Cardiovascular Adverse Events Associated with Monoclonal Antibody Products in Patients with COVID-19
Abstract
:1. Introduction
2. Results
2.1. Cardiovascular Adverse Events Reported by COVID-19 Patients
2.2. Disproportionality Analysis
2.3. Outcomes Associated with Cardiovascular Adverse Events
3. Discussion
4. Methods
4.1. Data Source
4.2. Study Population
4.3. COVID-19 Monoclonal Antibody Products
4.4. Cardiovascular Adverse Events
4.5. Other Data Extracted
4.6. Safety Signal Detection
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arias, M.; Oliveros, H.; Lechtig, S.; Bustos, R.H. Biologics in COVID-19 So Far: Systematic Review. Pharmaceuticals 2022, 15, 783. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Tzou, P.L.; Kosakovsky Pond, S.L.; Ioannidis, J.P.A.; Shafer, R.W. Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-analysis. Microbiol. Spectr. 2022, 10, e0092622. [Google Scholar] [CrossRef]
- Focosi, D.; McConnell, S.; Casadevall, A.; Cappello, E.; Valdiserra, G.; Tuccori, M. Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect. Dis. 2022, 22, e311–e326. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.T.; Hung, S.H.; Lai, C.C.; Wang, C.Y.; Chen, C.H. The impact of neutralizing monoclonal antibodies on the outcomes of COVID-19 outpatients: A systematic review and meta-analysis of randomized controlled trials. J. Med. Virol. 2022, 94, 2222–2229. [Google Scholar] [CrossRef]
- Hirsch, C.; Park, Y.S.; Piechotta, V.; Chai, K.L.; Estcourt, L.J.; Monsef, I.; Salomon, S.; Wood, E.M.; So-Osman, C.; McQuilten, Z.; et al. SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. Cochrane Database Syst. Rev. 2022, 6, Cd014945. [Google Scholar] [PubMed]
- Hernandez, A.V.; Piscoya, A.; Pasupuleti, V.; Phan, M.T.; Julakanti, S.; Khen, P.; Roman, Y.M.; Carranza-Tamayo, C.O.; Escobedo, A.A.; White, C.M. Beneficial and Harmful Effects of Monoclonal Antibodies for the Treatment and Prophylaxis of COVID-19: Systematic Review and Meta-Analysis. Am. J. Med. 2022, 135, 1349–1361.e18. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Heybati, K.; Ramaraju, H.B.; Zhou, F.; Rayner, D.; Heybati, S. Differential efficacy and safety of anti-SARS-CoV-2 antibody therapies for the management of COVID-19: A systematic review and network meta-analysis. Infection 2022, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Diaby, V.; Almutairi, R.D.; Chen, Z.; Moussa, R.K.; Berthe, A. A pharmacovigilance study to quantify the strength of association between the combination of antimalarial drugs and azithromycin and cardiac arrhythmias: Implications for the treatment of COVID-19. Expert Rev. Pharm. Outcomes Res. 2021, 21, 159–168. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Zheng, K.; Thai, S.; Simpson, R.J., Jr.; Kinlaw, A.C.; Xu, J.; Wei, J.; Cui, X.; Buse, J.B.; et al. Serious Cardiovascular Adverse Events Associated with Hydroxychloroquine/Chloroquine Alone or with Azithromycin in Patients with COVID-19: A Pharmacovigilance Analysis of the FDA Adverse Event Reporting System (FAERS). Drugs—Real World Outcomes 2022, 9, 231–241. [Google Scholar] [CrossRef]
- Luo, M.; Wu, B.; Li, Y.; Wu, F. An observational, retrospective, comprehensive pharmacovigilance analysis of hydroxychloroquine-associated cardiovascular adverse events in patients with and without COVID-19. Int. J. Clin. Pharm. 2022, 44, 1–9. [Google Scholar] [CrossRef]
- Singh, A.; Kamath, A. Assessment of adverse events associated with remdesivir use for coronavirus disease 2019 using real-world data. Expert Opin. Drug Saf. 2021, 20, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Castagné, B.; Viprey, M.; Martin, J.; Schott, A.M.; Cucherat, M.; Soubrier, M. Cardiovascular safety of tocilizumab: A systematic review and network meta-analysis. PLoS ONE 2019, 14, e0220178. [Google Scholar] [CrossRef] [PubMed]
- Birkhoelzer, S.M.; Cowan, E.; Guha, K. COVID-19: Treatments and the potential for cardiotoxicity. Br. J. Cardiol. 2021, 28, 7. [Google Scholar]
- Yuan, J.; Li, M.; Yu, Y.; Lee, T.Y.; Lv, G.; Han, B.; Xiang, X.; Lu, Z.K. Pharmacotherapy Management for COVID-19 and Cardiac Safety: A Data Mining Approach for Pharmacovigilance Evidence from the FDA Adverse Event Reporting System (FAERS). Drugs—Real World Outcomes 2021, 8, 131–140. [Google Scholar] [CrossRef] [PubMed]
- US Food & Drug Administration. FDA Adverse Event Reporting System. Available online: https://open.fda.gov/data/faers/ (accessed on 22 November 2022).
