–2.90 µM), breast cancer (0.14–0.17 µM), colon adenocarcinomas (0.13–2.89 µM) [189] | |
178 | Lung cancer (0.66 ± 0.071 µM), breast cancer (0.18 ± 0.094 µM), prostate carcinoma (1.03 ± 0.45 µM) [193] | |
179 | Breast cancer (3.44 ± 0.19 µM), liver carcinoma (4.64 ± 0.23 µM), adenocarcinoma (6.31 ± 0.27 μM) [171] | |
180 | Colon cancer (11.78 µM), breast cancer (31.66 µM), liver cancer (13.95 µM) [194] | |
181 | Breast cancer (3.9–4.1 µM), liver cancer (3.8–5.0 µM), colorectal cancer (3.3 µM) [199] | |
182 | Breast cancer (2.54 µM), colorectal cancer (1.83 µM), gastric carcinoma (1.52 µM) [178] | |
183 | Breast cancer (0.012 ± 0.007 µM), lung cancer (0.074 ± 0.004 µM), colon cancer (0.074 ± 0.004 μM), ovarian cancer (0.083 ± 0.002 μM) [200] | |
184 | Breast cancer (0.33–0.89 µM), melanoma (0.11–1.28 µM), lung cancer (0.34–7.56 µM) [238] | |
185 | Ovarian carcinoma (6.66 µM), breast cancer (30.55 µM), lung cancer (36.35 µM) [181] | |
186 | Colon carcinoma (33.31 µM), cervical carcinoma (21.80 µM), breast cancer (23.45 µM), lung cancer (4.28 µM) [206] | |
187 | Breast cancer, synovial carcinoma, cervical carcinoma (2.2–4.5 µM) [183] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, G.; Bhanu, D.; Aruchamy, B.; Ramani, P.; Pandurangan, N.; Bobba, K.N.; Oh, E.J.; Chung, H.Y.; Gangadaran, P.; Ahn, B.-C. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals 2022, 15, 1250. https://doi.org/10.3390/ph15101250
Rajendran G, Bhanu D, Aruchamy B, Ramani P, Pandurangan N, Bobba KN, Oh EJ, Chung HY, Gangadaran P, Ahn B-C. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals. 2022; 15(10):1250. https://doi.org/10.3390/ph15101250
Chicago/Turabian StyleRajendran, Gayathri, Deepu Bhanu, Baladhandapani Aruchamy, Prasanna Ramani, Nanjan Pandurangan, Kondapa Naidu Bobba, Eun Jung Oh, Ho Yun Chung, Prakash Gangadaran, and Byeong-Cheol Ahn. 2022. "Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry" Pharmaceuticals 15, no. 10: 1250. https://doi.org/10.3390/ph15101250
APA StyleRajendran, G., Bhanu, D., Aruchamy, B., Ramani, P., Pandurangan, N., Bobba, K. N., Oh, E. J., Chung, H. Y., Gangadaran, P., & Ahn, B. -C. (2022). Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals, 15(10), 1250. https://doi.org/10.3390/ph15101250