Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam
Abstract
:1. Introduction
2. Results and Discussions
2.1. Plant Identifications
2.2. Plant Extractions, Isolations, and Alkaloids Purifications
2.3. Isolated Compound Structure Identifications
2.4. In-Vitro Antioxidant Test
2.5. In-Vitro Cytotoxicity Test
2.6. In-Vitro Acetylcholinesterase Inhibition Test
3. Materials and Methods
3.1. Materials
3.2. Plant Identifications
3.3. Plant Extractions, Isolations, and Alkaloids Purifications
3.4. Isolated Compound Structure Elucidations
3.5. In-Vitro Antioxidant Test
3.6. In-Vitro Cytotoxicity Test
3.7. In-Vitro Acetylcholinesterase Inhibition Test
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, P.H.; De Tran, V.; Pham, D.T.; Dao TN, P.; Dewey, R.S. Use of and attitudes towards herbal medicine during the COVID-19 pandemic: A cross-sectional study in Vietnam. Eur. J. Integr. Med. 2021, 44, 101328. [Google Scholar] [CrossRef]
- Tran, V.D.; Pham, D.T.; Cao, T.T.N.; Bahlol, M.; Dewey, R.S.; Le, M.H.; Nguyen, V.A. Perspectives on COVID-19 prevention and treatment using herbal medicine in Vietnam: A cross-sectional study. Ann. Ig. 2022, 34, 5. [Google Scholar] [CrossRef]
- Pham, D.T.; Saelim, N.; Tiyaboonchai, W. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids Surf. B Biointerfaces 2019, 181, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.T.; Thao, N.T.P.; Thuy, B.T.P.; Tran, V.D.; Nguyen, T.Q.; Nguyen, N.N.T. Silk fibroin hydrogel containing Sesbania sesban L. extract for rheumatoid arthritis treatment. Drug Deliv. 2022, 29, 882–888. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fang, J.; Huang, L.; Wang, J.; Huang, X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2015, 172, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; He, Q. Anti-Tumor Activities of Bioactive Phytochemicals in Sophora flavescens for Breast Cancer. Cancer Manag. Res. 2020, 12, 1457. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Huang, Q.; Qu, W.; Li, L.; Wang, M.; Li, S.; Chu, F. In Vivo and in vitro anti-inflammatory effects of Sophora flavescens residues. J. Ethnopharmacol. 2018, 224, 497–503. [Google Scholar] [CrossRef]
- Yang, N.; Liang, B.; Srivastava, K.; Zeng, J.; Zhan, J.; Brown, L.; Sampson, H.; Goldfarb, J.; Emala, C.; Li, X.M. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction. Phytochemistry 2013, 95, 259. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.C.; Huang, C.K.; Srivastava, K.D.; Zhang, T.F.; Schofield, B.; Sampson, H.A.; Li, X.M. Ku-Shen (Sophora flavescens Ait.), a single Chinese herb, abrogates airway hyperreactivity in a murine model of asthma. J. Allergy Clin. Immunol. 2004, 113, S218. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, J.E.; Bae, G.N. Use of electrosprayed Sophora flavescens natural-product nanoparticles for antimicrobial air filtration. J. Aerosol Sci. 2013, 57, 185–193. [Google Scholar] [CrossRef]
- Liang, N.; Nikolova, D.; Jakobsen, J.C.; Gluud, C.; Liu, J.P. Radix Sophorae flavescentis versus antiviral drugs for chronic hepatitis B. Cochrane Database Syst. Rev. 2018, 2018, 8. [Google Scholar] [CrossRef]