- Woo, E.J. Postmarketing safety of biologics and biological devices. Spine J. 2014, 14, 560–565. [Google Scholar] [CrossRef]
- Sakaeda, T.; Tamon, A.; Kadoyama, K.; Okuno, Y. Data mining of the public version of the FDA Adverse Event Reporting System. Int. J. Med. Sci. 2013, 10, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.S.; Nirula, A.; Mulligan, M.J.; Novak, R.M.; Marovich, M.; Yen, C.; Stemer, A.; Mayer, S.M.; Wohl, D.; Brengle, B.; et al. Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 Among Residents and Staff of Skilled Nursing and Assisted Living Facilities: A Randomized Clinical Trial. JAMA 2021, 326, 46–55. [Google Scholar] [CrossRef]
- Pettit, N.N.; Nguyen, C.T.; Mutlu, G.M.; Wu, D.; Kimmig, L.; Pitrak, D.; Pursell, K. Late onset infectious complications and safety of tocilizumab in the management of COVID-19. J. Med. Virol. 2021, 93, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Masuishi, T.; Nagaoka, S.; Jin, L.; Yoshizawa, K. A post-marketing safety study of ramucirumab with FOLFIRI in patients with metastatic colorectal cancer. J. Gastrointest. Oncol. 2022, 13, 1701–1710. [Google Scholar] [CrossRef]
- Hatake, K.; Doi, T.; Uetake, H.; Takahashi, Y.; Ishihara, Y.; Shirao, K. Bevacizumab safety in Japanese patients with colorectal cancer. Jpn. J. Clin. Oncol. 2016, 46, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Hua, S.; Yang, Y.; Zou, D.; Li, J.; Yan, K.; Xu, Y.; Jiang, X.; Rong, X.; Ye, D. COVID-19 and metabolic comorbidities: An update on emerging evidences for optimal therapies. Biomed. Pharmacother. 2021, 140, 111685. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar]
- Soin, A.S.; Kumar, K.; Choudhary, N.S.; Sharma, P.; Mehta, Y.; Kataria, S.; Govil, D.; Deswal, V.; Chaudhry, D.; Singh, P.K.; et al. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): An open-label, multicentre, randomised, controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 511–521. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.P.; Forleo-Neto, E.; Sarkar, N.; Isa, F.; Hou, P.; Chan, K.C.; Musser, B.; Bar, K.J.; Barnabas, R.V.; Barouch, D.H.; et al. Effect of Subcutaneous Casirivimab and Imdevimab Antibody Combination vs Placebo on Development of Symptomatic COVID-19 in Early Asymptomatic SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA 2022, 327, 432–441. [Google Scholar]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Xiao, J.; Hopper, A.T.; Hamilton, J.D.; Musser, B.J.; et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, e81. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef]
- Chew, K.W.; Moser, C.; Daar, E.S.; Wohl, D.A.; Li, J.Z.; Coombs, R.W.; Ritz, J.; Giganti, M.; Javan, A.C.; Li, Y.; et al. Antiviral and clinical activity of bamlanivimab in a randomized trial of non-hospitalized adults with COVID-19. Nat. Commun. 2022, 13, 4931. [Google Scholar] [CrossRef]
- Chen, P.; Datta, G.; Li, G.Y.; Chien, J.; Price, K.; Chigutsa, E.; Brown-Augsburger, P.; Poorbaugh, J.; Fill, J.; Benschop, R.J.; et al. First-in-Human Study of Bamlanivimab in a Randomized Trial of Hospitalized Patients with COVID-19. Clin. Pharmacol. Ther. 2021, 110, 1467–1477. [Google Scholar] [CrossRef]
- Lundgren, J.D.; Grund, B.; Barkauskas, C.E.; Holland, T.L.; Gottlieb, R.L.; Sandkovsky, U.; Brown, S.M.; Knowlton, K.U.; Self, W.H.; Files, D.C.; et al. A Neutralizing Monoclonal Antibody for Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 905–914. [Google Scholar]
- Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 229–237. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Nirula, A.; Chen, P.; Boscia, J.; Heller, B.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. Effect of Bamlanivimab as Monotherapy or in Combination with Etesevimab on Viral Load in Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Centers for Medicare & Medicaid Services. COVID-19 Monoclonal Antibodies. Available online: https://www.cms.gov/monoclonal (accessed on 22 November 2022).
