Investigation of 1,4-Substituted 1,2,3-Triazole Derivatives as Antiarrhythmics: Synthesis, Structure, and Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Infrared Spectroscopy
2.3. NMR Spectroscopy
2.4. DSC and TGA
2.5. X-ray Data for Compound 1
2.6. Antiarrhythmic Activity Testing of Compound 1
3. Materials and Methods
3.1. General Information
3.2. Synthesis
3.2.1. General Synthetic Protocol for 1,4-Substituted 1,2,3-Triazoles (1–4)
3.2.2. 2.-Nitro-1,3-Bis(4,4′-Dihydroxymethyl)-1,2,3-Triazolyl-2-Azapropane (1)
3.2.3. 3.-Nitro-1,5-Bis(4,4′-Dihydroxymethyl)-1,2,3-Triazole-3-Azapentane (2)
3.2.4. 2.-Nitro-1,3-Bis(4,4′-Diphenyl)-1,2,3-Triazolyl-2-Azapropane (3)
3.2.5. 3.-Nitro-1,5-Bis(4,4′-Diphenyl)-1,2,3-Triazolyl-3-Azapropane (4)
3.3. Materials and Methods for Bioassay
3.3.1. Toxicology
3.3.2. Antiarrhythmic Activity
3.3.3. Ex Vivo Experimentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Xu, K.; Zhao, F.; Ji, Y.; Yi, J.; Xu, S.; Gao, F.; Chen, B. Synthesis, crystalstructure, andthermalbehaviorsof 3-nitro-1,5-bis(4,4’-dimethylazide)-1,2,3-triazolyl-3-azapentane (NDTAP). Propellants Explos. Pyrotech. 2013, 38, 644–650. [Google Scholar] [CrossRef]
- Katorov, D.V.; Rudakov, G.V.; Katorova, I.N.; Yakushkov, A.V.; Simonov, D.P.; Zhilin, V.F. Synthesis of 1,2,3-triazoles starting from heterocyclic α-nitrazides. Russ. Chem. Bull. 2012, 11, 2098–2107. (In Russian) [Google Scholar]
- Sukhanov, G.T.; Filippova, Y.V.; Sukhanov, A.G.; Bagryanskaya, I.Y.; Bosov, K.K. Synthesis of 1-(adamantan-1-yl)-1H-1,2,3-triazolesand their salts by adamantylation in AdOH–HClO4 and AdOH–H2SO4 systems. Chem. Heterocycl. Compd. 2019, 55, 1197–1203. [Google Scholar] [CrossRef]
- Odlo, K.; Hoydahl, E.A.; Hansen, T.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from terminal acetylenes and in situ generated azides. Tetrahed. Lett. 2007, 48, 2097–2099. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the Pass Online web resource. Chem. Heterocycl. Comp. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzym. Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Sun, L.; Zhou, J.; Li, X.; Zhan, P.; Liu, X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin. Drug Discov. 2016, 11, 857–871. [Google Scholar] [CrossRef]
- Kotha, S.; Cheekatla, S.R.; Lal, S.; Mallick, L.; Kumbhakarna, N.; Chowdhury, A.; Namboothiri, I.N.N. Pentacycloundecane (PCUD) based cage frameworks as potential energetic materials: Syntheses and characterization. Asian J. Org. Chem. 2020, 9, 2116. [Google Scholar] [CrossRef]
- Hupe, D.J.; Boltz, R.; Cohen, C.J.; Felix, J.; Ham, E.; Miller, D.; Soderman, D.; Van Skiver, D. The inhibition of receptor-mediated and voltage-dependent calcium entry by the antiproliferative L-651,582. J. Biol. Chem. 1991, 266, 10136–10142. [Google Scholar] [CrossRef]
- Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [Google Scholar] [CrossRef]
