A Review of Pickering Emulsions: Perspectives and Applications
Abstract
:1. Introduction
2. An Overview of the Physicochemical Characteristics of Pickering Emulsions
2.1. Formation of Pickering Emulsion
2.2. Particles Make the Difference: Their Properties and Stabilization
3. Biomedical Applications of Pickering Emulsions
4. Use of Apparatus for Obtaining Pickering Emulsions
4.1. Via a Rotor-Stator Mechanism
4.2. High-Pressure Homogenization
4.3. Use of Ultrasound
5. Solid Particles Used as Stabilizing Agents
5.1. Polysaccharides in General
5.2. Cellulose and Derivatives
5.3. Starch
5.4. Chitin and Chitosan
5.5. Clay Minerals
5.6. Other Types of Solid Particles for Use in Pickering Emulsions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Wang, Y.; Lu, R. Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review. Pharmaceuticals 2022, 15, 459. [Google Scholar] [CrossRef] [PubMed]
- Aaen, R.; Brodin, F.W.; Simon, S.; Heggset, E.B.; Syverud, K. Oil-in-Water emulsions stabilized by cellulose nanofibrils—The effects of ionic strength and pH. Nanomaterials 2019, 9, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loureiro-Contente, D.M.; Pereira, R.R.; Rodrigues, A.M.C.; da Silva, E.O.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C. Nanoemulsions of Acai Oil: Physicochemical Characterization for the Topical Delivery of Antifungal Drugs. Chem. Eng. Technol. 2020, 43, 1424–1432. [Google Scholar] [CrossRef]
- Frelichowska, J.; Bolzinger, M.A.; Chevalier, Y. Pickering emulsions with bare silica. Colloids Surf. A Physicochem. Eng. Asp. 2009, 343, 70–74. [Google Scholar] [CrossRef]
- Binks, B.P. Particles as Surfactants—Similarities and Differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Marto, J.; Gouveia, L.; Jorge, I.M.; Duarte, A.; Gonçalves, L.M.; Silva, S.M.C.; Ribeiro, H.M. Starch-based Pickering emulsions for topical drug delivery: A QbD approach. Colloids Surf. B Biointerfaces 2015, 135, 183–192. [Google Scholar] [CrossRef]
- Pickering, S.U. Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Blanco, A.; Negro, C. Pickering emulsions containing cellulose microfibers produced by mechanical treatments as stabilizer in the food industry. Appl. Sci. 2019, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, Z.; Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Yuan, W.; Yang, Y.; Xie, Y.; Chen, Y. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Chew, J.W.; Honciuc, A. Polarity reversal in homologous series of surfactant-free Janus nanoparticles: Toward the next generation of amphiphiles. Langmuir 2016, 32, 6376–6386. [Google Scholar] [CrossRef]
- Wu, D.; Binks, B.P.; Honciuc, A. Modeling the interfacial energy of surfactant-free amphiphilic Janus nanoparticles from phase inversion in Pickering emulsions. Langmuir 2018, 34, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Dickinson, E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Curr. Opin. Colloid Interface Sci. 2020, 49, 69–81. [Google Scholar] [CrossRef]
- Ashby, N.P.; Binks, B.P. Pickering emulsions stabilised by Laponite clay particles. Phys. Chem. Chem. Phys. 2000, 2, 5640–5646. [Google Scholar] [CrossRef]
- Ortiz, D.G.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current trends in Pickering emulsions: Particle morphology and applications. Engineering 2020, 6, 468–482. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Chen, Z.; Wang, T.; Lu, Z.; Hu, W. Zein/gum Arabic nanoparticlestabilized Pickering emulsion with thymol as an antibacterial delivery system. Carbohydr. Polym. 2018, 26, 200–416. [Google Scholar]
- Yang, B.; Douyère, G.; Leclercq, L.; Nardello-Rataj, V.; Pera-Titus, M. One-pot oxidative cleavage of cyclic olefins for the green synthesis of dicarboxylic acids in Pickering emulsions in the presence of acid phosphate additives. Catal. Sci. Technol. 2020, 10, 6723–6728. [Google Scholar] [CrossRef]
- Linke, C.; Drusch, S. Pickering emulsions in foods-opportunities and limitations. Crit. Rev. Food Sci. Nutr. 2018, 58, 1971–1985. [Google Scholar] [CrossRef]
- Zhao, W.; Xie, H.; Zhang, X.; Wang, Z. Crystal substrate inhibition during microbial transformation of phytosterols in Pickering emulsions. Appl. Microbiol. Biotechnol. 2022, 106, 2403–2414. [Google Scholar] [CrossRef]
- Ogunlaja, S.B.; Pal, R.; Sarikhani, K. Effects of starch nanoparticles on phase inversion of Pickering emulsions. Can. J. Chem. Eng. 2018, 96, 1089–1097. [Google Scholar] [CrossRef]
- Frank, B.D.; Perovic, M.; Djalali, S.; Antonietti, M.; Oschatz, M.; Zeininger, L. Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to Promote Gas Delivery in Aqueous Reaction Media. ACS Appl. Mater. Interfaces 2021, 13, 32510–32519. [Google Scholar] [CrossRef]
- Honciuc, A.; Negru, O.I. Role of Surface Energy of Nanoparticle Stabilizers in the Synthesis of Microspheres via Pickering Emulsion Polymerization. Nanomaterials 2022, 12, 995. [Google Scholar] [CrossRef]
- Binks, B.P.; Horozov, T.S. Colloidal Particles at Liquid Interfaces; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Chen, J.; Vogel, R.; Werner, S.; Heinrich, G.; Clausse, D.; Dutschk, V. Influence of the particle type on the rheological behavior of Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2011, 382, 238–245. [Google Scholar] [CrossRef]
