Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Digestion Chamber with Controlled Microcondensation on Tissue Slices
2.2. MALDI-MSI of N-Glycans in Fresh-Frozen Mouse Brain Using an Orthogonal qToF Mass Spectrometer
2.3. Differential Distribution of N-Glycans in Human Glioblastoma Cell-Derived Xenografts in Mice
3. Materials and Methods
3.1. Materials
3.2. Animal Model and Tissue Samples
3.3. Re-Engineered Digestion Chamber with Controlled Microcondensation
3.4. Tissue Processing
- Detergent treatment for denaturation: Denaturation of glycoproteins prior to enzymatic digestion has been shown to increase the deglycosylation efficiency [30]. Twenty µL detergent solution (20 mg n-octyl-β-d-glucopyranoside in 7 µL 2-mercaptoethanol and 993 µL ddH2O) was applied onto each tissue slice and left for 10 min at RT. The detergent solution was removed directly in step 2 by dipping the tissue slices mounted onto the glass sides in organic solvents.
- Tissue washing and delipidation: For removal of lipid background and detergent solution, a six-step washing protocol was used: first, 100% ethanol (EtOH) for 1 min; second and third, Carnoy’s fluid (60% EtOH/30% chloroform/10% acetic acid v/v/v) for 2 min; fourth, 100% EtOH for 1 min; fifth and sixth, 70% EtOH for 2 min; seventh and eighth, ddH2O for 2 min. After washing the tissue slices, the glass slides were dried for 5 min under vacuum at RT.
- Application of PNGase F: To cleave N-glycans from proteins, 150 µL PNGase F solution (100 ng/µL PNGase in ddH2O) was applied to each slide using the SunCollect MALDI Sprayer equipped with a syringe pump (SunChrom, Friedrichsdorf, Germany) in 10 layers using a line distance of 1 mm at RT. Further parameters regarding enzyme application were: distance between tissue and spray head was z = 30 mm, flow rate 10 µL/min, speed 1080 mm/min (“medium 4”) and air pressure at 2.5 bar.
- Enzymatic digestion using the device: Both cotton sponges from the device were dipped into ddH2O until they were totally wet and placed in the instrument. The glass slides with the tissue sample up were placed on top of the heating bar and incubated for 4.5 h using an iterative temperature program (base 37–39 °C; cover 47 °C).
- Matrix application: A-cyano-4-hydroxycinnamic acid (HCCA, 7 mg/mL in 50% acetonitrile + 0.1% trifluoroacetic acid) was deposited in 15 layers using a line distance of 2 mm at RT using the SunCollect MALDI Sprayer equipped with a dispenser system (SunChrom). Further parameters regarding matrix application were: z = 30 mm, flow rate 10 µL/min (first layer) and 15 µL/min (last layers), speed 900 mm/min and air pressure at 2.5 bar.
