The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients
Abstract
:1. Introduction
2. Results
2.1. Description of Study Cohort
2.2. Effects on Demographic Characteristics and Other Biochemical Parameters
2.3. Effects on Liver Steatosis
2.4. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. MRI-PDFF Protocol
4.2. Exclusion Criteria
4.3. Sample Size Calculation
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salva-Pastor, N.; Chávez-Tapia, N.C.; Uribe, M.; Nuño-Lámbarri, N. The diagnostic and initial approach of the patient with non-alcoholic fatty liver disease: Role of the primary care provider. Gastroenterol. Hepatol. Bed Bench 2019, 12, 267–277. [Google Scholar] [PubMed]
- Lonardo, A.; Nascimbeni, F.; Maurantonio, M.; Marrazzo, A.; Rinaldi, L.; Adinolfi, L.E. Nonalcoholic fatty liver disease: Evolving paradigms. World J. Gastroenterol. 2017, 23, 6571–6592. [Google Scholar] [CrossRef] [PubMed]
- Leoni, S.; Tovoli, F.; Napoli, L.; Serio, I.; Ferri, S.; Bolondi, L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J. Gastroenterol. 2018, 24, 3361–3373. [Google Scholar] [CrossRef] [PubMed]
- Kahl, S.; Gancheva, S.; Straßburger, K.; Herder, C.; Machann, J.; Katsuyama, H.; Kabisch, S.; Henkel, E.; Kopf, S.; Lagerpusch, M.; et al. Empagliflozin Effectively Lowers Liver Fat Content in Well-Controlled Type 2 Diabetes: A Randomized, Double-Blind, Phase 4, Placebo-Controlled Trial. Diabetes Care 2020, 43, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Irshad, K.; Akash, M.S.H.; Rehman, K.; Sharif, H. Therapeutic Interventions of Novel SGLT2 Inhibitors Against Metabolic Disorders: Transforming the Association into Perspectives. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 2169–2180. [Google Scholar] [CrossRef]
- Nasiri-Ansari, N.; Nikolopoulou, C.; Papoutsi, K.; Kyrou, I.; Mantzoros, C.S.; Kyriakopoulos, G.; Chatzigeorgiou, A.; Kalotychou, V.; Randeva, M.S.; Chatha, K.; et al. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE((-/-)) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int. J. Mol. Sci. 2021, 22, 818. [Google Scholar] [CrossRef]
- Trnovska, J.; Svoboda, P.; Pelantova, H.; Kuzma, M.; Kratochvilova, H.; Kasperova, B.J.; Dvorakova, I.; Rosolova, K.; Malinska, H.; Huttl, M.; et al. Complex Positive Effects of SGLT-2 Inhibitor Empagliflozin in the Liver, Kidney and Adipose Tissue of Hereditary Hypertriglyceridemic Rats: Possible Contribution of Attenuation of Cell Senescence and Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 10606. [Google Scholar] [CrossRef]
- Sattar, N.; Fitchett, D.; Hantel, S.; George, J.T.; Zinman, B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: Results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia 2018, 61, 2155–2163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.; Zhang, H.; Wang, X. Efficacy and Safety of Empagliflozin on Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 836455. [Google Scholar] [CrossRef]
- Chehrehgosha, H.; Sohrabi, M.R.; Ismail-Beigi, F.; Malek, M.; Reza Babaei, M.; Zamani, F.; Ajdarkosh, H.; Khoonsari, M.; Fallah, A.E.; Khamseh, M.E. Empagliflozin Improves Liver Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Ther. 2021, 12, 843–861. [Google Scholar] [CrossRef]