- Haldón, E.; Nicasio, M.C.; Pérez, P.J. Copper-catalysedazide-alkyne cycloadditions (CuAAC): An update. Org. Biomol. Chem. 2015, 13, 9528–9550. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Martina, K.; Baricco, F.; Rotolo, L.; Cravotto, G. Solvent-free copper-catalyzedazide-alkyne cycloaddition under mechanochemical activation. Molecules 2015, 20, 2837–2849. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lainez, M.; Gallegos, M.; Munarriz, J.; Azpiroz, R.; Passarelli, V.; Jimenez, M.V.; Perez-Torrente, J.J. Copper-catalyzedazide-alkyne cycloaddition (CuAAC) by functionalized NHC-based polynuclear catalysts: Scope and mechanistic insights. Organometallics 2022, 41, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005, 127, 210–216. [Google Scholar] [CrossRef]
- Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper (I) acetylides. Chem. Soc. Rev. 2010, 39, 1302–1315. [Google Scholar] [CrossRef]
- Il’yasov, S.G.; Danilova, E.O. Preparationof 1,3-diazido-2-nitro-2-azapropanefrom urea. Propellants Explos. Pyrotech. 2012, 37, 427–431. [Google Scholar] [CrossRef]
- Gribov, P.S.; Suponitsky, K.Y.; Sheremeteva, A.B. Efficient Synthesis of N-(Chloromethyl)nitramines via TiCl4-Catalyzed Chlorodeacetoxylation. New J. Chem. 2022, 46, 17548–17553. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Z.; Lan, D.; Jia, Q.; Liu, N.; Zhang, J.; Kou, K. Recent advances in synthesis and properties of nitrated-pyrazoles based energetic compounds. Molecules 2020, 25, 3475. [Google Scholar] [CrossRef]
- He, C.; Zhao, G.; Hooper, J.P.; Shreeve, J.M. Energy and biocides storage compounds: Synthesis and characterization of energetic bridged bis(triiodoazoles). Inorg. Chem. 2017, 56, 13547–13552. [Google Scholar] [CrossRef]
- Klapötke, T.M.; Penger, A.; Pflüger, C.; Stierstorfer, J.; Suc’eska, M. Advanced Open-Chain Nitramines as Energetic Materials: Heterocyclic-Substituted 1,3-Dichloro-2-nitrazapropane. Eur. J. Inorg. Chem. 2013, 2013, 4667–4678. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Parrish, D.A.; Shreeve, J.M. Nitramines with varying sensitivities: Functionalized dipyrazolyl N-nitromethanamines as energetic materials. Chem. Eur. J. 2013, 19, 8929–8936. [Google Scholar] [CrossRef] [PubMed]
- Bottaro, J.C.; Schmitt, R.J.; Petrie, M.A.; Penwell, P.E. Energetic Nitramine-Linked Azoles and Hydroxylammonium Salts as Oxidizers, Initiators and Gas Generators. U.S. Patent 6,255,512, 3 July 2001. [Google Scholar]
- Karyakin, Y.V.; Angelov, I.I. Pure Chemical Substances, 4th ed.; Khimiya Publisher: Moscow, Russia, 1974; 408p, (In Russian). Available online: http://chemteq.ru/library/inorganic/2024.html (accessed on 26 August 2022).
- Il’yasov, S.G.; Kazantsev, I.V.; Til’zo, M.V.; Sakovich, G.V.; Zaikovskii, V.I.; Prosvirin, I.P.; Tuzikov, F.V. A new method of preparing copper oxide from dinitrourea copper salt. ZAAC 2014, 640, 2132–2138. [Google Scholar] [CrossRef]
- Rudakov, E.V.; Il’yasov, A.S.; Til’zo, M.V.; Il’yasov, S.G.; Kuznetsov, V.M.; Potekaev, A.I. Synthesis of ammonium bis(N,N’-dinitrourea)cuprate (II) and copper(II) nanooxide. Polzunovskiy Vestn. 2016, 1, 118–123. Available online: https://cyberleninka.ru/article/n/poluchenie-bis-n-n-dinitromochevino-kuprata-ii-ammoniya-i-nanooksida-medi-ii (accessed on 26 August 2022). (In Russian).