3.5. MALDI-qToF MS Imaging
3.6. Image Reconstruction and Data Analysis
3.7. Hematoxylin and Eosin (H&E) Tissue Staining
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, S.; Becker, M.; Groseclose, M.R.; Schadt, S.; Hopf, C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr. Opin. Biotechnol. 2019, 55, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Scupakova, K.; Balluff, B.; Tressler, C.; Adelaja, T.; Heeren, R.M.A.; Glunde, K.; Ertaylan, G. Cellular resolution in clinical MALDI mass spectrometry imaging: The latest advancements and current challenges. Clin. Chem. Lab. Med. 2020, 58, 914–929. [Google Scholar] [CrossRef] [PubMed]
- Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal. Chem. 2018, 90, 240–265. [Google Scholar] [CrossRef]
- Merdas, M.; Lagarrigue, M.; Vanbellingen, Q.; Umbdenstock, T.; Da Violante, G.; Pineau, C. On-tissue chemical derivatization reagents for matrix-assisted laser desorption/ionization mass spectrometry imaging. J. Mass Spectrom. 2021, 56, e4731. [Google Scholar] [CrossRef] [PubMed]
- Cillero-Pastor, B.; Heeren, R.M. Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: A critical review of on-tissue digestion. J. Proteome Res. 2014, 13, 325–335. [Google Scholar] [CrossRef]
- Drake, R.R.; West, C.A.; Mehta, A.S.; Angel, P.M. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Tissues. Adv. Exp. Med. Biol. 2018, 1104, 59–76. [Google Scholar] [CrossRef]
- Angel, P.M.; Norris-Caneda, K.; Drake, R.R. In Situ Imaging of Tryptic Peptides by MALDI Imaging Mass Spectrometry Using Fresh-Frozen or Formalin-Fixed, Paraffin-Embedded Tissue. Curr. Protoc. Protein Sci. 2018, 94, e65. [Google Scholar] [CrossRef]
- Buck, A.; Heijs, B.; Beine, B.; Schepers, J.; Cassese, A.; Heeren, R.M.A.; McDonnell, L.A.; Henkel, C.; Walch, A.; Balluff, B. Round robin study of formalin-fixed paraffin-embedded tissues in mass spectrometry imaging. Anal. Bioanal. Chem. 2018, 410, 5969–5980. [Google Scholar] [CrossRef] [Green Version]
- Heijs, B.; Holst, S.; Briaire-de Bruijn, I.H.; van Pelt, G.W.; de Ru, A.H.; van Veelen, P.A.; Drake, R.R.; Mehta, A.S.; Mesker, W.E.; Tollenaar, R.A.; et al. Multimodal Mass Spectrometry Imaging of N-Glycans and Proteins from the Same Tissue Section. Anal. Chem. 2016, 88, 7745–7753. [Google Scholar] [CrossRef]
- Scott, D.A.; Casadonte, R.; Cardinali, B.; Spruill, L.; Mehta, A.S.; Carli, F.; Simone, N.; Kriegsmann, M.; Del Mastro, L.; Kriegsmann, J.; et al. Increases in Tumor N-Glycan Polylactosamines Associated with Advanced HER2-Positive and Triple-Negative Breast Cancer Tissues. Proteom. Clin. Appl. 2019, 13, e1800014. [Google Scholar] [CrossRef]