- Denkov, N.D.; Ivanov, I.B.; Kralchevsky, P.A.; Wasan, D.T. A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 1992, 150, 589–593. [Google Scholar] [CrossRef]
- Kumar, A.; Li, S.; Cheng, C.-M.; Lee, D. Recent developments in phase inversion emulsification. Ind. Eng. Chem. Res. 2015, 54, 8375–8396. [Google Scholar] [CrossRef]
- San-Miguel, A.; Behrens, S. Influence of nanoscale particle roughness on the stability of Pickering emulsions. Langmuir 2012, 28, 12038–12043. [Google Scholar] [CrossRef]
- Kaiser, A.; Liu, T.; Richtering, W.; Schmidt, A.M. Magnetic capsule and Pickering emulsions stabilized by core−shell particles. Langmuir 2009, 25, 7335–7341. [Google Scholar] [CrossRef]
- Tang, J.; Quinlan, P.J.; Tam, K.C. Stimuli-responsive Pickering emulsions: Recent advances and potential applications. Soft Matter 2015, 11, 3512–3529. [Google Scholar] [CrossRef]
- Tzoumaki, M.V.; Moschakis, T.; Kiosseoglou, V.; Biliaderis, C.G. Oil-in-Water Emulsions Stabilized by Chitin Nanocrystal Particles. Food Hydrocoll. 2011, 25, 1521–1529. [Google Scholar] [CrossRef]
- Cho, Y.-J.; Kim, D.-M.; Song, I.-H.; Choi, J.-Y.; Jin, S.-W.; Kim, B.-J.; Jeong, J.-W.; Jang, C.-E.; Chu, K.; Chung, C.-M. An Oligoimide Particle as a Pickering Emulsion Stabilizer. Polymers 2018, 10, 1071. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y. Tuning amphiphilicity of particles for controllable Pickering emulsion. Materials 2016, 9, 903. [Google Scholar] [CrossRef]
- Honciuc, A. Amphiphilic Janus particles at interfaces. Flow. Matter 2019, 95–137. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Zhu, W.J.; Ma, W.; Li, C.X.; Pan, J.M.; Dai, X.H. Well-designed multihollow magnetic imprinted microspheres based on cellulose nanocrystals (CNCs) stabilized Pickering double emulsion polymerization for selective adsorption of bifenthrin. Chem. Eng. J. 2015, 276, 249–260. [Google Scholar] [CrossRef]
- Mcclements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Angew. Chem.-Int. Ed. 2009, 50, 5438–5466. [Google Scholar] [CrossRef]
- Harman, C.L.; Patel, M.A.; Guldin, S.; Davies, G.L. Recent developments in Pickering emulsions for biomedical applications. Curr. Opin. Colloid Interface Sci. 2019, 39, 173–189. [Google Scholar] [CrossRef]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef]
- Fujisawa, S.; Togawa, E.; Kuroda, K. Nanocellulose-stabilized Pickering emulsions and their applications. Sci. Technol. Adv. Mater. 2017, 18, 959–971. [Google Scholar] [CrossRef]
- Ferreira, G.D.S.; da Silva, D.J.; Zanata, L.; Souza, A.G.; Ferreira, R.R.; Rosa, D.S. Antimicrobial cotton wipes functionalized with Melaleuca alternifolia Pickering emulsions stabilized with cellulose nanofibrils. Carbohydr. Polym. Technol. Appl. 2022, 3, 100208. [Google Scholar] [CrossRef]
- Shah, B.R.; Xu, W.; Mráz, J. Fabrication, stability and rheological properties of zein/chitosan particles stabilized Pickering emulsions with antioxidant activities of the encapsulated vit-D3. Int. J. Biol. Macromol. 2021, 191, 803–810. [Google Scholar] [CrossRef]
- Salerno, A.; Bolzinger, M.A.; Rolland, P.; Chevalier, Y.; Josse, D.; Briançon, S. Pickering emulsions for skin decontamination. Toxicol. In Vitro 2016, 34, 45–54. [Google Scholar] [CrossRef]
- Wu, J.; Ma, G.H. Recent studies of Pickering emulsions: Particles make the difference. Small 2016, 12, 4633–4648. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, J.; He, C.; He, L.; Li, X.; Sui, H. The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review. Processes 2022, 10, 738. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, P.E.; Meshulam, D.; Lesmes, U. Characterization of Pickering o/w emulsions stabilized by silica nanoparticles and their responsiveness to in vitro digestion conditions. Food Biophys. 2014, 9, 406–415. [Google Scholar] [CrossRef]
- Simovic, S.; Ghouchi-Eskandar, N.; Prestidge, C.A. Pickering emulsions for dermal delivery. J. Drug Deliv. Sci. Technol. 2011, 21, 123–133. [Google Scholar] [CrossRef]
- Phan-Quang, G.C.; Lee, H.K.; Phang, I.Y.; Ling, X.Y. Plasmonic colloidosomes as three-dimensional sersplatforms with enhanced surface area for multiphase sub-microliter toxin sensing. Angew. Chem. Int. Ed. 2015, 54, 9691–9695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, F.; Wu, J.; Ngai, T. Pickering emulsions stabilized by biocompatible particles: A review of preparation, bioapplication, and perspective. Particuology. 2021, 64, 110–120. [Google Scholar] [CrossRef]
- Meirelles, A.A.D.; Costa, A.L.R.; Cunha, R.L. The stabilizing effect of cellulose crystals in O/W emulsions obtained by ultrasound process. Food Res. Int. 2020, 128, 108746. [Google Scholar] [CrossRef]
- Tripodi, E.; Norton, I.T.; Spyropoulos, F. Formation of Pickering and mixed emulsifier systems stabilised O/W emulsions via Confined Impinging Jets processing. Food Bioprod. Process. 2019, 119, 360–370. [Google Scholar] [CrossRef]
- Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Control. Release 2019, 309, 302–332. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Nakajima, M.; Binks, B.P. Preparation of particlestabilized oil-in-water emulsions with the microchannel emulsification method. Colloids Surf. A Physicochem. Eng. Asp. 2005, 262, 94–100. [Google Scholar] [CrossRef]
- Sun, G.; Qi, F.; Wu, J.; Ma, G.; Ngai, T. Preparation of Uniform Particle-Stabilized Emulsions Using SPG Membrane Emulsification. Langmuir 2014, 30, 7052–7056. [Google Scholar] [CrossRef]
- Maa, Y.F.; Hsu, C. Liquid-liquid emulsification by rotor/stator homogenization. J. Control. Release 1996, 38, 219–228. [Google Scholar] [CrossRef]
- Coutinho, V.P.; Júnior, D.B.S.; Santos, N.G.D.O.; Silva, C.A.S.D.; Santana, R.D.C. Effect Of Homogenization Speed On Cosmetic Emulsion Properties. J. Eng. Exact Sci. 2018, 4, 0240–0245. [Google Scholar] [CrossRef]
- Banaszek, C. Mixing fine emulsions. In NutraCos Cosmetics; Charles Ross & Son Company: Hauppauge, NY, USA, 2011. [Google Scholar]
- Ouzineb, K.; Lord, C.; Lesauze, N.; Graillat, C.; Tanguy, P.A.; McKenna, T. Homogenisation devices for the production of miniemulsions. Chem. Eng. Sci. 2006, 61, 2994–3000. [Google Scholar] [CrossRef]
- Urban, K.; Wagner, G.; Schaffner, D.; Roglin, D.; Ulrich, J. Rotor-stator and disc systems for emulsification processes. Chem. Eng. Technol. 2006, 29, 24–31. [Google Scholar] [CrossRef]
- Gazolu-Rusanova, D.; Lesov, I.; Tcholakova, S.; Denkov, N.; Ahtchi, B. Food grade nanoemulsions preparation by rotor-stator homogenization. Food Hydrocol. 2019, 102, 105579. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.L.; Armes, S.P.; York, D.W. Preparation of pickering emulsions and colloidosomes with relatively narrow size distributions by stirred cell membrane emulsification. Langmuir 2011, 27, 2357–2363. [Google Scholar] [CrossRef]
- Loi, C.C.; Eyres, G.T.; Birch, E.J. Effect of mono-and diglycerides on physical properties and stability of a protein-stabilised oil-in-water emulsion. J. Food Eng. 2019, 240, 56–64. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Li, B. Characteristics and rheological behavior of Pickering emulsions stabilized by tea water-insoluble protein nanoparticles via high-pressure homogenization. Int. J. Biol. Macromol. 2020, 151, 247–256. [Google Scholar] [CrossRef]
- Chen, L.; Ao, F.; Ge, X.; Shen, W. Food-grade Pickering emulsions: Preparation, stabilization and applications. Molecules 2020, 25, 3202. [Google Scholar] [CrossRef]
- Vinchhi, P.; Patel, J.K.; Patel, M.M. High-pressure homogenization techniques for nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing; Springer: Cham, Switzerland, 2021; pp. 263–285. [Google Scholar] [CrossRef]
- Köhler, K.; Santana, A.S.; Braisch, B.; Preis, R.; Schuchmann, H.P. High pressure emulsification with nano-particles as stabilizing agents. Chem. Eng. Sci. 2010, 65, 2957–2964. [Google Scholar] [CrossRef]
- McClements, D.J.; Lu, J.; Grossmann, L. Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. Colloids Interfaces 2022, 6, 19. [Google Scholar] [CrossRef]
- Pereira, R.R.; Gomes, A.T.; Testi, M.; Bianchera, A.; Ribeiro-Costa, R.M.; Padula, C.; Silva-Júnior, J.O.C.; Sonvico, F. Ucuùba Fat Characterization and Use to Obtain Lipid Nanoparticles by High-Pressure Homogenization with Full Factorial Design. Chem. Eng. Technol. 2021, 44, 1009–1016. [Google Scholar] [CrossRef]
- Gao, J.; Bu, X.; Zhou, S.; Wang, X.; Bilal, M.; Hassan, F.U.; Chelgani, S.C. Pickering emulsion prepared by nano-silica particles–A comparative study for exploring the effect of various mechanical methods. Ultrason. Sonochem. 2022, 83, 105928. [Google Scholar] [CrossRef]
- Meirelles, A.A.D.; Costa, A.L.R.; Cunha, R.L. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion. Int. J. Biol. Macromol. 2020, 158, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, J.; Xu, X.; Qin, L.; Wu, C.; Du, M. Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Res. Int. 2019, 121, 247–256. [Google Scholar] [CrossRef]
- Asfour, M.H.; Elmotasem, H.; Mostafa, D.M.; Salama, A.A. Chitosan based Pickering emulsion as a promising approach for topical application of rutin in a solubilized form intended for wound healing: In vitro and in vivo study. Int. J. Pharm. 2017, 534, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Paukkonen, H.; Ukkonen, A.; Szilvay, G.; Yliperttula, M.; Laaksonen, T. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur. J. Pharm. Sci. 2017, 100, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Pandurangan, A.K.; Kanagesan, S.; Narayanaswamy, R.; Esa, N.M.; Parasuraman, P. Nanobiomaterial-based delivery of drugs in various cancer therapies: Classifying the mechanisms of action (using biochemical and molecular biomarkers). Nanobiomater. Cancer Ther. 2016, 7, 331–365. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Bais, D.; Trevisan, A.; Lapasin, R.; Partal, P.; Gallegos, C. Rheological characterization of polysaccharide–surfactant matrices for cosmetic O/W emulsions. J. Colloid Interface Sci. 2005, 290, 546–556. [Google Scholar] [CrossRef]