- Hazell, L.; Shakir, S.A. Under-reporting of adverse drug reactions: A systematic review. Drug Saf. 2006, 29, 385–396. [Google Scholar] [CrossRef] [PubMed]
- US Food & Drug Administration. Emergency Use Authorization. Available online: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs (accessed on 22 November 2022).
- US Food & Drug Administration. Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Monoclonal Antibody Bamlanivimab. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-monoclonal-antibody-bamlanivimab (accessed on 22 November 2022).
- Cirmi, S.; El Abd, A.; Letinier, L.; Navarra, M.; Salvo, F. Cardiovascular Toxicity of Tyrosine Kinase Inhibitors Used in Chronic Myeloid Leukemia: An Analysis of the FDA Adverse Event Reporting System Database (FAERS). Cancers 2020, 12, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Luo, M.; Wu, F.; He, Z.; Li, Y.; Xu, T. Acute Kidney Injury Associated with Remdesivir: A Comprehensive Pharmacovigilance Analysis of COVID-19 Reports in FAERS. Front. Pharmacol. 2022, 13, 692828. [Google Scholar] [CrossRef] [PubMed]
- Van Puijenbroek, E.P.; Bate, A.; Leufkens, H.G.; Lindquist, M.; Orre, R.; Egberts, A.C. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol. Drug Saf. 2002, 11, 3–10. [Google Scholar] [CrossRef]
- Hauben, M.; Zhou, X. Quantitative methods in pharmacovigilance: Focus on signal detection. Drug Saf. 2003, 26, 159–186. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, S.; Vickers-Smith, R.; Guirguis, A.; Corkery, J.M.; Martinotti, G.; Harris, D.R.; Schifano, F. Pharmacovigilance Signals of the Opioid Epidemic over 10 Years: Data Mining Methods in the Analysis of Pharmacovigilance Datasets Collecting Adverse Drug Reactions (ADRs) Reported to EudraVigilance (EV) and the FDA Adverse Event Reporting System (FAERS). Pharmaceuticals 2022, 15, 675. [Google Scholar] [CrossRef] [PubMed]
- Raschi, E.; Fusaroli, M.; Gatti, M.; Caraceni, P.; Poluzzi, E.; De Ponti, F. Liver Injury with Nintedanib: A Pharmacovigilance-Pharmacokinetic Appraisal. Pharmaceuticals 2022, 15, 645. [Google Scholar] [CrossRef]
- Rothman, K.J.; Lanes, S.; Sacks, S.T. The reporting odds ratio and its advantages over the proportional reporting ratio. Pharmacoepidemiol. Drug Saf. 2004, 13, 519–523. [Google Scholar] [CrossRef]
- Bate, A.; Lindquist, M.; Edwards, I.R.; Olsson, S.; Orre, R.; Lansner, A.; De Freitas, R.M. A Bayesian neural network method for adverse drug reaction signal generation. Eur. J. Clin. Pharmacol. 1998, 54, 315–321. [Google Scholar] [CrossRef]
- Goldman, A.; Bomze, D.; Dankner, R.; Hod, H.; Meirson, T.; Boursi, B.; Maor, E. Cardiovascular adverse events associated with hydroxychloroquine and chloroquine: A comprehensive pharmacovigilance analysis of pre-COVID-19 reports. Br. J. Clin. Pharmacol. 2021, 87, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Higuchi, T.; Hosomi, K.; Takada, M. Association between statin use and cancer: Data mining of a spontaneous reporting database and a claims database. Int. J. Med. Sci. 2015, 12, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Noren, G.N.; Hopstadius, J.; Bate, A. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Stat. Methods Med. Res. 2011, 22, 57–69. [Google Scholar] [CrossRef]