- Angel, P.M.; Mehta, A.; Norris-Caneda, K.; Drake, R.R. MALDI Imaging Mass Spectrometry of N-glycans and Tryptic Peptides from the Same Formalin-Fixed, Paraffin-Embedded Tissue Section. Methods Mol. Biol. 2018, 1788, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Casadonte, R.; Kriegsmann, M.; Zweynert, F.; Friedrich, K.; Baretton, G.; Otto, M.; Deininger, S.O.; Paape, R.; Belau, E.; Suckau, D.; et al. Imaging mass spectrometry to discriminate breast from pancreatic cancer metastasis in formalin-fixed paraffin-embedded tissues. Proteomics 2014, 14, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Pietrowska, M.; Gawin, M.; Polanska, J.; Widlak, P. Tissue fixed with formalin and processed without paraffin embedding is suitable for imaging of both peptides and lipids by MALDI-IMS. Proteomics 2016, 16, 1670–1677. [Google Scholar] [CrossRef] [PubMed]
- Velickovic, D.; Sharma, K.; Alexandrov, T.; Hodgin, J.B.; Anderton, C.R. Controlled Humidity Levels for Fine Spatial Detail Information in Enzyme-Assisted N-Glycan MALDI MSI. J. Am. Soc. Mass Spectrom. 2022, 33, 1577–1580. [Google Scholar] [CrossRef] [PubMed]
- Balluff, B.; Hopf, C.; Porta Siegel, T.; Grabsch, H.I.; Heeren, R.M.A. Batch Effects in MALDI Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2021, 32, 628–635. [Google Scholar] [CrossRef]
- Ucal, Y.; Coskun, A.; Ozpinar, A. Quality will determine the future of mass spectrometry imaging in clinical laboratories: The need for standardization. Expert Rev. Proteom. 2019, 16, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Stanback, A.E.; Conroy, L.R.; Young, L.E.A.; Hawkinson, T.R.; Markussen, K.H.; Clarke, H.A.; Allison, D.B.; Sun, R.C. Regional N-glycan and lipid analysis from tissues using MALDI-mass spectrometry imaging. STAR Protoc. 2021, 2, 100304. [Google Scholar] [CrossRef]
- Chen, N.; Chen, M.; Wu, T.; Bian, Y.; Xu, Z. The development of an efficient RNAi system based on Agrobacterium-mediated transformation approach for studying functional genomics in medical fungus Wolfiporia cocos. World J. Microbiol. Biotechnol. 2020, 36, 140. [Google Scholar] [CrossRef]
- Cobice, D.F.; Goodwin, R.J.; Andren, P.E.; Nilsson, A.; Mackay, C.L.; Andrew, R. Future technology insight: Mass spectrometry imaging as a tool in drug research and development. Br. J. Pharmacol. 2015, 172, 3266–3283. [Google Scholar] [CrossRef] [Green Version]
- Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci. Rep. 2011, 1, 90. [Google Scholar] [CrossRef] [Green Version]
- Lazar, I.M.; Lee, W.; Lazar, A.C. Glycoproteomics on the rise: Established methods, advanced techniques, sophisticated biological applications. Electrophoresis 2013, 34, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Sola, R.J.; Griebenow, K. Glycosylation of therapeutic proteins: An effective strategy to optimize efficacy. BioDrugs 2010, 24, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyaval, F.; van Zeijl, R.; Dalebout, H.; Holst, S.; van Pelt, G.; Farina-Sarasqueta, A.; Mesker, W.; Tollenaar, R.; Morreau, H.; Wuhrer, M.; et al. N-Glycomic Signature of Stage II Colorectal Cancer and Its Association With the Tumor Microenvironment. Mol. Cell. Proteom. MCP 2021, 20, 100057. [Google Scholar] [CrossRef] [PubMed]
- Grzeski, M.; Taube, E.T.; Braicu, E.I.; Sehouli, J.; Blanchard, V.; Klein, O. In Situ N-Glycosylation Signatures of Epithelial Ovarian Cancer Tissue as Defined by MALDI Mass Spectrometry Imaging. Cancers 2022, 14, 1021. [Google Scholar] [CrossRef] [PubMed]