- Whistler, R.L. Industrial Gums: Polysaccharides and their Derivatives; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- McClements, D.J. Food Emulsions: Principles, Practice, and Techniques; CRC Series in Contemporary Food Science; CRC Press: Boca Raton, FL, USA, 1999; p. 10. [Google Scholar]
- Dickinson, E. Properties of emulsions stabilized with milk proteins: Overview of some recent developments. J. Dairy Sci. 1997, 80, 2607–2619. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoparticle-and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Trujillo-Cayado, L.A.; Alfaro, M.C.; Muñoz, J.; Raymundo, A.; Sousa, I. Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides. Colloids Surf. B Biointerfaces 2016, 141, 53–58. [Google Scholar] [CrossRef]
- Calabrese, V.; Courtenay, J.C.; Edler, K.J.; Scott, J.L. Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr. Opin. Green Sustain. Chem. 2018, 12, 83–90. [Google Scholar] [CrossRef]
- Gupta, P.K.; Raghunath, S.S.; Prasanna, D.V.; Venkat, P.; Shree, V.; Chithananthan, C.; Geetha, K. An update on overview of cellulose, its structure and applications. Cellulose 2019, 201, 846–1297. [Google Scholar]
- Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A.B.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12, 563–576. [Google Scholar] [CrossRef]
- Ghori, M.U.; Mahdi, M.H.; Smith, A.M.; Conway, B.R. Nasal drug delivery systems: An overview. Am. J. Pharmacol. Sci. 2015, 3, 110–119. [Google Scholar]
- Esa, F.; Tasirin, S.M.; Abd Rahman, N. Overview of bacterial cellulose production and application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Niyazbekova, Z.T.; Nagmetova, G.Z.; Kurmanbayev, A.A. An Overview of Bacterial Cellulose Applications. Eurasian J. Appl. Biotechnol. 2018, 2, 17–25. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 2011, 27, 7471–7479. [Google Scholar] [CrossRef] [PubMed]
- Paximada, P.; Tsouko, E.; Kopsahelis, N.; Koutinas, A.A.; Mandala, I. Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocol. 2016, 53, 225–232. [Google Scholar] [CrossRef]
- Tang, J.; Sisler, J.; Grishkewich, N.; Tam, K.C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 2017, 494, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Agama-Acevedo, E.; Bello-Perez, L.A. Starch as an emulsions stability: The case of octenyl succinic anhydride (OSA) starch. Curr. Opin. Food Sci. 2017, 13, 78–83. [Google Scholar] [CrossRef]
- Yazid, N.S.M.; Abdullah, N.; Muhammad, N.; Matias-Peralta, H.M. Application of starch and starch-based products in food industry. J. Sci. Technol. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Marto, J.; Jorge, I.; de Almeida, A.J.; Ribeiro, H. Novel starch-derived topical delivery systems. In Carrier-Mediated Dermal Delivery; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2017; pp. 175–216. [Google Scholar]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- de Moura, C.M.; Muszinski, P.; Schmidt, C.; Almeida, J.; Pinto, L.A.A. Chitin and chitosan produced from shrimp and crab residues: Pilot scale process evaluation. J. Exact Sci. Eng. 2006, 16, 37–45. [Google Scholar]
- Tayel, A.A.; Moussa, S.H.; Salem, M.F.; Mazrou, K.E.; El-Tras, W.F. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite. J. Sci. Food Agric. 2016, 96, 1306–1312. [Google Scholar] [CrossRef]
- Bruno, S.F.; Ekorong, F.J.A.A.; Karkal, S.S.; Cathrine, M.S.B.; Kudre, T.G. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci. Technol. 2019, 85, 10–22. [Google Scholar] [CrossRef]
- Gyles, D.A.; Castro, L.D.; Silva-Júnior, J.O.C.; Ribeiro-Costa, R.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 2017, 88, 373–392. [Google Scholar] [CrossRef]
- Inanli, A.G.; Tümerkan, E.T.A.; El Abed, N.; Regenstein, J.M.; Özogul, F. The impact of chitosan on seafood quality and human health: A review. Trends Food Sci. Technol. 2020, 97, 404–416. [Google Scholar] [CrossRef]
- da Silva-Costa, A.C.; Carvalho, S.C.; de Farias-Silva, N.; do Nascimento-Júnior, A.E.S.; Cruz, J.N.; de Jesus-Chaves-Neto, A.M.; Ribeiro-Costa, R.M. Effect of chitosan/albendazole nanocarriers’ solvation by molecular dynamics. Theor. Chem. Acc. 2020, 139, 105. [Google Scholar] [CrossRef]
- Sharkawy, A.; Casimiro, F.M.; Barreiro, M.F.; Rodrigues, A.E. Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions. Int. J. Biol. Macromol. 2020, 147, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Heuzey, M.C. Pickering emulsion gels based on insoluble chitosan/gelatin electrostatic complexes. RSC Adv. 2016, 6, 89776–89784. [Google Scholar] [CrossRef]
- Mischnick, P.; Momcilovic, D. Chemical Structure Analysis of Starch and Cellulose Derivatives. Adv. Carbohydr. Chem. Biochem. 2010, 64, 117–210. [Google Scholar]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites—A review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef]
- Mathias, S.L.; de Assumpção Pereira-da-Silva, M.; de Almeida Lucas, A.; de Menezes, A.J. Potential application of cellulose nanocrystals obtained from cultivated fibers in Amazon forest. Ind. Crops Prod. 2022, 187, 115426. [Google Scholar] [CrossRef]