- Taheri, H.; Malek, M.; Ismail-Beigi, F.; Zamani, F.; Sohrabi, M.; Reza Babaei, M.; Khamseh, M.E. Effect of Empagliflozin on Liver Steatosis and Fibrosis in Patients With Non-Alcoholic Fatty Liver Disease Without Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv. Ther. 2020, 37, 4697–4708. [Google Scholar] [CrossRef]
- Trauner, M.; Fuchs, C.D. Novel therapeutic targets for cholestatic and fatty liver disease. Gut 2022, 71, 194–209. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Huang, J.; Hu, H. Efficacy of ursodeoxycholic acid in nonalcoholic fatty liver disease: An updated meta-analysis of randomized controlled trials. Asia Pac. J. Clin. Nutr. 2020, 29, 696–705. [Google Scholar] [CrossRef]
- Ganguli, S.; DeLeeuw, P.; Satapathy, S.K. A Review Of Current And Upcoming Treatment Modalities In Non-Alcoholic Fatty Liver Disease And Non-Alcoholic Steatohepatitis. Hepat. Med. 2019, 11, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Nadinskaia, M.; Maevskaya, M.; Ivashkin, V.; Kodzoeva, K.; Pirogova, I.; Chesnokov, E.; Nersesov, A.; Kaibullayeva, J.; Konysbekova, A.; Raissova, A.; et al. Ursodeoxycholic acid as a means of preventing atherosclerosis, steatosis and liver fibrosis in patients with nonalcoholic fatty liver disease. World J. Gastroenterol. 2021, 27, 959–975. [Google Scholar] [CrossRef]
- Grigor’eva, I.N. UDCA in the treatment of nonalcoholic fatty liver disease. Eksp. i Klin. Gastroenterol. Exp. Clin. Gastroenterol. 2011, 11, 79–85. [Google Scholar]
- Zein, C.O.; Yerian, L.M.; Gogate, P.; Lopez, R.; Kirwan, J.P.; Feldstein, A.E.; McCullough, A.J. Pentoxifylline improves nonalcoholic steatohepatitis: A randomized placebo-controlled trial. Hepatology 2011, 54, 1610–1619. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.-S.; Kim, D. Non-alcoholic fatty liver disease and lifestyle modifications, focusing on physical activity. Korean J. Intern. Med. 2018, 33, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Chen, Y.; Ma, K.; Ye, Y.; Zheng, L.; Yang, Y.; Li, Y.; Jin, X. The role of ursodeoxycholic acid in non-alcoholic steatohepatitis: A systematic review. BMC Gastroenterol. 2013, 13, 140. [Google Scholar] [CrossRef] [Green Version]
- Kiyici, M.; Gulten, M.; Gurel, S.; Nak, S.G.; Dolar, E.; Savci, G.; Adim, S.B.; Yerci, O.; Memik, F. Ursodeoxycholic acid and atorvastatin in the treatment of nonalcoholic steatohepatitis. Can. J. Gastroenterol. 2003, 17, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, U.F.H.; Lindenthal, B.; Herrmann, G.; Arnold, J.C.; Rössle, M.; Cordes, H.-J.; Zeuzem, S.; Hein, J.; Berg, T.; The NASH Study Group. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: A double-blind, randomized, placebo-controlled trial. Hepatology 2010, 52, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.X.; Ye, J.; Dong, Z.; Li, F.; Lin, Y.; Liao, B.; Feng, S.; Zhong, B. Steatosis grading consistency between controlled attenuation parameter and MRI-PDFF in monitoring metabolic associated fatty liver disease. Ther. Adv. Chronic Dis. 2021, 12, 20406223211033120. [Google Scholar] [CrossRef] [PubMed]