- Terkelsen, T.; Haakensen, V.D.; Saldova, R.; Gromov, P.; Hansen, M.K.; Stockmann, H.; Lingjaerde, O.C.; Borresen-Dale, A.L.; Papaleo, E.; Helland, A.; et al. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients: Association with tumor biology and clinical outcome. Mol. Oncol. 2018, 12, 972–990. [Google Scholar] [CrossRef] [Green Version]
- Oetjen, J.; Lachmund, D.; Palmer, A.; Alexandrov, T.; Becker, M.; Boskamp, T.; Maass, P. An approach to optimize sample preparation for MALDI imaging MS of FFPE sections using fractional factorial design of experiments. Anal. Bioanal. Chem. 2016, 408, 6729–6740. [Google Scholar] [CrossRef]
- Toghi Eshghi, S.; Yang, S.; Wang, X.; Shah, P.; Li, X.; Zhang, H. Imaging of N-linked glycans from formalin-fixed paraffin-embedded tissue sections using MALDI mass spectrometry. ACS Chem. Biol. 2014, 9, 2149–2156. [Google Scholar] [CrossRef] [Green Version]
- Rabe, J.H.; Sammour, D.A.; Schulz, S.; Munteanu, B.; Ott, M.; Ochs, K.; Hohenberger, P.; Marx, A.; Platten, M.; Opitz, C.A.; et al. Author Correction: Fourier Transform Infrared Microscopy Enables Guidance of Automated Mass Spectrometry Imaging to Predefined Tissue Morphologies. Sci. Rep. 2018, 8, 6361. [Google Scholar] [CrossRef] [Green Version]
- Erich, K.; Reinle, K.; Muller, T.; Munteanu, B.; Sammour, D.A.; Hinsenkamp, I.; Gutting, T.; Burgermeister, E.; Findeisen, P.; Ebert, M.P.; et al. Spatial Distribution of Endogenous Tissue Protease Activity in Gastric Carcinoma Mapped by MALDI Mass Spectrometry Imaging. Mol. Cell Proteom. MCP 2019, 18, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Szabo, Z.; Guttman, A.; Karger, B.L. Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal. Chem. 2010, 82, 2588–2593. [Google Scholar] [CrossRef]
N-glycan Species | Theoretical m/z | Tissue #1 | Tissue #2 | Tissue #3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
m/z | Relative Intensity | Mass Error (ppm) | m/z | Relative Intensity | Mass Error (ppm) | m/z | Relative Intensity | Mass Error (ppm) | ||
H6N2F0 | 1419.476 | 1419.474 | 3.68 | 1.4 | 1419.476 | 4.09 | 0.2 | 1419.460 | 2.93 | 11.1 |
H4N3F1 | 1444.508 | 1444.543 | 0.51 | 24.8 | 1444.502 | 0.64 | 3.7 | 1444.477 | 0.35 | 21.1 |
H3N4F1 | 1485.534 | 1485.553 | 4.09 | 12.6 | 1485.532 | 6.34 | 1.3 | 1485.463 | 3.61 | 47.8 |
H3N5F0 | 1542.556 | 1542.576 | 0.63 | 12.9 | 1542.566 | 0.58 | 6.4 | 1542.462 | 0.40 | 60.9 |
H7N2F0 | 1581.529 | 1581.534 | 2.03 | 3.6 | 1581.504 | 2.43 | 15.8 | 1581.514 | 1.51 | 9.5 |
H5N3F1 | 1606.560 | 1606.579 | 0.52 | 11.7 | 1606.554 | 0.62 | 3.8 | 1606.547 | 0.34 | 8.1 |
H4N4F1 | 1647.587 | 1647.564 | 1.11 | 13.9 | 1647.584 | 1.46 | 1.9 | 1647.498 | 0.87 | 54 |
H5N4F0 | 1663.582 | 1663.577 | 0.73 | 2.8 | 1663.611 | 0.62 | 17.8 | 1663.489 | 0.47 | 56.1 |
H3N5F1 | 1688.614 | 1688.622 | 5.82 | 4.9 | 1688.613 | 7.04 | 0.2 | 1688.517 | 5.03 | 57.1 |
H8N2F0 | 1743.582 | 1743.569 | 1.68 | 7 | 1743.578 | 2.19 | 1.8 | 1743.504 | 1.31 | 44.4 |