All COVID-19 Treatment | Casirivimab + Imdevimab | Bamlanivimab | Bamlanivimab + Etesevimab | Sotrovimab | Tocilizumab | Bebtelovimab | Tixagevimab + Cilgavimab | |
---|---|---|---|---|---|---|---|---|
Total adverse events, n | 47,327 | 3686 | 3797 | 1755 | 1765 | 3006 | 467 | 100 |
CVAE | 4689 (9.9%) | 407 (11.0%) | 442 (11.6%) | 165 (9.4%) | 100 (5.7%) | 230 (7.7%) | 51 (10.9%) | 13 (13.0%) |
Cardiac arrhythmias | 2215 (4.7%) | 101 (2.7%) | 131 (3.5%) | 31 (1.8%) | 26 (1.5%) | 55 (1.8%) | 12 (2.6%) | 1 (1.0%) |
Cardiac failure | 351 (0.7%) | 20 (0.5%) | 33 (0.9%) | 12 (0.7%) | 12 (0.7%) | 38 (1.3%) | 0 (0.0%) | 0 (0.0%) |
Cardiomyopathy | 75 (0.2%) | 2 (0.1%) | 9 (0.2%) | 0 (0.0%) | 0 (0.0%) | 4 (0.1%) | 0 (0.0%) | 0 (0.0%) |
Embolic and thrombotic events | 1462 (3.1%) | 83 (2.3%) | 135 (3.6%) | 44 (2.5%) | 23 (1.3%) | 151 (5.0%) | 5 (1.1%) | 7 (7.0%) |
Hypertension | 906 (1.9%) | 210 (5.7%) | 157 (4.1%) | 79 (4.5%) | 40 (2.3%) | 37 (1.2%) | 35 (7.5%) | 3 (3.0%) |
Ischemic heart disease | 322 (0.7%) | 46 (1.2%) | 72 (1.9%) | 13 (0.7%) | 9 (0.5%) | 16 (0.5%) | 3 (0.6%) | 3 (3.0%) |
Pulmonary hypertension | 42 (0.1%) | 3 (0.1%) | 4 (0.1%) | 0 (0.0%) | 0 (0.0%) | 2 (0.1%) | 0 (0.0%) | 0 (0.0%) |
Torsade de Pointes/QT prolongation | 1168 (2.5%) | 9 (0.2%) | 11 (0.3%) | 2 (0.1%) | 0 (0.0%) | 7 (0.2%) | 1 (0.2%) | 0 (0.0%) |
Age reported, n | 39,602 | 3549 | 3196 | 1557 | 1366 | 1611 | 390 | 92 |
Age, years, mean (SD) | 58 (18) | 54 (19) | 66 (15) | 52 (19) | 50 (21) | 59 (16) | 52 (19) | 58 (21) |
Weight reported, n | 17,527 | 2418 | 2320 | 1043 | 560 | 764 | 277 | 71 |
Weight, kg, mean (SD) | 87 (28) | 91 (27) | 93 (26) | 90 (28) | 78 (26) | 90 (26) | 84 (24) | 73 (23) |
Gender reported, n | 42,230 | 3583 | 3679 | 1678 | 1441 | 1788 | 448 | 96 |
Male | 21,961 (52.0%) | 1550 (43.3%) | 1927 (52.4%) | 664 (39.6%) | 439 (30.5%) | 1238 (69.2%) | 146 (32.6%) | 47 (49.0%) |
Reporting sources, n | 45,176 | 3127 | 3728 | 1508 | 1623 | 2967 | 362 | 86 |
Consumers | 10,646 (23.6%) | 353 (11.3%) | 983 (26.4%) | 254 (16.8%) | 173 (10.7%) | 183 (6.2%) | 119 (32.9%) | 12 (14.0%) |
Physicians | 9551 (21.1%) | 256 (8.2%) | 332 (8.9%) | 161 (10.7%) | 944 (58.2%) | 1064 (35.9%) | 22 (6.1%) | 28 (32.6%) |
Pharmacists | 12,386 (27.4%) | 1958 (62.6%) | 1806 (48.4%) | 859 (57.0%) | 386 (23.8%) | 625 (21.1%) | 163 (45.0%) | 39 (45.3%) |
Other health professionals | 12,593 (27.9%) | 560 (17.9%) | 607 (16.3%) | 234 (15.5%) | 120 (7.4%) | 1095 (36.9%) | 58 (16.0%) | 7 (8.1%) |
Casirivimab + Imdevimab | Bamlanivimab | Bamlanivimab + Etesevimab | Sotrovimab | Tocilizumab | Bebtelovimab | Tixagevimab + Cilgavimab | |
---|---|---|---|---|---|---|---|
CVAE, n | 370 | 383 | 141 | 86 | 229 | 46 | 13 |