- Sumida, Y.; Nakajima, A.; Itoh, Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2014, 20, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, Y.; Honda, M.; Harada, K.; Kita, Y.; Takata, N.; Tsujiguchi, H.; Tanaka, T.; Goto, H.; Nakano, Y.; Iida, N.; et al. Comparison of Tofogliflozin and Glimepiride Effects on Nonalcoholic Fatty Liver Disease in Participants With Type 2 Diabetes: A Randomized, 48-Week, Open-Label, Active-Controlled Trial. Diabetes Care 2022, 45, 2064–2075. [Google Scholar] [CrossRef]
- Harrison, S.A.; Gunn, N.; Neff, G.W.; Kohli, A.; Liu, L.; Flyer, A.; Goldkind, L.; Di Bisceglie, A.M. A phase 2, proof of concept, randomised controlled trial of berberine ursodeoxycholate in patients with presumed non-alcoholic steatohepatitis and type 2 diabetes. Nat. Commun. 2021, 12, 5503. [Google Scholar] [CrossRef]
- Di Bisceglie, A.M.; Watts, G.F.; Lavin, P.; Yu, M.; Bai, R.; Liu, L. Pharmacokinetics and pharmacodynamics of HTD1801 (berberine ursodeoxycholate, BUDCA) in patients with hyperlipidemia. Lipids Health Dis. 2020, 19, 239. [Google Scholar] [CrossRef]
- Pokharel, A.; Kc, S.; Thapa, P.; Karki, N.; Shrestha, R.; Jaishi, B.; Paudel, M.S. The Effect of Empagliflozin on Liver Fat in Type 2 Diabetes Mellitus Patients With Non-Alcoholic Fatty Liver Disease. Cureus 2021, 13, e16687. [Google Scholar] [CrossRef]
- Kuchay, M.S.; Krishan, S.; Mishra, S.K.; Farooqui, K.J.; Singh, M.K.; Wasir, J.S.; Bansal, B.; Kaur, P.; Jevalikar, G.; Gill, H.K.; et al. Effect of Empagliflozin on Liver Fat in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial (E-LIFT Trial). Diabetes Care 2018, 41, 1801–1808. [Google Scholar] [CrossRef] [Green Version]
- Paul, J. Recent advances in non-invasive diagnosis and medical management of non-alcoholic fatty liver disease in adult. Egypt. Liver J. 2020, 10, 37. [Google Scholar] [CrossRef]
- Dudekula, A.; Rachakonda, V.; Shaik, B.; Behari, J. Weight loss in nonalcoholic Fatty liver disease patients in an ambulatory care setting is largely unsuccessful but correlates with frequency of clinic visits. PLoS ONE 2014, 9, e111808. [Google Scholar] [CrossRef]
- Shima, K.R.; Ota, T.; Kato, K.; Takeshita, Y.; Misu, H.; Kaneko, S.; Takamura, T. Ursodeoxycholic acid potentiates dipeptidyl peptidase-4 inhibitor sitagliptin by enhancing glucagon-like peptide-1 secretion in patients with type 2 diabetes and chronic liver disease: A pilot randomized controlled and add-on study. BMJ Open Diabetes Res. Care 2018, 6, e000469. [Google Scholar] [CrossRef]
- Kim, H.; Fang, S. Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis. Lab. Anim. Res. 2018, 34, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, K.; Rehman, K.; Akash, M.S.H. Genetic mutations of APOEε4 carriers in cardiovascular patients lead to the development of insulin resistance and risk of Alzheimer’s disease. J. Biochem. Mol. Toxicol. 2022, 36, e22953. [Google Scholar] [CrossRef]