- Mbituyimana, B.; Liu, L.; Ye, W.; Boni, B.O.O.; Zhang, K.; Chen, J.; Yang, G. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr. Polym. 2021, 273, 118565. [Google Scholar] [CrossRef]
- Yan, G.; Chen, B.; Zeng, X.; Sun, Y.; Tang, X.; Lin, L. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydr. Polym. 2020, 244, 116492. [Google Scholar] [CrossRef]
- Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Hu, L. Developing fibrillated cellulose as a sustainable technological material. Nature 2021, 590, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.H.C.S.; Rodrigues, A.F.; Almeida, I.F.; Costa, P.C.; Rosado, C.; Neto, C.P.; Freire, C.S. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: In vitro dissolution and permeation studies. Carbohydr. Polym. 2014, 106, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Benoit, M.; Vigier, K.D.O.; Barrault, J.; Jégou, G.; Philippe, M.; Jérôme, F. Pretreatment of microcrystalline cellulose by ultrasounds: Effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem. 2013, 15, 963–969. [Google Scholar] [CrossRef]
- Pavaloiu, R.D.; Stroescu, M.; Parvulescu, O.; Dobre, T. Composite hydrogels of bacterial cellulose-carboxymethyl cellulose for drug release. Rev. Chim. 2014, 65, 948–951. [Google Scholar]
- Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013, 92, 1432–1442. [Google Scholar] [CrossRef]
- Stoddard, F.L. Survey of starch particle-size distribution in wheat and related species. Cereal Chem. 1999, 76, 145–149. [Google Scholar] [CrossRef]
- Cui, C.; Jia, Y.; Sun, Q.; Yu, M.; Ji, N.; Dai, L.; Sun, Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr. Polym. 2022, 291, 119624. [Google Scholar] [CrossRef]
- Caldonazo, A.; Almeida, S.L.; Bonetti, A.F.; Lazo, R.E.L.; Mengarda, M.; Murakami, F.S. Pharmaceutical applications of starch nanoparticles: A scoping review. Int. J. Biol. Macromol. 2021, 181, 697–704. [Google Scholar] [CrossRef]
- Gott, B. Biology of starch. In Ancient Starch Research; Routledge: Oxfordshire, UK, 2016; pp. 35–46. [Google Scholar]
- Ismail, H.; Irani, M.; Ahmad, Z. Starch-based hydrogels: Present status and applications. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 411–420. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4, 411. [Google Scholar]
- Tabatabaei, M.; Rajaei, A.; Hosseini, E.; Aghbashlo, M.; Gupta, V.K.; Lam, S.S. Effect of type of fatty acid attached to chitosan on walnut oil-in-water Pickering emulsion properties. Carbohydr. Polym. 2022, 291, 119566. [Google Scholar] [CrossRef]
- Okamoto, Y.; Yano, R.; Miyatake, K.; Tomohiro, I.; Shigemasa, Y.; Minami, S. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym. 2003, 53, 337–342. [Google Scholar] [CrossRef]
- Azevedo, V.; Chaves, S.A.; Bezerra, D.C.; Lia Fook, M.V.; Costa, A.C.F.M. Quitina e Quitosana: Aplicações como biomateriais. Rev. Eletronica Mater. Processos 2007, 2, 27–34. [Google Scholar]
- Pawar, R.; Tekale, S.; Shisodia, S.; Totre, J.; Domb, A. Biomedical applications of poly (lactic acid). Recent Pat. Regen. Med. 2014, 4, 40–51. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Parres, F.; López Martínez, J.; Navarro, R.; Ferrandiz, S. Pyrolysis of bioplastic waste: Obtained products from Poly (Lactic Acid)(PLA). DYNA 2012, 87, 395–399. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8, 290–312. [Google Scholar] [CrossRef] [Green Version]
- Ivorra, S.; Garcés, P.; Catalá, G.; Andión, L.G.; Zornoza, E. Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete. Mater. Des. 2010, 31, 1553–1558. [Google Scholar] [CrossRef]
- Koralay, T.; Kadıoğlu, Y.K. The origin and determination of silica types in the silica occurrences from Altintaş region (Uşak–Western Anatolia) using multianalytical techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 516–526. [Google Scholar] [CrossRef]
- Duffin, C.J.; Moody, R.T.J.; Gardner-Thorpe, C. A History of Geology and Medicine; Geological Society: London, UK, 2013. [Google Scholar]
- Williams, L.B.; Haydel, S.E. Evaluation of the medicinal use of clay minerals as antibacterial agents. Int. Geol. Rev. 2010, 52, 745–770. [Google Scholar] [CrossRef]
- Ma’or, Z.; Henis, Y.; Alon, Y.; Orlov, E.; Sørensen, K.B.; Oren, A. Antimicrobial properties of Dead Sea black mineral mud. Int. J. Dermatol. 2006, 45, 504–511. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, D.; Li, Z.; Luo, D.; Hang, L.; Jing, J.; Shah, B.R. Controlled release of lysozyme based core/shells structured alginate beads with CaCO3 microparticles using Pickering emulsion template and in situ gelation. Colloids Surf. B Biointerfaces 2019, 183, 110410. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, R.K.B.C.; Brasileiro, C.T.; Macedo, R.O.; Ferreira, H.S. Mineral make up developed from natural and organophilic bentonite clays. Cerâmica 2018, 64, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Dutta, A.; Singh, N. Surfactant-modified bentonite clays: Preparation, characterization, and atrazine removal. Environ. Sci. Pollut. Res. 2014, 22, 3876–3885. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.I.; Rocha, M.C.; da Silva, A.L.N.; Bertolino, L.C. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Cerâmica 2016, 62, 272–277. [Google Scholar] [CrossRef]
