Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Anti-Diabetic Assays
3.4.1. Cell Culture
3.4.2. GLP-1 Secretion
3.4.3. DPP-IV Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 25 August 2020).
- Health Promotion Administration, Ministry of Health and Welfare. The Information about the Diabetes Patients in Taiwan. Available online: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359 (accessed on 25 August 2020).
- Coughlin, S.S.; Calle, E.E.; Teras, L.R.; Petrelli, J.; Thun, M.J. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am. J. Epidemiol. 2004, 159, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yeung, S.C.; Hassan, M.M.; Konopleva, M.; Abbruzzese, J.L. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 2009, 137, 482–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covington, M.B. Traditional Chinese Medicine in the treatment of diabetes. Diabetes Spectr. 2001, 14, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Kim, M.J.; Kwon, D.Y.; Kim, D.S.; Lee, Y.H.; Kim, J.E.; Park, S. Anti-diabetic activities of Gastrodia elata Blume water extracts are mediated mainly by potentiating glucose-stimulated insulin secretion and increasing β-cell mass in non-obese type 2 diabetic animals. Nutrients 2016, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.C.; Young, P.H.; Hsu, Y.J.; Chen, C.H.; Tien, Y.J.; Shiu, S.Y.; Li, T.H.; Yang, C.W.; Marimuthu, P.; Tsai, L.F.; et al. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry 2009, 70, 1246–1254. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, X.; Liu, Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int. J. Biol. Macromol. 2017, 102, 396–404. [Google Scholar] [CrossRef]
- Nash, R.J.; Kato, A.; Yu, C.-Y.; Fleet, G.W.J. Iminosugars as therapeutic agents: Recent advances and promising trends. Future Med. Chem. 2011, 3, 1513–1521. [Google Scholar] [CrossRef]
- Yang, L.-F.; Shimadate, Y.; Kato, A.; Li, Y.-X.; Jia, Y.-M.; Fleet, G.W.J.; Yu, C.-Y. Synthesis and glycosidase inhibition of N-substituted derivatives of DIM. Org. Biomol. Chem. 2020, 18, 999–1011. [Google Scholar] [CrossRef]
- Chennaiah, A.; Dahiya, A.; Dubbu, S.; Vankar, Y.D. A stereoselective synthesis of an imino glycal: Application in the synthesis of (−)-1-epi-adenophorine and a homoiminosugar. Eur. J. Org. Chem. 2018, 2018, 6574–6581. [Google Scholar] [CrossRef]
- Chennaiah, A.; Bhowmick, S.; Vankar, Y.D. Conversion of glycals into vicinal-1,2-diazides and 1,2-(or 2,1)-azidoacetates using hypervalent iodine reagents and Me3SiN3. Application in the synthesis of N-glycopeptides, pseudo-trisaccharides and an iminosugar. RSC Adv. 2017, 7, 41755–41762. [Google Scholar] [CrossRef]
- Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of (5,6 & 6,6)-oxa-oxa annulated sugars as glycosidase inhibitors from 2-formyl galactal using iodocyclization as a key step. ARKIVOC 2022, 2022, 5–23. [Google Scholar]
- Green, B.D.; Liu, H.K.; McCluskey, J.T.; Duffy, N.A.; O’Harte, F.P.; McClenaghan, N.H.; Flatt, P.R. Function of a long-term, GLP-1-treated, insulin-secreting cell line is improved by preventing DPP IV-mediated degradation of GLP-1. Diabetes Obes. Metab. 2005, 7, 563–569. [Google Scholar] [CrossRef]