- Dai, S.; Chan, M.Y.; Lee, S.S.; Ogle, C.W. The antiarrhythmic effects of Sophora flavescens Ait. in rats and mice. Am. J. Chin. Med. 1986, 14, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lin, Y.; Xu, H.; Li, L.; Ding, T. Combination of Sophora flavescens alkaloids and Panax quinquefolium saponins modulates different stages of experimental autoimmune myocarditis via the NF-κB and TGF-β1 pathways. Exp. Ther. Med. 2022, 24, 3. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Lee, S.; Elam, M.L.; Johnson, S.A.; Kang, J.; Arjmandi, B.H. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci. Nutr. 2014, 2, 174–180. [Google Scholar] [CrossRef]
- Elnour, A.A.M.; Mirghani, M.E.S.; Musa, K.H.; Kabbashi, N.A.; Alam, M.Z. Challenges of Extraction Techniques of Natural Antioxidants and Their Potential Application Opportunities as Anti-Cancer Agents. Heal. Sci. J. 2018, 12, 5. [Google Scholar] [CrossRef]
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Tang, W.; Eisenbrand, G. Sophora flavescens Ait. Chin. Drugs Plant Orig. 1992, 10, 931–943. [Google Scholar] [CrossRef]
- Shang, H.; Li, L.; Ma, L.; Tian, Y.; Jia, H.; Zhang, T.; Yu, M.; Zou, Z. Design and Synthesis of Molecular Hybrids of Sophora Alkaloids and Cinnamic Acids as Potential Antitumor Agents. Molecules 2020, 25, 1168. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.Y.; Wang, D.Q.; Ye, C.H.; Liu, M.L. 1H and13C chemical shift assignments and stereochemistry of matrine and oxymatrine. Appl. Magn. Reson. 2002, 23, 113–121. [Google Scholar] [CrossRef]
- Azimova, S.S.; Yunusov, M.S. (Eds.) (–)-Sophoridine. In Natural Compounds; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Piao, X.L.; Piao, X.S.; Kim, S.W.; Park, J.H.; Kim, H.Y.; Cai, S.Q. Identification and Characterization of Antioxidants from Sophora flavescens. Biol. Pharm. Bull. 2006, 29, 1911–1915. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zhu, B.; Yang, W.; Zhang, Q.; Wang, W.; Zhai, W.; Lu, L.; Zheng, Y.; Dang, Z.; Li, B.; et al. Matrine inhibits proliferation and migration of HepG2 cells by downregulating ERK1/2 signaling pathways. J. Cancer Res. Ther. 2020, 16, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Liu, S.P.; Fang, C.H.; He, R.S.; Wang, Z.; Zhu, Y.Q.; Jiang, S.W. Effects of matrine on the proliferation of HT29 human colon cancer cells and its antitumor mechanism. Oncol. Lett. 2013, 6, 699–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhang, J.; Luo, J.; Lai, F.; Wang, Z.; Tong, H.; Lu, D.; Bu, H.; Zhang, R.; Lin, S. Antiangiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol. Rep. 2013, 30, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, L.; Wang, X.Y.; Zhang, X.H.; Ji, B.; Yan, H.C.; Deng, H.Z.; Wu, X.R. Sophoridine exerts an anti-colorectal carcinoma effect through apoptosis induction in vitro and In Vivo. Life Sci. 2012, 91, 1295–1303. [Google Scholar] [CrossRef]
- Park, J.E.; Mun, S.K.; Yee, S.T.; Kim, H. Evaluation of Inhibitory Activities of Sophora flavescens and Angelica gigas Nakai Root Extracts against Monoamine Oxidases, Cholinesterases, and β-Secretase. Processes 2022, 10, 880. [Google Scholar] [CrossRef]
- Jung, H.A.; Yokozawa, T.; Kim, B.W.; Jung, J.H.; Choi, J.S. Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases. Am. J. Chin. Med. 2010, 38, 415–429. [Google Scholar] [CrossRef]
Extraction Solvent | Total Extract (g) | Chloroform Fraction (g) |
---|---|---|
EtOH | 2.27 ± 0.30 a | 0.20 ± 0.02 a |
EtOH + 1% HCl | 4.32 ± 0.35 b | 0.29 ± 0.03 b |
EtOH + 1% AcOH | 2.55 ± 0.28 a | 0.27 ± 0.03 b |
MeOH | 2.20 ± 0.27 a | 0.16 ± 0.02 a |
MeOH + 1% HCl | 3.03 ± 0.24 c | 0.19 ± 0.02 a |