- Yu, L.; Li, S.; Stubbs, L.P.; Lau, H.C. Characterization of clay-stabilized, oil-in-water Pickering emulsion for potential conformance control in high-salinity, high-temperature reservoirs. Appl. Clay Sci. 2021, 213, 106246. [Google Scholar] [CrossRef]
- Wattanasiriwech, D.; Wattanasiriwech, S. Fluxing action of illite and microcline in a triaxial porcelain body. J. Eur. Ceram. Soc. 2011, 31, 1371–1376. [Google Scholar] [CrossRef]
- Sobeih, M.M.; El-Shahat, M.F.; Osman, A.; Zaid, M.A.; Nassar, M.Y. Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions. RSC Adv. 2020, 10, 25567–25585. [Google Scholar] [CrossRef]
- Obaje, S.O.; Omada, J.I.; Dambatta, U.A. Clays and their industrial applications: Synoptic Review. Int. J. Sci. Technol. 2013, 3, 264–270. [Google Scholar]
- Nallamilli, T.; Basavaraj, M.G. Synergistic stabilization of Pickering emulsions by in situ modification of kaolinite with non ionic surfactant. Appl. Clay Sci. 2017, 148, 68–76. [Google Scholar] [CrossRef]
- Li, X.; Yao, C.; Lu, X.; Hu, Z.; Yin, Y.; Ni, C. Halloysite–CeO2–AgBr nanocomposite for solar light photodegradation of methyl orange. Appl. Clay Sci. 2015, 104, 74–80. [Google Scholar] [CrossRef]
- Mo, S.; Pan, T.; Wu, F.; Zeng, M.; Huang, D.; Zhang, L.; Cheng, Z. Facile one-step microwave-assisted modification of kaolinite and performance evaluation of pickering emulsion stabilization for oil recovery application. J. Environ. Manag. 2019, 238, 257–262. [Google Scholar] [CrossRef]
- Salgado-Campos, V.M.J.; Bertolino, L.C.; da Silva, F.J.; Mendes, J.C. Mineralogical characterization of clay mineral assemblages from Rio de Janeiro pegmatites to identify kaolinite and/or halloysite deposits. Cerâmica 2020, 66, 483–495. [Google Scholar] [CrossRef]
- Silva, R.D.; Kuczera, T.; Picheth, G.; Menezes, L.; Wypych, F.; de Freitas, R.A. Pickering emulsions formation using kaolinite and Brazil nut oil: Particle hydrophobicity and oil self emulsion effect. J. Dispers. Sci. Technol. 2018, 39, 901–910. [Google Scholar] [CrossRef]
- Kpogbemabou, D.; Lecomte-Nana, G.; Aimable, A.; Bienia, M.; Niknam, V.; Carrion, C. Oil-in-water Pickering emulsions stabilized by phyllosilicates at high solid content. Colloids Surf. A Physicochem. Eng. Asp. 2014, 463, 85–92. [Google Scholar] [CrossRef]
- Yuan, P.; Thill, A.; Bergaya, F. Nanosized Tubular Clay Minerals: Halloysite and Imogolite; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ahmad, K.M.; Kristály, F.; Turzo, Z.; Docs, R. Effects of clay mineral and physico-chemical variables on sandstone rock permeability. J. Oil Gas Petrochem. Sci. 2018, 1, 18–26. [Google Scholar] [CrossRef]
- Imbernon, R.A.L.; Blot, A.; Pereira, V.P.; Franco, D.R. Characterization of Zn-bearing chlorite by Mössbauer spectroscopy (EM) and infrared spectroscopy (IR)-an occurrence associated with the Pb-Zn-Ag deposit from Canoas, PR, Brazil. Braz. J. Geol. 2011, 41, 228–236. [Google Scholar]
- Silva, J.M.; Barud, H.S.; Meneguin, A.B.; Constantino, V.R.L. Inorganic-organic bio-nanocomposite films based on laponite and cellulose. Appl. Clay Sci. 2019, 168, 428–435. [Google Scholar] [CrossRef]
- Dening, T.J.; Thomas, N.; Rao, S.; van-Looveren, C.; Cuyckens, F.; Holm, R.; Prestidge, C.A. Montmorillonite and Laponite clay materials for the solidification of lipid-based formulations for the basic drug Blonanserin: In vitro and in vivo investigations. Mol. Pharm. 2018, 15, 4148–4160. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, B.; Qiu, X.; Zu, X.; Li, G.; Lee, W.Y.W.; Jiang, J.; Li, Y. Direct assembly of anticancer drugs to form Laponite-based nanocomplexes for therapeutic co-delivery. Mater. Sci. Eng. C 2019, 99, 1407–1414. [Google Scholar] [CrossRef]
- Garcia, J.A.; Moura, M.R.D.; Aouada, F.A. Effect of pH, species and ionic concentration on water absorption of bionanocomposite hydrogels consisting of CMC/PAAM/Laponite RDS. Química Nova 2019, 42, 831–837. [Google Scholar]
- Bon, S.A.; Colver, P.J. Pickering miniemulsion polymerization using laponite clay as a stabilizer. Langmuir 2007, 23, 8316–8322. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.W.; Butterworth, J.T. The nature of laponite and its aqueous dispersions. J. Colloid Interface Sci. 1992, 151, 236–243. [Google Scholar] [CrossRef]
- Xiong, Z.Q.; Li, X.D.; Fu, F.; Li, Y.N. Performance evaluation of laponite as a mud-making material for drilling fluids. Pet. Sci. 2019, 16, 890–900. [Google Scholar] [CrossRef] [Green Version]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Khurana, I.S.; Kaur, S.; Kaur, H.; Khurana, R.K. Multifaceted role of clay minerals in pharmaceuticals. Future Sci. OA 2015, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hun-Kim, M.; Choi, G.; Elzatahry, A.; Vinu, A.; Bin-Choy, Y.; Choy, J.H. Review of clay-drug hybrid materials for biomedical applications: Administration routes. Clays Clay Miner. 2016, 64, 115–130. [Google Scholar] [CrossRef]
