Albumin-Based Zn (II)-Quercetin Enzyme Mimic Scavenging ROS for Protection against Cardiotoxicity Induced by Doxorubicin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Que NPs
2.2. Protection against DOX-Induced Oxidative Stress In Vitro
2.3. Protection against DOX-Induced Oxidative Stress In Vivo
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.J.; Wu, S.S.; Chen, X.M.; Pi, J.K.; Cheng, Y.F.; Zhang, Y.; Wang, X.J.; Luo, D.; Zhou, J.H.; Xu, J.Y.; et al. Saikosaponin D Alleviates DOX-induced Cardiac Injury In Vivo and In Vitro. J. Cardiovasc. Pharmacol. 2022, 79, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Luo, C.; Gao, H.; Du, S.; Shi, J.; Wang, F. A Dual pH-Responsive DOX-Encapsulated Liposome Combined with Glucose Administration Enhanced Therapeutic Efficacy of Chemotherapy for Cancer. Int. J. Nanomed. 2021, 16, 3185–3199. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shang, P.; Yu, B.; Jin, Q.; Liao, J.; Wang, L.; Ji, J.; Guo, X. Combination therapy with miR34a and doxorubicin synergistically inhibits Dox-resistant breast cancer progression via down-regulation of Snail through suppressing Notch/NF-κB and RAS/RAF/MEK/ERK signaling pathway. Acta Pharm. Sin. B 2021, 11, 2819–2834. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ma, W.; Zhao, D.; Li, J.; Li, Q.; Liu, Y.; Hao, L.; Lin, Y. Enhanced Penetrability of a Tetrahedral Framework Nucleic Acid by Modification with iRGD for DOX-Targeted Delivery to Triple-Negative Breast Cancer. ACS Appl. Mater. Interfaces 2021, 13, 25825–25835. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, F.; Liu, Y.; Xu, S.; Shen, Y.; Feng, N.; Guo, S. Glutathione detonated and pH responsive nano-clusters of Au nanorods with a high dose of DOX for treatment of multidrug resistant cancer. Acta Biomater. 2018, 75, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, A.; Ramazani, A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J. Control. Release 2020, 327, 198–224. [Google Scholar] [CrossRef]
- Khan, M.; Boumati, S.; Arib, C.; Thierno Diallo, A.; Djaker, N.; Doan, B.T.; Spadavecchia, J. Doxorubicin (DOX) Gadolinium-Gold-Complex: A New Way to Tune Hybrid Nanorods as Theranostic Agent. Int. J. Nanomed. 2021, 16, 2219–2236. [Google Scholar] [CrossRef]
- Che, Y.; Wang, Z.; Yuan, Y.; Zhou, H.; Wu, H.; Wang, S.; Tang, Q. By restoring autophagic flux and improving mitochondrial function, corosolic acid protects against Dox-induced cardiotoxicity. Cell Biol. Toxicol. 2022, 38, 451–467. [Google Scholar] [CrossRef]
- Cao, H.; Yi, M.; Wei, H.; Zhang, S. Construction of Folate-Conjugated and pH-Responsive Cell Membrane Mimetic Mixed Micelles for Desirable DOX Release and Enhanced Tumor-Cellular Target. Langmuir 2022, 38, 9546–9555. [Google Scholar] [CrossRef]
- Abdelghffar, E.A.; Obaid, W.A.; Elgamal, A.M.; Daoud, R.; Sobeh, M.; El Raey, M.A. Pea (Pisum sativum) peel extract attenuates DOX-induced oxidative myocardial injury. Biomed. Pharmacother. 2021, 143, 112120. [Google Scholar] [CrossRef]
- Yue, T.; Xiong, S.; Zheng, D.; Wang, Y.; Long, P.; Yang, J.; Danzeng, D.; Gao, H.; Wen, X.; Li, X.; et al. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front. Bioeng. Biotechnol. 2022, 10, 988683. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Liu, C.; Chung, M.; Wang, X.; Bienvenu, L.A.; Beck, D.; Figtree, G.; Boyle, A.; Gentile, C. Biofabrication of advancedin vitro3D models to study ischaemic and doxorubicin-induced myocardial damage. Biofabrication 2022, 14, 025003. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Shen, Z.; Li, P.; Chen, Z.; Wei, B.; Liu, D.; Si, X.; Pan, J.; Wu, D.; Li, W. Protective activity of Malus doumeri leaf extract on H(2)O(2)-induced oxidative injury in H9C2 rat cardiomyocytes. Front. Cardiovasc. Med. 2022, 9, 1005306. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, R.; Peng, X.; Wang, X.; Liu, X.; Li, L.; Bai, R.; Wen, S.; Ruan, Y.; Chang, X.; et al. The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. Oxid. Med. Cell Longev. 2022, 2022, 3659278. [Google Scholar] [CrossRef]