- Tsuchida, T.; Shiraishi, M.; Ohta, T.; Sakai, K.; Ishii, S. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice. Metabolism 2012, 61, 944–953. [Google Scholar] [CrossRef]
- Hattori, S. Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and insulin resistance. Diabetol. Metab. Syndr. 2018, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Takase, T.; Nakamura, A.; Miyoshi, H.; Yamamoto, C.; Atsumi, T. Amelioration of fatty liver index in patients with type 2 diabetes on ipragliflozin: An association with glucose-lowering effects. Endocr. J. 2017, 64, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Salomone, F.; Micek, A.; Godos, J. Simple Scores of Fibrosis and Mortality in Patients with NAFLD: A Systematic Review with Meta-Analysis. J. Clin. Med. 2018, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Yoon, E.L.; Kim, M.; Lee, J.; Kim, J.-H.; Cho, S.; Jun, D.W.; Nah, E.-H. Comparison of diagnostic performance between FIB-4 and NFS in metabolic-associated fatty liver disease era. Hepatol. Res. 2022, 52, 247–254. [Google Scholar] [CrossRef]
- Corey, K.E.; Vuppalanchi, R.; Wilson, L.A.; Cummings, O.W.; Chalasani, N.; Crn, T.N. NASH resolution is associated with improvements in HDL and triglyceride levels but not improvement in LDL or non-HDL-C levels. Aliment. Pharmacol. Ther. 2015, 41, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Sauter, G.H.; Thiessen, K.; Parhofer, K.G.; Jüngst, C.; Fischer, S.; Jüngst, D. Effects of ursodeoxycholic acid on synthesis of cholesterol and bile acids in healthy subjects. Digestion 2004, 70, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Trnovska, J.; Hüttl, M.; Marková, I.; Oliyarnyk, O.; Malinska, H.; Kazdova, L.; Haluzik, M. The Effect of Empagliflozin on Metabolic Parameters in Nonobese Nondiabetic Model of Metabolic Syndrome. Diabetes 2018, 67, 1211-P. [Google Scholar] [CrossRef]
- Kim, D.J.; Yoon, S.; Ji, S.C.; Yang, J.; Kim, Y.-K.; Lee, S.; Yu, K.-S.; Jang, I.-J.; Chung, J.-Y.; Cho, J.-Y. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci. Rep. 2018, 8, 11874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.; Al-Mrabeh, A.; Zhyzhneuskaya, S.; Peters, C.; Barnes, A.C.; Aribisala, B.S.; Hollingsworth, K.G.; Mathers, J.C.; Sattar, N.; Lean, M.E.J. Remission of Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent upon Capacity for β Cell Recovery. Cell Metab. 2018, 28, 547–556.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association, A.D. 3. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S34–S39. [Google Scholar] [CrossRef]
- Singh, D.; Das, C.J.; Baruah, M.P. Imaging of non alcoholic fatty liver disease: A road less travelled. Indian J. Endocrinol. Metab. 2013, 17, 990–995. [Google Scholar]
- Qureshi, H.; Mehdi, I.; Ahmed, W.U.; Alam, S.E. Role of ursodeoxycholic acid in lowering ALT in chronic liver disease. J. Pak. Med. Assoc. 2006, 56, 130–131. [Google Scholar]
- Lawal, Y.; Bello, F.; Anumah, F.; Bakari, A. Beta-cell function and insulin resistance among First-Degree relatives of persons with type 2 diabetes in a Northwestern Nigerian Population. J. Health Res. Rev. 2019, 6, 26–30. [Google Scholar] [CrossRef]