- Rautureau, M.; Gomes, C.D.S.F.; Liewig, N.; Katouzian-Safadi, M. Clays and Health: Properties and Therapeutic Uses; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Williams, L.B. Geomimicry: Harnessing the antibacterial action of clays. Clay Miner. 2017, 52, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S. The use of some clay minerals as natural resources for drug carrier applications. J. Funct. Biomater. 2018, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl. Clay Sci. 2010, 47, 171–181. [Google Scholar] [CrossRef]
- Carretero, M.I.; Gomes, C.S.F.; Tateo, F. 5 clays and human health. Dev. Clay Sci. 2006, 1, 717–741. [Google Scholar]
- Meier, L.; Stange, R.; Michalsen, A.; Uehleke, B. Clay jojoba oil facial mask for lesioned skin and mild acne–results of a prospective, Observational Pilot Study. Complement. Med. Res. 2012, 19, 75–79. [Google Scholar] [CrossRef]
- Mpuchane, S.F.; Ekosse, G.I.E.; Gashe, B.A.; Morobe, I.; Coetzee, S.H. Microbiological characterisation of southern African medicinal and cosmetic clays. Int. J. Environ. Health Res. 2010, 20, 27–41. [Google Scholar] [CrossRef]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopez-Galindo, A. Uses of clay minerals in semisolid health care and therapeutic products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Morrison, K.D.; Misra, R.; Williams, L.B. Unearthing the antibacterial mechanism of medicinal clay: A geochemical approach to combating antibiotic resistance. Sci. Rep. 2016, 6, 19043. [Google Scholar] [CrossRef] [Green Version]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo, a review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Dušenkova, I.; Kusiņa, I.; Mālers, J.; Bērziņa-Cimdiņa, L. Application of latvian illite clays in cosmetic products with sun protection ability. Proc. Int. Sci. Pract. Conf. 2015, 1, 28–32. [Google Scholar] [CrossRef]
- Pruett, R.J. A Mineralogical and Geochemical Comparison between Several Primary and Sedimentary Kaolins of North America. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 1993. [Google Scholar]
- Hurst, V.L.; Pickerin, S.M., Jr. Origin and classification of coastal plain kaolins, southeastern USA, and the role of groundwater and microbial action. Clays Clay Miner. 1997, 45, 85–91. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Owen, S.C. Handbook of Pharmaceutical Excipients, 5th ed.; Pharmaceutical Press and the American Pharmaceutical Association: London, UK, 2006. [Google Scholar]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press and the American Pharmaceutical Association: London, UK, 2009. [Google Scholar]
- Rowe, R.C.; Sheskey, P.J.; Cook, W.G.; Quinn, M.E. Handbook of Pharmaceutical Excipients, 7th ed.; Pharmaceutical Press and the American Pharmaceutical Association: London, UK, 2012. [Google Scholar]
- Dogan, M.; Dogan, A.U.; Aburub, A.; Botha, A.; Wurster, D.E. Quantitative mineralogical properties (morphology–chemistry–structure) of pharmaceutical grade kaolinites and recommendations to regulatory agencies. Microsc. Microanal. 2012, 18, 143–151. [Google Scholar] [CrossRef]
- Richter, A.R.; Feitosa, J.P.A.; Paula, H.C.B.; Goycoolea, F.M.; de Paula, R.C.M. Pickering emulsion stabilized by cashew gum-poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids Surf. B Biointerfaces 2018, 164, 201–209. [Google Scholar] [CrossRef]
- Dai, L.; Li, D.; He, J. Degradation of graft polymer and blend based on cellulose and poly (L-lactide). J. Appl. Polym. Sci. 2013, 130, 2257–2264. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Xu, Y.; Wang, A.; Xu, Z.; Wu, X.; Ge, L. Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin–Based Edible Films. Food Bioprocess Technol. 2021, 14, 1648–1661. [Google Scholar] [CrossRef]
- Pena-Muniz, M.A.; Silva-Junior, J.O.C.; Ribeiro-Costa, R.M. Pickering Emulsions: Obtention and Characterization Containing Bertholletia Excelsa HBK Oil; Novas Edições Acadêmicas: Chisinau, Moldova, 2014. [Google Scholar]
- Ribeiro-Costa, R.M.; Ribeiro, M.A.F.; Lamarão, M.L.N.; Costa, M.N.F.S.; Silva-Junior, J.O.C.; Rodrigues, A.M.C. Pickering Emulsion with Pracaxi Oil (Pentaclethra Macroloba) containing Vitamin E (Tocopheryl Acetate) for topical use. Chemosphere 2021, 271, 129525. [Google Scholar]
- Levine, S.; Bowen, B.D.; Partridge, S.J. Stabilization of emulsions by fine particles i. Partitioning of particles between continuous phase and oil/water interface. Colloids Surf. 1989, 38, 325–343. [Google Scholar] [CrossRef]
- Jiang, H.; Hong, L.; Li, Y.; Ngai, T. All-Silica Submicrometer Colloidosomes for Cargo Protection and Tunable Release. Angew. Chem. Int. Ed. 2018, 57, 11662–11666. [Google Scholar] [CrossRef] [PubMed]
Stabilizing Agents | Chemical Composition | Applications | Particle Size | Occurrences | Ref. |
---|---|---|---|---|---|
Cellulose | (C6H10O5)n | Cellulose is used in the food, biomedical, and pharmaceutical areas, as a drug and cosmetic delivery system, also used in wound healing and dressing membranes. Cellulose nanocrystals can be used as drug carriers in the pharmaceutical industry, paper industry, food industry, and support matrix for catalysts. | Lower than 38 μm | It is produced by plants, fungi, and some types of bacteria. | [103,104,105,106,107,108,109,110,111,112] |