- Ahmed, I.; Islam, R.; Sikder, M.A.A.; Haque, M.R.; Al Mansur, M.A.; Rashid, M.A. Alkaloid, sterol and triterpenoids from Glycosmis pentaphylla (Retz.) DC. Dhaka Univ. J. Pharm. Sci. 2014, 13, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Do, H.B.; Dang, Q.C.; Bui, X.C.; Nguyen, T.D.; Do, T.D.; Pham, V.H.; Vu, N.L.; Pham, D.M.; Pham, K.M.; Doan, T.N.; et al. Medicinal Plants and Medicinal Animals in Vietnam Episode 1 (Cây thuốc và động vật làm thuốc ở Việt Nam tập 1); Science and Technology Press: Hanoi, Vietnam, 2006; p. 541. [Google Scholar]
- Colegate, S.M.; Din, L.B.; Latiff, A.; Salleh, K.M.; Samsudin, M.W.; Skelton, B.W.; Tadano, K.; White, A.H.; Zakaria, Z. (+)-Isoaltholactone: A furanopyrone isolated from Goniothalamus species. Phytochemistry 1990, 29, 1701–1704. [Google Scholar] [CrossRef]
- Prasad, K.R.; Gholap, S.L. Stereoselective total synthesis of bioactive styryllactones (+)-goniofufurone, (+)7-epi-goniofufurone, (+)-goniopypyrone, (+)-goniotriol, (+)-altholactone, and (−)-etharvensin. J. Org. Chem. 2008, 73, 2–11. [Google Scholar] [CrossRef]
- Cavalheiro, A.J.; Yoshida, M. 6-[ω-Arylalkenyl]-5,6-dihydro-α-pyrones from Cryptocarya moschata (Lauraceae). Phytochemistry 2000, 53, 811–819. [Google Scholar] [CrossRef]
- Sharada, A.; Rao, K.L.S.; Yadav, J.S.; Rao, T.P.; Nagaiah, K. First stereoselective synthesis of (6R,7R,8S)-8-chlorogoniodiol. Synthesis 2017, 49, 2483–2487. [Google Scholar] [CrossRef]
- Lan, Y.H.; Chang, F.R.; Yu, J.H.; Yang, Y.L.; Chang, Y.L.; Lee, S.J.; Wu, Y.C. Cytotoxic styrylpyrones from Goniothalamus amuyon. J. Nat. Prod. 2003, 66, 487–490. [Google Scholar] [CrossRef]
- Yoshida, T.; Yamauchi, S.; Tago, R.; Maruyama, M.; Akiyama, K.; Sugahara, T.; Kishida, T.; Koba, Y. Syntheses of all stereoisomers of goniodiol from yeast-reduction products and their antimicrobiological activity. Biocis. Biotechnol. Biochem. 2008, 29, 2342–2352. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, P.V.; Chandra, J.S.; Ram Reddy, M.V. Stereoselective syntheses of (+)-goniodiol, (−)-8-epigoniodiol, and (+)-9-deoxygoniopypyrone via alkoxyallylboration and ring-closing metathesis. J. Org. Chem. 2002, 67, 7547–7550. [Google Scholar] [CrossRef]
- Ramesh, P.; Rao, T.P. Biosynthesis-inspired total synthesis of bioactive styryllactones (+)-goniodiol, (6S,7S,8S)-goniodiol, (−)-parvistone D, and (+)-parvistone E. J. Nat. Prod. 2016, 79, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Tai, B.H.; Huyen, V.T.; Huong, T.T.; Nhiem, N.X.; Choi, E.M.; Kim, J.A.; Long, P.Q.; Cuong, N.M.; Kim, Y.H. New pyrano-pyrone from Goniothalamus tamirensis enhances the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Chem. Pharm. Bull. 2010, 58, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra Rao, D.; Shekhar, V.; Kumar Reddy, D.; Chinnababu, B.; Venkateswarlu, Y. Concise stereoselective total synthesis of leiocarpin C. Helv. Chim. Acta 2013, 96, 2179–2184. [Google Scholar] [CrossRef]
- Tanaka, H.; Woong Ahn, J.; Katayama, M.; Wada, K.; Marumo, S.; Osaka, Y. Isolation of two ovicidal substances against two-spotted spider mite, Tetranychus urticae Koch, from Skimmia repens Nakai. Agric. Biol. Chem. 1985, 49, 2189–2190. [Google Scholar] [CrossRef]