- Mansour, A.M.F.; Bayoumy, E.M.; ElGhandour, A.M.; El-Talkawy, M.D.; Badr, S.M.; Ahmed, A.E.-M. Assessment of hepatic fibrosis and steatosis by vibration-controlled transient elastography and controlled attenuation parameter versus non-invasive assessment scores in patients with non-alcoholic fatty liver disease. Egypt. Liver J. 2020, 10, 33. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Gregg, L.P.; Richardson, P.A.; Akeroyd, J.; Matheny, M.E.; Virani, S.S.; Navaneethan, S.D. Effects of the 2021 CKD-EPI Creatinine eGFR Equation among a National US Veteran Cohort. Clin. J. Am. Soc. Nephrol. 2021, 17, 283–285. [Google Scholar] [CrossRef]
- Rodge, G.A.; Goenka, M.K.; Goenka, U.; Afzalpurkar, S.; Shah, B.B. Quantification of Liver Fat by MRI-PDFF Imaging in Patients with Suspected Non-alcoholic Fatty Liver Disease and Its Correlation with Metabolic Syndrome, Liver Function Test and Ultrasonography. J. Clin. Exp. Hepatol. 2021, 11, 586–591. [Google Scholar] [CrossRef]
- Singh, A.; Le, P.; Peerzada, M.M.; Lopez, R.; Alkhouri, N. The Utility of Noninvasive Scores in Assessing the Prevalence of Nonalcoholic Fatty Liver Disease and Advanced Fibrosis in Type 2 Diabetic Patients. J. Clin. Gastroenterol. 2018, 52, 268–272. [Google Scholar] [CrossRef]
- Ye, J.; Wu, Y.; Li, F.; Wu, T.; Shao, C.; Lin, Y.; Wang, W.; Feng, S.; Zhong, B. Effect of orlistat on liver fat content in patients with nonalcoholic fatty liver disease with obesity: Assessment using magnetic resonance imaging-derived proton density fat fraction. Therap. Adv. Gastroenterol. 2019, 12, 1756284819879047. [Google Scholar] [CrossRef]
Parameters | EMPA | UDCA | Placebo | |
---|---|---|---|---|
SBP (mmHg) | Baseline (mean ± SD) | 122.50 ± 8.50 | 120.75 ± 7.30 | 129.75 ± 14.18 |
Post-treatment (mean ± SD) | 117.00 ± 5.71 | 116.25 ± 3.93 | 123.75 ± 4.66 | |
Difference (95% C.I) | −5.50 (−9.72, −1.28) | −4.50 (−7.80, −1.20) | −6.00 (−10.90, −2.10) | |
p-value | 0.01 | 0.01 | 0.001 | |
DBP (mmHg) | Baseline (mean ± SD) | 81.50 ± 6.50 | 77.25 ± 6.78 | 83.00 ± 8.94 |
Post-treatment (mean ± SD) | 75.75 ± 5.20 | 73.75 ± 4.25 | 80.25 ± 3.43 | |
Difference (95% C.I) | −5.75 (−8.61, −2.88) | −3.50 (−6.35, −0.65) | −2.75 (−6.01, 0.51) | |
p-value | 0.0001 | 0.01 | 0.094 | |
BMI (Kg/m2) | Baseline (mean ± SD) | 32.57 ± 4.30 | 33.52 ± 4.87 | 33.90 ± 5.82 |
Post-treatment (mean ± SD) | 30.42 ± 3.64 | 30.95 ± 4.11 | 34.10 ± 5.41 | |
Difference (95% C.I) | −2.15 (−2.79, −1.51) | −2.57 (−3.47, −1.67) | 0.20 (−0.65, 1.04) | |
p-value | 0.0001 | 0.0001 | 0.633 | |
Waist-to-hip ratio | Baseline (mean ± SD) | 0.946 ± 0.06 | 0.972 ± 0.10 | 0.969 ± 0.04 |
Post-treatment (mean ± SD) | 0.932 ± 0.06 | 0.942 ± 0.09 | 0.966 ± 0.05 | |
Difference (95% C.I) | −0.01 (−0.02, −0.01) | −0.03 (−0.05, −0.01) | −0.003 (−0.02, 0.01) | |
p-value | 0.0001 | 0.001 | 0.527 | |
AST (U/L) | Baseline (mean ± SD) | 29.50 ± 16.86 | 33.39 ± 20.47 | 25.85 ± 9.65 |
Post-treatment (mean ± SD) | 18.00 ± 4.01 | 18.15 ± 6.38 | 29.25 ± 11.71 | |
Difference (95% C.I) | −11.50 (−18.97, −4.02) | −15.24 (−23.05, −7.42) | 3.40 (−1.80, 4.81) | |