Non-CVAE, n | 2520 | 2111 | 1053 | 543 | 2199 | 266 | 69 |
Death | |||||||
CVAE, n (%) | 28 (7.6%) | 44 (11.5%) | 12 (8.5%) | 13 (15.1%) | 114 (49.8%) | 0 (0.0%) | 2 (15.4%) |
Non-CVAE, n (%) | 102 (4.0%) | 177 (8.4%) | 61 (5.8%) | 81 (14.9%) | 813 (37.0%) | 6 (2.3%) | 4 (5.8%) |
p value | 0.002 | 0.049 | 0.206 | 0.962 | <0.001 | 0.597 | 0.240 |
Life threatening | |||||||
CVAE, n (%) | 28 (7.6%) | 25 (6.5%) | 12 (8.5%) | 12 (14.0%) | 26 (11.4%) | 5 (10.9%) | 1 (7.7%) |
Non-CVAE, n (%) | 116 (4.6%) | 70 (3.3%) | 92 (8.7%) | 28 (5.2%) | 99 (4.5%) | 16 (6.0%) | 11 (15.9%) |
p value | 0.014 | 0.003 | 0.929 | 0.002 | <0.001 | 0.212 | 0.680 |
Hospitalization | |||||||
CVAE, n (%) | 190 (51.4%) | 237 (61.9%) | 70 (49.6%) | 28 (32.6%) | 27 (11.8%) | 15 (32.6%) | 4 (30.8%) |
Non-CVAE, n (%) | 1053 (41.8%) | 1330 (63.0%) | 371 (35.2%) | 205 (37.8%) | 519 (23.6%) | 49 (18.4%) | 27 (39.1%) |
p value | <0.001 | 0.676 | <0.001 | 0.354 | <0.001 | 0.028 | 0.757 |
Disability | |||||||
CVAE, n (%) | 0 (0.0%) | 0 (0.0%) | 1 (0.7%) | 1 (1.2%) | 1 (0.4%) | 0 (0.0%) | 0 (0.0%) |
Non-CVAE, n (%) | 20 (0.8%) | 5 (0.2%) | 2 (0.2%) | 5 (0.9%) | 4 (0.2%) | 2 (0.8%) | 0 (0.0%) |
p value | 0.098 | 1.0 | 0.314 | 0.588 | 0.391 | 1.0 | N/A |
Congenital anomaly | |||||||
CVAE, n (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Non-CVAE, n (%) | 1 (0.0%) | 0 (0.0%) | 1 (0.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
p value | 1.0 | N/A | 1.0 | N/A | N/A | N/A | N/A |
Required intervention to prevent permanent impairment/damage | |||||||
CVAE, n (%) | 23 (6.2%) | 1 (0.3%) | 15 (10.6%) | 2 (2.3%) | 1 (0.4%) | 5 (10.9%) | 0 (0.0%) |
Non-CVAE, n (%) | 252 (10.0%) | 8 (0.4%) | 152 (14.4%) | 44 (8.1%) | 3 (0.1%) | 57 (21.4%) | 4 (5.8%) |
p value | 0.021 | 1.0 | 0.222 | 0.071 | 0.327 | 0.112 | 1.0 |
Other serious important medical event | |||||||
CVAE, n (%) | 101 (27.3%) | 76 (19.8%) | 31 (22.0%) | 30 (34.9%) | 60 (26.2%) | 21 (45.7%) | 6 (46.2%) |
Non-CVAE, n (%) | 976 (38.7%) | 521 (24.7%) | 374 (35.5%) | 180 (33.1%) | 761 (34.6%) | 136 (51.1%) | 23 (33.3%) |
p value | <0.001 | 0.041 | 0.001 | 0.751 | 0.011 | 0.493 | 0.528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Jing, F. Cardiovascular Adverse Events Associated with Monoclonal Antibody Products in Patients with COVID-19. Pharmaceuticals 2022, 15, 1472. https://doi.org/10.3390/ph15121472
Zou J, Jing F. Cardiovascular Adverse Events Associated with Monoclonal Antibody Products in Patients with COVID-19. Pharmaceuticals. 2022; 15(12):1472. https://doi.org/10.3390/ph15121472
Chicago/Turabian StyleZou, Jingrui, and Fuyuan Jing. 2022. "Cardiovascular Adverse Events Associated with Monoclonal Antibody Products in Patients with COVID-19" Pharmaceuticals 15, no. 12: 1472. https://doi.org/10.3390/ph15121472
APA StyleZou, J., & Jing, F. (2022). Cardiovascular Adverse Events Associated with Monoclonal Antibody Products in Patients with COVID-19. Pharmaceuticals, 15(12), 1472. https://doi.org/10.3390/ph15121472