MeOH + 1% AcOH | 2.57 ± 0.22 a | 0.20 ± 0.02 a |
H2O | 2.31 ± 0.21 a | 0.20 ± 0.03 a |
H2O + 1% HCl | 4.55 ± 0.39 b | 0.22 ± 0.03 a |
H2O + 1% AcOH | 2.49 ± 0.25 a | 0.20 ± 0.02 a |
A1 (Oxysophocarpine) | A2 (Oxymatrine) | |
---|---|---|
Chemical formula | C15H22N2O2 | C15H24N2O2 |
Chemical structure | ||
Mass (MS) | MS: m/z = 263.1711 [M + H]+ Theory: 263.1747 | MS: m/z = 265.1893 [M + H]+ Theory: 265.18986 |
FTIR | ||
A3 (Matrine) | A4 (Sophoridine) | |
Chemical formula | C15H24N2O | C15H24N2O |
Chemical structure | ||
Mass (MS) | MS: m/z = 249.19554 [M + H]+ Theory: 249.1955 | MS: m/z = 249.19488 [M + H]+ Theory: 249.1950 |
FTIR |
C | A1 (Oxysophocarpine) [18] | A2 (Oxymatrine) [19] | A3 (Matrine) [19] | A4 (Sophoridine) [20] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
δC (A1) | δH (A1) | δC (A2) | δH (A2) | δC (A3) | δH (A3) | δC (A4) | δH (A4) | |||||
2 | 69.0 | 3.0–3.2 | 3.0–3.2 | 69.6 | 3.12 | 3.19 | 58.4 | 2.83 | - | 57.5 | 2.08 | 2.79 |
3 | 17.2 | 2.6–2.8 | 1.5–1.9 | 17.3 | 2.75 | 1.56 | 22.2 | - | - | 23.6 | 1.96 | - |
4 | 26.2 | 1.5–1.9 | 1.5–1.9 | 26.2 | 1.7 | 1.8 | 28.1 | - | - | 28.7 | 1.87 | - |
5 | 33.6 | 1.8–2.1 | - | 34.6 | 1.86 | - | 36.9 | - | - | 31.5 | 1.96 | - |
6 | 67.1 | 3.0–3.2 | - | 67.3 | 3.06 | - | 65.1 | - | - | 63.6 | 2.27 | - |
7 | 40.7 | 1.8–2.1 | - | 42.8 | 1.58 | - | 42.9 | - | - | 41.7 | - | - |
8 | 24.9 | 1.8–2.1 | 1.5–1.9 | 24.8 | 1.56 | 2.05 | 27.3 | - | - | 22.9 | - | - |
9 | 17.2 | 2.6–2.8 | 1.5–1.9 | 17.3 | 2.67 | 1.54 | 21.7 | - | - | 22.9 | - | - |
10 | 69.3 | 3.0–3.2 | 3.0–3.2 | 69.2 | 3.09 | 3.17 | 58.3 | 2.83 | - | 50.7 | 2.08 | 2.79 |
11 | 51.6 | 5.09 | - | 53.0 | 5.09 | - | 54.8 | 3.83 | - | 56.7 | 3.4–3.2 | - |
12 | 28.9 | 2.6–2.8 | 1.8–2.1 | 28.6 | 1.26 | 2.2 | 28.8 | - | - | 30.7 | 1.87 | - |
13 | 137.1 | 6.46 | - | 18.7 | 1.69 | 1.8 | 19.6 | - | - | 19.5 | - | - |
14 | 125.0 | 5.91 | - | 33.0 | 2.26 | 2.45 | 33.4 | - | - | 33.0 | 2.27 | - |
15 | 166.4 | - | - | 170.2 | - | - | 172.1 | - | - | 172.6 | - | - |
17 | 42.6 | 4.17 | 4.08 | 41.8 | 4.17 | 4.41 | 44.7 | 4.30 | 3.07 | 48.9 | 3.4–3.2 | - |
Sample | DPPH Test (%) | MDA Test (%) |
---|---|---|
SF total extract, 1000 µg/mL | 6.35 ± 0.32 | 3.38 ± 0.11 |
SF chloroform fraction, 1000 µg/mL | 23.19 ± 1.86 | 48.88 ± 0.63 |
Oxysophocarpine, 1000 µg/mL | 5.26 ± 2.34 | 5.73 ± 1.68 |
Oxymatrine, 1000 µg/mL | 5.46 ± 3.13 | 10.61 ± 4.94 |
Matrine, 1000 µg/mL | 8.15 ± 3.78 | 12.26 ± 4.50 |
Sophoridine, 1000 µg/mL | 22.02 ± 2.80 | 18.57 ± 5.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thang, P.N.T.; Tran, V.-H.; Vu, T.A.; Vinh, N.N.; Huynh, D.T.M.; Pham, D.T. Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam. Pharmaceuticals 2022, 15, 1384. https://doi.org/10.3390/ph15111384
Thang PNT, Tran V-H, Vu TA, Vinh NN, Huynh DTM, Pham DT. Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam. Pharmaceuticals. 2022; 15(11):1384. https://doi.org/10.3390/ph15111384
Chicago/Turabian StyleThang, Phan Nguyen Truong, Viet-Hung Tran, Tran Anh Vu, Nguyen Ngoc Vinh, Duyen Thi My Huynh, and Duy Toan Pham. 2022. "Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam" Pharmaceuticals 15, no. 11: 1384. https://doi.org/10.3390/ph15111384
APA StyleThang, P. N. T., Tran, V. -H., Vu, T. A., Vinh, N. N., Huynh, D. T. M., & Pham, D. T. (2022). Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam. Pharmaceuticals, 15(11), 1384. https://doi.org/10.3390/ph15111384