- Schuster, C.; Roennefahrt, M.; Julich-Gruner, K.K.; Jaeger, A.; Schmidt, A.W.; Knoelker, H.J. Synthesis of the pyrano[3,2-a]carbazole alkaloids koenine, koenimbine, koenigine, koenigicine, and structural reassignment of mukonicine. Synthesis 2016, 48, 150–160. [Google Scholar]
- Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K. Carbazole alkaloids from roots of Glycosmis arborea. Phytochemistry 1999, 50, 1263–1266. [Google Scholar] [CrossRef]
- Mahindroo, N.; Connelly, M.C.; Punchihewa, C.; Kimura, H.; Smeltzer, M.P.; Wu, S.; Fujii, N. Structure-activity relationships and cancer-cell selective toxicity of novel inhibitors of glioma-associated oncogene homologue 1 (Gli1) mediated transcription. J. Med. Chem. 2009, 52, 4277–4287. [Google Scholar] [CrossRef] [Green Version]
- Zarecki, A.P.; Kolanowski, J.L.; Markiewicz, W.T. Microwave-assisted catalytic method for a green synthesis of amides directly from amines and carboxylic acids. Molecules 2020, 25, 1761. [Google Scholar] [CrossRef]
- Itokawa, H.; Morita, M.; Mihashi, S. Phenolic compounds from the rhizomes of Alpinia speciosa. Phytochemistry 1981, 20, 2503–2506. [Google Scholar] [CrossRef]
- Seidel, V.; Bailleul, F.; Waterman, P.G. (Rel)-1β,2α-di-(2,4-dihydroxy-6-methoxybenzoyl)-3β,4α-di-(4-methoxyphenyl)-cyclobutane and other flavonoids from the aerial parts of Goniothalamus gardneri and Goniothalamus thwaitesii. Phytochemistry 2000, 55, 439–446. [Google Scholar] [CrossRef]
- Somsrisa, J.; Meepowpan, P.; Krachodnok, S.; Thaisuchat, H.; Punyanitya, S.; Nantasaen, N.; Pompimon, W. Dihydrochalcones with antiinflammatory activity from leaves and twigs of Cyathostemma argenteum. Molecules 2013, 18, 6898–6907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuy, T.T.; Porzel, A.; Ripperger, H.; Van Sung, T.; Adam, G. Chalcones and ecdysteroids from Vitex leptobotrys. Phytochemistry 1998, 49, 2603–2605. [Google Scholar] [CrossRef]
- Zenger, K.; Agnolet, S.; Schneider, B.; Kraus, B. Biotransformation of flavokawains A, B, and C, chalcones from Kava (Piper methysticum), by human liver microsomes. J. Agric. Food Chem. 2015, 63, 6376–6385. [Google Scholar] [CrossRef]
- Wu, T.S.; Chang, F.C.; Wu, P.L. Flavonoids, amidosulfoxides and an alkaloid from the leaves of Glycosmis citrifolia. Phytochemistry 1995, 39, 1453–1457. [Google Scholar] [CrossRef]
- Hinterberger, S.; Hofer, O.; Greger, H. Synthesis and corrected structures of sulphur-containing amides from Glycosmis species: Sinharines, penimides, and illukumbins. Tetrahedron 1994, 50, 6279–6286. [Google Scholar] [CrossRef]
- Kijjoa, A.; Bessa, J.; Pinto, M.M.; Anatachoke, C.; Silva, A.M.; Eaton, G.; Herz, W. Polyoxygenated cyclohexene derivatives from Ellipeiopsis cherrevensis. Phytochemistry 2002, 59, 543–549. [Google Scholar] [CrossRef]
- Conde, S.; López-Serrano, P. Regioselective lipase-catalysed amidation of N-blocked L-and D-aspartic acid diesters. Eur. J. Org. Chem. 2002, 2002, 922–929. [Google Scholar] [CrossRef]