- Hassan, M.Q.; Akhtar, M.S.; Afzal, O.; Hussain, I.; Akhtar, M.; Haque, S.E.; Najmi, A.K. Edaravone and benidipine protect myocardial damage by regulating mitochondrial stress, apoptosis signalling and cardiac biomarkers against doxorubicin-induced cardiotoxicity. Clin. Exp. Hypertens. 2020, 42, 381–392. [Google Scholar] [CrossRef]
- Deng, G.; Chen, C.; Zhang, J.; Zhai, Y.; Zhao, J.; Ji, A.; Kang, Y.; Liu, X.; Dou, K.; Wang, Q. Se@SiO(2) nanocomposites attenuate doxorubicin-induced cardiotoxicity through combatting oxidative damage. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S2), 112–121. [Google Scholar] [CrossRef] [Green Version]
- Motiño, O.; Lambertucci, F.; Anagnostopoulos, G.; Li, S.; Martins, I.; Kroemer, G. Cardio-, hepato- and pneumoprotective effects of autophagy checkpoint inhibition by targeting DBI/ACBP. Autophagy 2022, 1–3, 2131241. [Google Scholar] [CrossRef]
- Redfors, B.; Shao, Y.; Råmunddal, T.; Lindbom, M.; Täng, M.S.; Stillemark-Billton, P.; Boren, J.; Omerovic, E. Effects of doxorubicin on myocardial expression of apolipoprotein-B. Scand. Cardiovasc. J. 2012, 46, 93–98. [Google Scholar] [CrossRef]
- Eitah, H.E.; Maklad, Y.A.; Abdelkader, N.F.; Gamal El Din, A.A.; Badawi, M.A.; Kenawy, S.A. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicol. Appl. Pharmacol. 2019, 365, 30–40. [Google Scholar] [CrossRef]
- Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci. 2019, 224, 109–119. [Google Scholar] [CrossRef]
- Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Li, X.; Huang, G.; Xu, A. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem. 2020, 84, 108454. [Google Scholar] [CrossRef] [PubMed]
- Gomhor, J.A.H.; Kashanian, S.; Rafipour, R.; Mahdavian, E.; Mansouri, K. Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against MCF-7 breast cancer cells. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S3), S847–S854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassemi, A.; Kashanian, S.; Zhaleh, H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm. Dev. Technol. 2020, 25, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, H.; Shen, D.; Wang, Z.; Liu, H.; Zhu, D.; Wang, Z.; Li, L.; Popowski, K.D.; Ou, C.; et al. Decoy Exosomes Offer Protection Against Chemotherapy-Induced Toxicity. Adv. Sci. 2022, 9, e2203505. [Google Scholar] [CrossRef]
- Ibrahim, N.K.; Desai, N.; Legha, S.; Soon-Shiong, P.; Theriault, R.L.; Rivera, E.; Esmaeli, B.; Ring, S.E.; Bedikian, A.; Hortobagyi, G.N.; et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 2002, 8, 1038–1044. [Google Scholar]
- Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 2009, 4, 99–105. [Google Scholar]
- Li, D.L.; Wang, Z.V.; Ding, G.; Tan, W.; Luo, X.; Criollo, A.; Xie, M.; Jiang, N.; May, H.; Kyrychenko, V.; et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation 2016, 133, 1668–1687. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cheng, X.; Xing, J.; Li, J.; Li, Z.; Jian, D.; Wang, Y.; Wang, S.; Li, R.; Zhang, W.; et al. CIRBP-OGFR axis safeguards against cardiomyocyte apoptosis and cardiotoxicity induced by chemotherapy. Int. J. Biol. Sci. 2022, 18, 2882–2897. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Z.; Li, R.; Shao, D.; Tang, H.; Han, Y. Albumin-Based Zn (II)-Quercetin Enzyme Mimic Scavenging ROS for Protection against Cardiotoxicity Induced by Doxorubicin. Pharmaceuticals 2022, 15, 1524. https://doi.org/10.3390/ph15121524
Shao Z, Li R, Shao D, Tang H, Han Y. Albumin-Based Zn (II)-Quercetin Enzyme Mimic Scavenging ROS for Protection against Cardiotoxicity Induced by Doxorubicin. Pharmaceuticals. 2022; 15(12):1524. https://doi.org/10.3390/ph15121524
Chicago/Turabian StyleShao, Zehua, Ran Li, Dongxing Shao, Hao Tang, and Yu Han. 2022. "Albumin-Based Zn (II)-Quercetin Enzyme Mimic Scavenging ROS for Protection against Cardiotoxicity Induced by Doxorubicin" Pharmaceuticals 15, no. 12: 1524. https://doi.org/10.3390/ph15121524
APA StyleShao, Z., Li, R., Shao, D., Tang, H., & Han, Y. (2022). Albumin-Based Zn (II)-Quercetin Enzyme Mimic Scavenging ROS for Protection against Cardiotoxicity Induced by Doxorubicin. Pharmaceuticals, 15(12), 1524. https://doi.org/10.3390/ph15121524