H4N4F2 | 1793.645 | 1793.642 | 1.11 | 1.6 | 1793.657 | 1.54 | 6.8 | 1793.660 | 0.77 | 8.1 |
H5N4F1 | 1809.640 | 1809.631 | 1.16 | 4.9 | 1809.651 | 1.39 | 6.0 | 1809.556 | 0.82 | 8.7 |
H4N5F1 | 1850.666 | 1850.656 | 1.20 | 5.6 | 1850.662 | 1.41 | 2.1 | 1850.631 | 0.86 | 18.9 |
H9N2F0 | 1905.634 | 1905.603 | 1.74 | 16.5 | 1905.627 | 2.18 | 3.8 | 1905.632 | 1.45 | 1.1 |
H5N4F2 | 1955.698 | 1955.667 | 0.64 | 15.5 | 1955.703 | 0.74 | 2.6 | 1955.741 | 0.41 | 22.1 |
H6N4F1 | 1971.693 | 1971.705 | 0.28 | 6.1 | 1971.681 | 0.25 | 5.7 | 1971.731 | 0.16 | 19.5 |
H4N5F2 | 1996.724 | 1996.721 | 2.31 | 1.7 | 1996.735 | 2.91 | 5.7 | 1996.741 | 1.78 | 8.5 |
H5N5F1 | 2012.719 | 2012.713 | 0.38 | 3 | 2012.71 | 0.40 | 4.7 | 2012.807 | 0.22 | 43.7 |
H4N6F1 | 2053.746 | 2053.746 | 0.53 | 0.1 | 2053.738 | 0.57 | 3.8 | 2053.826 | 0.36 | 39.3 |
H5N4F3 | 2101.756 | 2101.76 | 0.17 | 2 | 2101.746 | 0.21 | 4.5 | 2101.875 | 0.09 | 56.6 |
H6N4F2 | 2117.751 | 2117.724 | 0.17 | 12.5 | 2117.749 | 0.15 | 0.8 | 2117.863 | 0.09 | 52.9 |
H5N5F2 | 2158.777 | 2158.805 | 0.37 | 13.1 | 2158.752 | 0.46 | 11.4 | 2158.824 | 0.22 | 21.7 |
H6N5F1 | 2174.772 | 2174.771 | 0.16 | 0.3 | 2174.780 | 0.19 | 3.6 | 2174.792 | 0.08 | 9.1 |
H4N6F2 | 2199.804 | 2199.789 | 0.49 | 6.7 | 2199.805 | 0.53 | 0.4 | 2199.852 | 0.33 | 21.8 |
H5N6F1 | 2215.799 | 2215.826 | 0.19 | 12.4 | 2215.783 | 0.21 | 7.1 | 2215.931 | 0.12 | 59.9 |
H5N5F3 | 2304.835 | 2304.872 | 0.51 | 16 | 2304.818 | 0.64 | 7.3 | 2304.954 | 0.31 | 51.5 |
H6N5F2 | 2320.830 | 2320.86 | 0.14 | 13 | 2320.845 | 0.17 | 6.4 | 2320.974 | 0.08 | 61.9 |
H5N6F2 | 2361.857 | 2361.844 | 0.29 | 5.5 | 2361.872 | 0.32 | 6.7 | 2361.944 | 0.18 | 37 |
H6N5F3 | 2466.888 | 2466.852 | 0.19 | 14.4 | 2466.908 | 0.26 | 8.4 | 2466.913 | 0.10 | 10.3 |
H5N6F3 | 2507.914 | 2507.933 | 0.16 | 7.5 | 2507.936 | 0.19 | 8.4 | 2507.868 | 0.11 | 18.6 |
H6N6F2 | 2523.909 | 2523.921 | 0.08 | 4.7 | 2523.913 | 0.09 | 1.6 | 2523.845 | 0.05 | 25.4 |
H6N5F4 | 2612.946 | 2612.99 | 0.19 | 17 | 2612.947 | 0.25 | 0.3 | 2612.960 | 0.11 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fülöp, A.; Marsching, C.; Barka, F.; Ucal, Y.; Pfänder, P.; Opitz, C.A.; Barka, G.; Hopf, C. Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans. Pharmaceuticals 2022, 15, 1356. https://doi.org/10.3390/ph15111356
Fülöp A, Marsching C, Barka F, Ucal Y, Pfänder P, Opitz CA, Barka G, Hopf C. Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans. Pharmaceuticals. 2022; 15(11):1356. https://doi.org/10.3390/ph15111356
Chicago/Turabian StyleFülöp, Annabelle, Christian Marsching, Frederik Barka, Yasemin Ucal, Pauline Pfänder, Christiane A. Opitz, Günes Barka, and Carsten Hopf. 2022. "Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans" Pharmaceuticals 15, no. 11: 1356. https://doi.org/10.3390/ph15111356
APA StyleFülöp, A., Marsching, C., Barka, F., Ucal, Y., Pfänder, P., Opitz, C. A., Barka, G., & Hopf, C. (2022). Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans. Pharmaceuticals, 15(11), 1356. https://doi.org/10.3390/ph15111356