- Simmons, R.L.; Young, M.B. Azidonitramine. U.S. Patent 4,450,110, 22 May 1984. [Google Scholar]
- Flanagan, J.E.; Wilson, E.R.; Frankel, M.B. 1,5-Diazido-3-Nitrazapentane and Method of Preparation Thereof. U.S.Patent 5,013,856A, 7 May 1991. [Google Scholar]
Entry | Catalyst | Reaction Time, h | Yield of Crystalline 1, % | Total Yield of 1 1, % | Purity, % |
---|---|---|---|---|---|
1 | Copper wire | 55.0 | 43.0 | 52.0 | 90.87 |
2 | Copper powder [23] | 15.0 | 37.0 | 53.3 | 98.78 |
3 | Copper powder | 9.5 | 47.8 | 57.5 | 97.97 |
4 | n-CuO (2–10 nm) [24,25] | 10.0 | 58.5 | 71.0 | 96.08 |
5 | n-CuO (50–100 nm) | 11.5 | 50.0 | 59.0 | 95.60 |
6 | CuO | 28.0 | 29.0 | 39.5 | 91.26 |
Reaction Temperature, °C | Time, h | Yield of Crystalline 1 1, % | Total Yield of 1 1,2, % |
---|---|---|---|
25 | 22.0 | – 3 | 63.2 |
35 | 9.5 | 46.8 | 54.6 |
50 | 2.0 | 60.7 | 65.6 |
70 | 1.5 | 41.8 | 56.6 |
Entry | Solvent | Reaction Time, h | Yield of Crystalline 1 1, % | Total Yield of 1 1,2, % |
---|---|---|---|---|
1 | t-Butanol | 22.0 | – | 63.2 |
2 | Acetonitrile | 6.0 | 30.6 | 44.5 |
3 | Methanol | 4.0 | 27.2 | 55.2 |
4 | Ethanol | 4.0 | 20.0 | 56.4 |
5 | Acetone | 11.0 | 46.4 | 65.8 |
6 | Methylene chloride | 6.0 | 56.8 | 68.1 |
7 | Chloroform | 3.0 | 63.5 | 70.1 |
8 | Toluene | 1.3 | 33.7 | 40.9 |
9 | THF | 4.0 | 34.1 | 57.1 |
Entry | Starting Azide | Reaction Product | Molar Ratio (Azide:Alkyne) | Reaction Time, h | Yield of Crystalline 1 1, % | Total Yield of 1 1,2, % |
---|---|---|---|---|---|---|
1 | DANP | 1 | 1:2.0 | 8.0 | 49.8 | 58.1 |
2 | 1:2.2 | 2.5 | 69.8 | 84.0 | ||
3 | 1:2.4 | 1.5 | 57.0 | 68.5 | ||
4 | DIANP | 2 | 1:2.0 | 24.0 | 85.8 | 87.9 |
5 | 1:2.2 | 24.0 | 94.1 | 95.6 | ||
6 | 1:2.4 | 24.0 | 91.6 | 93.1 |
Entry | Solvent | Ratio of Solvent/Compound 1, mL/g | Yield, % | Purity, % |
---|---|---|---|---|
1 | Acetonitrile | 9 | 38.0 | 98.9 |
2 | Acetone | 62 | 54.0 | 99.2 |
3 | Ethanol | 6 | 12.0 | 98.1 |
4 | IPA | 32 | 46.0 | 97.3 |
5 | IPA/water | 6/0.4 | 28.0 | 96.1 |
6 | Acetone/water | 10/0.5 | ||
1st recrystallization | 72.0 | 99.2 | ||
2nd recrystallization | 71.3 | 99.9 |
Comp. | Starting Reagents Azide/Alkyne | Reaction Time, h | Yield of Crystalline Product, % | Total Yield of Product, % | Melting Point (Capillary), °C |
---|---|---|---|---|---|
1 | DANP/propargyl alcohol | 2.5 | 69.8 | 84.0 | 126–131 |
2 | DIANP/propargyl alcohol | 24.0 | 94.1 | 95.6 | 157–159 |
3 | DANP/phenylacetylene | 21.0 | 78.9 | 83.5 | 251–254 |
4 | DIANP/phenylacetylene | 42.0 | 62.2 | 71.2 | 239–242 |
Comp. | Frequency, cm−1 | |||||||
---|---|---|---|---|---|---|---|---|
1 | 3380 *, (1361) | 3054, 3026 | 2951, 2926, 2877, (1454) | 1574 s., 1273 s. | – | 1419 m. | 1064 w. | 1007 s., 932 s. |
2 [1] | 3300 | 3161 | 2934, 2860, (1434) | 1568, 1279 | – | 1421 | – | 1022 |
3 | abs. | 3049, 3017 | 2951, 2850, (1444) | 1578 s., 1282 s. | 1461 m., 1037, 761 s., 694 s. | 1424 m. | 1098 w. | – |
4 | abs. | 3098, 3054, 3032 | 2955, 2860, (1444) | 1502 s., 1274 s. | 1468 m., 1004 m., 765 s., 692 s. | 1417 m. | 1080 w. | – |
Functional groups | * ν (δ) OH | ν C–H, 1,2,3-tria zolyl | ν (δ) CH2 | ν N–NO2 | ν C=C, phenyl | ν N=N, 1,2,3-tria zolyl | ν N–N, nitramine | C–OH (C–O) |