- Pudlo, M.; Csányi, D.; Moreau, F.; Hajós, G.; Riedl, Z.; Sapi, J. First Suzuki–Miyaura type cross-coupling of ortho-azidobromobenzene with arylboronic acids and its application to the synthesis of fused aromatic indole-heterocycles. Tetrahedron 2007, 63, 10320–10329. [Google Scholar] [CrossRef]
- Sathyanarayana, A.R.; Lu, C.-K.; Liaw, C.-C.; Chang, C.-C.; Han, H.-Y.; Green, B.D.; Huang, W.-J.; Huang, C.; He, W.-D.; Lee, L.-C.; et al. 1,2,3,4,6-Penta-O-galloyl-d-glucose interrupts the early adipocyte lifecycle and attenuates adiposity and hepatic steatosis in mice with diet-induced obesity. Int. J. Mol. Sci. 2022, 23, 4052. [Google Scholar] [CrossRef]
No. | 1 | |
---|---|---|
δH (Mult, J in Hz) | δC, Type | |
1 | – | 140.2, C |
2 | 7.39, m | 125.6, CH |
3 | 7.36, m | 128.5, CH |
4 | 7.29, m | 127.8, CH |
5 | 7.36, m | 128.5, CH |
6 | 7.39, m | 125.6, CH |
7 | 5.00, d (5.6) | 84.0, CH |
8 | 4.16, t (5.0) | 78.7, CH |
9 | 4.60, t (5.0) | 73.7, CH |
10 | 5.65, ddd (6.5, 5.6, 1.8) | 79.0, CH |
11 | 6.46, dd (11.8, 6.5) | 148.2, CH |
12 | 6.00, dd (11.8, 1.8) | 120.9, CH |
13 | – | 167.2, C |
1′ | 4.15, t (5.0) | 64.8, CH2 |
2′ | 1.66, m | 30.6, CH2 |
3′ | 1.40, m | 19.1, CH2 |
4′ | 0.95, t (7.5) | 13.6, CH3 |
No. | 2 | |
---|---|---|
δH (Mult, J in Hz) | δC, Type | |
1 | – | 134.4, C |
2 | 7.37, m | 128.9, CH |
3 | 7.29, m | 129.3, CH |
4 | 7.31, m | 127.4, CH |
5 | 7.29, m | 129.3, CH |
6 | 7.37, m | 128.9, CH |
7 | 3.62, s | 43.6, CH2 |
8 | – | 170.7, C |
1′ | – | 170.5, C |
2′ | 4.83, m | 48.6, CH |
3′ | 2.82, dd (17.0, 4.6) | 36.2, CH2 |
3.00, dd (17.0, 4.3) | ||
4′ | – | 170.8, C |
1″ | 4.19, q (7.1) | 61.8, CH2 |
2″ | 1.24, t (7.1) | 14.0, CH3 |
1‴ | 4.02, t (7.1) | 64.9, CH2 |
2‴ | 1.54, m | 30.4, CH2 |
3‴ | 1.33, m | 19.0, CH2 |
4‴ | 0.93, t (7.4) | 13.6, CH3 |
NH | 6.46, d (7.6) | – |
No. | 3 | |
---|---|---|
δH (Mult, J in Hz) | δC, Type | |
1 | 6.83, s | 96.8, CH |
1a | – | 139.6, C |
2 | – | 152.5, C |
3 | – | 116.2, C |
4 | 7.67, s | 121.4, CH |
4a | – | 117.8, C |
5 | 7.56, d (8.5) | 114.3, CH |
5a | – | 119.5, C |
6 | 6.84, d (8.5) | 106.2, CH |
7 | – | 149.4, C |
8 | – | 133.7, C |
8a | – | 134.0, C |
2-OH | 7.94, br s | – |
3-Me | 2.39, s | 16.1, CH3 |
7-OMe | 3.96, s | 56.9, CH3 |
8-OMe | 4.00, s | 60.9, CH3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.T.; Hsu, I.-C.; Liu, H.-K.; Lin, Y.-C.; Chen, S.-R.; Chang, F.-R.; Cheng, Y.-B. Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam. Pharmaceuticals 2022, 15, 1543. https://doi.org/10.3390/ph15121543
Nguyen MTT, Hsu I-C, Liu H-K, Lin Y-C, Chen S-R, Chang F-R, Cheng Y-B. Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam. Pharmaceuticals. 2022; 15(12):1543. https://doi.org/10.3390/ph15121543
Chicago/Turabian StyleNguyen, Minh Tuyet Thi, I-Chi Hsu, Hui-Kang Liu, Yu-Chi Lin, Shu-Rong Chen, Fang-Rong Chang, and Yuan-Bin Cheng. 2022. "Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam" Pharmaceuticals 15, no. 12: 1543. https://doi.org/10.3390/ph15121543
APA StyleNguyen, M. T. T., Hsu, I. -C., Liu, H. -K., Lin, Y. -C., Chen, S. -R., Chang, F. -R., & Cheng, Y. -B. (2022). Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam. Pharmaceuticals, 15(12), 1543. https://doi.org/10.3390/ph15121543