p-value | 0.004 | 0.001 | 0.001 | |
ALT (U/L) | Baseline (mean ± SD) | 28.75 ± 14.26 | 31.60 ± 21.37 | 26.05 ± 10.60 |
Post-treatment (mean ± SD) | 15.75 ± 4.02 | 19.50 ± 10.16 | 30.40 ± 11.18 | |
Difference (95% C.I) | −13.00 (−18.87, −7.13) | −12.10 (−20.93, −3.27) | 4.35 (0.78, 9.91) | |
p-value | 0.0001 | 0.0001 | 0.187 | |
ALP (U/L) | Baseline (mean ± SD) | 112.60 ± 46.85 | 121.75 ± 41.97 | 80.75 ± 24.03 |
Post-treatment (mean ± SD) | 113.19 ± 90.29 | 101.05 ± 89.32 | 80.95 ± 31.41 | |
Difference (95% C.I) | 0.59 (−53.21, 54.38) | −20.70 (−63.07, 21.66) | 0.20 (−11.76, 12.16) | |
p-value | 0.982 | 0.319 | 0.024 | |
GGT (U/L) | Baseline (mean ± SD) | 47.83 ± 16.06 | 46.03 ± 14.09 | 48.02 ± 12.65 |
Post-treatment (mean ± SD) | 32.65 ± 12.96 | 28.20 ± 7.95 | 44.85 ± 11.54 | |
Difference (95% C.I) | −15.18 (−22.68, −7.66) | −17.83 (−24.59, −11.07) | −3.17 (−9.79, 3.45) | |
p-value | 0.0001 | 0.0001 | 0.972 | |
FG (mg/dL) | Baseline (mean ± SD) | 169.95 ± 39.26 | 152.20 ± 57.75 | 138.00 ± 43.16 |
Post-treatment (mean ± SD) | 121.90 ± 29.20 | 112.45 ± 29.92 | 112.15 ± 16.58 | |
Difference (95% C.I) | −48.05 (−65.51, −30.59) | −39.75 (−57.83, −21.67) | −25.85 (−43.14, −8.56) | |
p-value | 0.0001 | 0.0001 | 0.0001 | |
2-h PPG2-h PPG(mg/dL) | Baseline (mean ± SD) | 316.00 ± 96.02 | 258.15 ± 57.74 | 225.25 ± 69.34 |
Post-treatment (mean ± SD) | 190.15 ± 37.62 | 169.70 ± 40.30 | 177.45 ± 40.76 | |
Difference (95% C.I) | −125.85 (−169.92, −81.78) | −88.45 (−114.80, −62.11) | −47.80 (−73.59, −22.01) | |
p-value | 0.0001 | 0.0001 | 0.001 | |
HbA1c (%) | Baseline (mean ± SD) | 8.97 ± 1.39 | 8.54 ± 1.50 | 7.98 ± 1.18 |
Post-treatment (mean ± SD) | 7.25 ± 0.42 | 7.40 ± 0.56 | 7.37 ± 0.43 | |
Difference (95% C.I) | −1.72 (−2.23, −1.21) | −1.14 (−1.65, −0.62) | −0.61 (−1.06, −0.17) | |
p-value | 0.0001 | 0.0001 | 0.0001 | |
HOMA-IR | Baseline (mean ± SD) | 7.25 ± 6.41 | 6.57 ± 6.22 | 6.23 ± 4.02 |
Post-treatment (mean ± SD) | 4.30 ± 3.19 | 3.31 ± 2.97 | 5.43 ± 2.52 | |
Difference (95% C.I) | −2.95 (−5.40, −0.47) | −3.26 (−5.75, −0.76) | −0.80 (−2.42, 0.65) | |
p-value | 0.02 | 0.01 | 0.262 | |
HOMA-B | Baseline (mean ± SD) | 65.26 ± 57.17 | 88.05 ± 56.41 | 98.99 ± 52.97 |
Post-treatment (mean ± SD) | 119.46 ± 103.55 | 107.59 ± 92.53 | 112.46 ± 68.92 | |
Difference (95% C.I) | 54.20 (4.88, 103.53) | 19.54 (−15.20, 54.29) | 13.47 (−26.38, 40.55) | |
p-value | 0.03 | 0.319 | 0.210 | |
Insulin (μIU/L) | Baseline (mean ± SD) | 17.36 ± 14.95 | 16.94 ± 11.73 | 17.78 ± 9.71 |
Post-treatment (mean ± SD) | 14.30 ± 9.76 | 11.61 ± 9.19 | 19.40 ± 8.62 | |
Difference (95% C.I) | −3.06 (−8.31, 2.20) | −5.33 (−10.70, 0.04) | 1.62 (−1.58, 4.81) | |
p-value | 0.238 | 0.051 | 0.304 | |
eGFR (mL/min/1.73m2) | Baseline (mean ± SD) | 86.01 ± 23.27 | 81.39 ± 19.42 | 97.25 ± 33.33 |
Post-treatment (mean ± SD) | 88.50 ± 27.37 | 90.98 ± 24.71 | 85.32 ± 28.23 | |
Difference (95% C.I) | 2.49 (−11.33, 16.30) | 9.95 (−1.74, 20.93) | −11.93 (−23.58, −0.28) | |
p-value | 0.710 | 0.092 | 0.045 |
Liver Segments | EMPA | UDCA | Placebo | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Post-Treatment | p-Value | Baseline | Post-Treatment | p-Value | Baseline | Post-Treatment | p-Value | |