Starch | (C6H10O5)n | It is used for delivery systems of pharmaceutical ingredients and bioactive food ingredients, enzyme inhibitor, and adsorption agent. | >49.8 µm | Starch is found in seeds, roots, tubers, and bulbs of vegetables. | [113,114,115,116,117] |
Chitin and Chitosan | (C8H13O5N)n and C56H103N9O39 | The potential for multidimensional application, ranging from applications in the food field such as nutrition, biotechnology, materials science, drugs and pharmaceuticals, agriculture and environmental protection, and gene therapy as well. | Approximately 6.9 μm | Chitin is the most commonly found aminopolysaccharide in nature, being part of the exoskeleton of crustaceans, insects, and the cell walls of fungi, and chitosan is included in the enzymatic or chemical deacetylation of chitin. | [118,119,120,121] |
Polylactic acid and polyglycolic acid | C5H8O5 | Bioplastics become attractive materials for biological and medical applications, can be used for implants and other surgical applications such as sutures, and in regenerative surgery implants. | Approximately 125 µm | Polyester obtained from the polymerization of lactic acid, produced by fermentation or chemical synthesis | [122,123] |
Silica | SiO2 | Biomedical applications have the potential to be used in the diagnosis and therapy of many diseases. | In between 28 and 500 nm | The volcanic and sedimentary origin silica occurrences | [124,125,126,127] |
Classes/Species | Chemical Composition | Applications | Size Variations | Locations or Occurrences | Model Applications | Ref. |
---|---|---|---|---|---|---|
Montmorillonite Smectites (Bentonites and vermiculites) | (Na,Ca)0.33(Al,Mg)2Si4O10 (OH)2·(H2O)n | In cosmetology (formulations of make-up, shampoos, and skin emulsions) and in drug delivery, and in the synthesis of polymer–clay nanocomposites in tissue engineering. | Average diameter of around 7 µm. They are alkaline compounds in nature | Paraíba (Municipalities of Cubati and Boa Vista) northeast Brazil | Montmorillonite-stabilized Pickering emulsions were formed at high salinities. | [130,131,132,133,134] |
Illites (Glauconites) | (Si4)(Al,Mg, Fe)2,3 O10(OH)2.(K,H2O) | Has been widely used as an adsorbent in water treatment applications in removing different metal ions and dyes. | Ranges from 125 to 500 µm | Usually occur in microscopic crystals on land masses | - | [135,136,137] |
Kaolinite (Kaolin) | Al4Si4O10(OH)8 | Application as an oil/water emulsion stabilizer and oil recovery and has been used for centuries in pharmaceutical preparations of intestinal adsorbent drugs and other therapeutically useful applications. | Particle sizes of 2–5 µm | In the state of Rio de Janeiro, there are currently occurrences of kaolin in the municipalities of Magé, Valença, Sapucaia, Petrópolis, Itatiaia, Araruama, and Rio de Janeiro. Capim River in Pará | Study aimed to investigate the preparation and characterization of oil-in-water (O/W) Pickering emulsions stabilized with three different phyllosilicates: kaolin, halloysite, and palygorskite. Stable O/W emulsions could be obtained without additional surfactant or surface treatment. | [137,138,139,140,141,142,143] |
Chlorite | (Mg,Fe)3(Si,Al)4O10(OH)2·(Mg, Fe)3(OH)6 | Widely used in the pharmaceutical industry as lubricants, desiccants, disintegrants, diluents, binders, pigments, and opacifiers. | Approximately 0.5 to 10 µm and thickness ranging from 0.1 to 1.0 µm | They are common in clayey rocks, recent marine sediments, most soils, and in mines. Found in Furnas and Lageado, in the state of São Paulo, Panelas, and Canoas, in the state of Paraná and Rio Grande do Sul | - | [137,144,145,146] |
Laponite | Na0,7[(Si8MgLi0,3)O20(OH)4]0,7 | Medicine, pharmacy, and food packaging; in addition, presents great potential as an adsorbent of organic pollutant compounds such as pesticides. Used in the polymerization of Pickering emulsions. | 1 and 30 nm diameter | Synthetic material with a similar structure and composition to natural hectorite. | Pickering emulsion polymerization using laponite clay as a stabilizer to prepare armored “soft” polymer latexes | [147,148,149,150,151,152,153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho-Guimarães, F.B.; Correa, K.L.; de Souza, T.P.; Rodríguez Amado, J.R.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals 2022, 15, 1413. https://doi.org/10.3390/ph15111413
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals. 2022; 15(11):1413. https://doi.org/10.3390/ph15111413
Chicago/Turabian Stylede Carvalho-Guimarães, Fernanda Brito, Kamila Leal Correa, Tatiane Pereira de Souza, Jesus Rafael Rodríguez Amado, Roseane Maria Ribeiro-Costa, and José Otávio Carréra Silva-Júnior. 2022. "A Review of Pickering Emulsions: Perspectives and Applications" Pharmaceuticals 15, no. 11: 1413. https://doi.org/10.3390/ph15111413
APA Stylede Carvalho-Guimarães, F. B., Correa, K. L., de Souza, T. P., Rodríguez Amado, J. R., Ribeiro-Costa, R. M., & Silva-Júnior, J. O. C. (2022). A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals, 15(11), 1413. https://doi.org/10.3390/ph15111413