Comp. | Stage I | Stage II | ||||||
---|---|---|---|---|---|---|---|---|
Onset, °C | Peak, °C | Endset, °C | Specific Heat Release, J/g | Onset,°C | Peak, °C | Endset, °C | Specific Heat Release, J/g | |
1 | 112.7 | 115.6 | 122.3 | −31.7 | 224.4 | 249.0 | 271.0 | 230.3 |
143.8 | 145.9 | 153.0 | −21.7 | 335.4 | 363.6 | 370.5 | 122.5 |
Status | dR | dT | dP | QRS | ST | QT | Ra | Ta | Pa |
---|---|---|---|---|---|---|---|---|---|
Baseline | 0.232 ± 0.0008 | 0.231 ± 0.052 | 0.232 ± 0.012 | 0.017 ± 0.0008 | 0.022 ± 0.0009 | 0.039 ± 0.0008 | 721.04 ± 30.0 | 156.62 ± 9.800 | 218.12 ± 15.15 |
Post-injection | 0.24 ± 0.0012 | 0.24 ± 0.030 | 0.24 ± 0.009 | 0.015 ± 0.0010 | 0.022 ± 0.0008 | 0.037 ± 0.0001 | 726.82 ± 28.8 | 168.37 ± 15.128 | 221.86 ± 12.80 |
Comp. | Dosage, mg/kg | Survived Animal Percentage, % | |
---|---|---|---|
Calcium-Chloride-Induced Arrhythmia | Epinephrine-Induced Arrhythmia | ||
1 | 5.00 | 100 | 0 |
0.50 | 100 | 0 | |
0.25 | 50 | 0 | |
0.05 | 0 | 0 |
Agent | Dose, mg/kg | Percentage of Survived Animals on per os Administration, % |
---|---|---|
Compound 1 | 500 | 100 |
700 | 100 | |
1000 | 100 |
Agent/Concentration, (M) | Amplitude (mV) | Frequency (Hz) Reductions | ||
---|---|---|---|---|
Before | After | Before | After | |
Agent 1, 10−4 M | 0.12 ± 0.018 | 0.13 ± 0.004 | 2.6 | 2.6 |
Nifedipine, 10−4 M | 0.14 ± 0.023 ** | 0.24 ± 0.045 | 2.2 | 3.4 |
Calcium chloride, 10−3 M | 0.18 ± 0.010 ** | 0.34 ± 0.010 ** | 2.6 | 3.2 |
Agent 1, 10−4 M, + CaCl2, 10−3 M | 0.18 ± 0.018 | 0.2 ± 0.030 | 2.2 | 2.2 |
Nifedipine, 10−4 M, + CaCl2, 10−3 M | 0.19 ± 0.023 * | 0.22 ± 0.045 | 2.2 | 2.6 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shestakova, E.O.; Il’yasov, S.G.; Shchurova, I.A.; Glukhacheva, V.S.; Il’yasov, D.S.; Zhukov, E.E.; Bryzgalov, A.O.; Tolstikova, T.G.; Gatilov, Y.V. Investigation of 1,4-Substituted 1,2,3-Triazole Derivatives as Antiarrhythmics: Synthesis, Structure, and Properties. Pharmaceuticals 2022, 15, 1443. https://doi.org/10.3390/ph15121443
Shestakova EO, Il’yasov SG, Shchurova IA, Glukhacheva VS, Il’yasov DS, Zhukov EE, Bryzgalov AO, Tolstikova TG, Gatilov YV. Investigation of 1,4-Substituted 1,2,3-Triazole Derivatives as Antiarrhythmics: Synthesis, Structure, and Properties. Pharmaceuticals. 2022; 15(12):1443. https://doi.org/10.3390/ph15121443
Chicago/Turabian StyleShestakova, Elena O., Sergey G. Il’yasov, Irina A. Shchurova, Vera S. Glukhacheva, Dmitri S. Il’yasov, Egor E. Zhukov, Arkady O. Bryzgalov, Tatiana G. Tolstikova, and Yuri V. Gatilov. 2022. "Investigation of 1,4-Substituted 1,2,3-Triazole Derivatives as Antiarrhythmics: Synthesis, Structure, and Properties" Pharmaceuticals 15, no. 12: 1443. https://doi.org/10.3390/ph15121443
APA StyleShestakova, E. O., Il’yasov, S. G., Shchurova, I. A., Glukhacheva, V. S., Il’yasov, D. S., Zhukov, E. E., Bryzgalov, A. O., Tolstikova, T. G., & Gatilov, Y. V. (2022). Investigation of 1,4-Substituted 1,2,3-Triazole Derivatives as Antiarrhythmics: Synthesis, Structure, and Properties. Pharmaceuticals, 15(12), 1443. https://doi.org/10.3390/ph15121443