I | 18.57 ± 9.52 | 10.64 ± 5.56 | 0.001 | 19.19 ± 8.58 | 20.72 ± 8.09 | 0.585 | 19.91 ± 8.87 | 19.18 ± 9.39 | 0.572 |
II | 23.83 ± 9.09 | 12.38 ± 5.28 | 0.0001 | 20.51 ± 6.97 | 17.57 ± 6.20 | 0.108 | 19.47 ± 8.72 | 17.34 ± 7.54 | 0.074 |
III | 20.59 ± 6.90 | 13.24 ± 5.30 | 0.0001 | 18.67 ± 8.17 | 20.92 ± 7.26 | 0.216 | 20.29 ± 8.19 | 17.72 ± 8.91 | 0.026 |
IVa | 23.16 ± 7.15 | 14.14 ± 6.08 | 0.0001 | 21.84 ± 8.07 | 21.51 ± 8.95 | 0.779 | 18.61 ± 8.83 | 17.58 ± 8.97 | 0.294 |
IVb | 20.84 ± 8.11 | 13.68 ± 7.97 | 0.001 | 19.89 ± 8.78 | 13.01 ± 7.90 | 0.048 | 19.49 ± 7.81 | 16.86 ± 7.78 | 0.051 |
V | 24.16 ± 9.82 | 14.25 ± 7.20 | 0.001 | 15.90 ± 5.95 | 10.58 ± 6.05 | 0.042 | 19.52 ± 8.44 | 17.58 ± 9.04 | 0.099 |
VI | 23.18 ± 8.72 | 13.02 ± 6.53 | 0.001 | 13.39 ± 5.09 | 14.71 ± 7.40 | 0.604 | 19.47 ± 7.07 | 17.26 ± 7.11 | 0.04 |
VII | 23.20 ± 7.89 | 12.20 ± 5.99 | 0.001 | 13.25 ± 4.69 | 13.56 ± 7.90 | 0.903 | 20.73 ± 6.49 | 19.11 ± 6.49 | 0.112 |
VIII | 22.37 ± 10.68 | 12.76 ± 6.80 | 0.002 | 19.34 ± 8.42 | 13.61 ± 7.07 | 0.017 | 19.59 ± 7.93 | 17.59 ± 7.57 | 0.003 |
Total LFC (%) | 21.54 ± 7.29 | 12.80 ± 5.40 | 0.0001 | 19.96 ± 6.58 | 14.24 ± 7.10 | 0.0001 | 19.91 ± 7.25 | 17.92 ± 7.62 | 0.006 |
∆ LFC (%) | EMPA | UDCA | Placebo | ||||
---|---|---|---|---|---|---|---|
Parameters | r | p-Value | r | p-Value | r | p-Value | |
∆ BMI | 0.082 | 0.730 | 0.067 | 0.779 | 0.474 | 0.035 | |
∆ FG | 0.163 | 0.491 | −0.004 | 0.988 | 0.341 | 0.141 | |
∆ 2-h PPG | 0.160 | 0.500 | −0.256 | 0.276 | 0.542 | 0.014 | |
∆ HbA1c | −0.59 | 0.806 | 0.113 | 0.636 | 0.128 | 0.590 | |
∆ HOMA-IR | 0.274 | 0.242 | 0.081 | 0.731 | 0.252 | 0.283 | |
∆ AST | −0.346 | 0.135 | −0.383 | 0.095 | −0.546 | 0.013 | |
∆ ALT | −0.258 | 0.272 | −0.195 | 0.410 | −0.296 | 0.206 | |
∆ Triglycerides | 0.403 | 0.057 | 0.037 | 0.876 | 0.193 | 0.416 | |
∆ LDL | 0.314 | 0.178 | 0.009 | 0.969 | −0.481 | 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhini, S.H.; Wahsh, E.A.; Elberry, A.A.; El Ameen, N.F.; Abdelfadil Saedii, A.; Refaie, S.M.; Elsayed, A.A.; Rabea, H.M. The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients. Pharmaceuticals 2022, 15, 1516. https://doi.org/10.3390/ph15121516
Elhini SH, Wahsh EA, Elberry AA, El Ameen NF, Abdelfadil Saedii A, Refaie SM, Elsayed AA, Rabea HM. The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients. Pharmaceuticals. 2022; 15(12):1516. https://doi.org/10.3390/ph15121516
Chicago/Turabian StyleElhini, Sahar H., Engy A. Wahsh, Ahmed A. Elberry, Nadia F. El Ameen, Ahmed Abdelfadil Saedii, Shereen Mahmoud Refaie, Asmaa A. Elsayed, and Hoda M. Rabea. 2022. "The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients" Pharmaceuticals 15, no. 12: 1516. https://doi.org/10.3390/ph15121516
APA StyleElhini, S. H., Wahsh, E. A., Elberry, A. A., El Ameen, N. F., Abdelfadil Saedii, A., Refaie, S. M., Elsayed, A. A., & Rabea, H. M. (2022). The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients. Pharmaceuticals, 15(12), 1516. https://doi.org/10.3390/ph15121516