The Hidden Pandemic of COVID-19-Induced Organizing Pneumonia
Abstract
:1. Introduction
2. Time-Dependent Epidemiology of Post-COVID-19 Organizing Pneumonia (PCOP)
3. Pathogenesis and Clinical Manifestation of Post-Infection OP (PIOP)
4. Pharmacological Management and Outcomes in PIOP
4.1. OP Management with Oral Corticosteroid
Treatment or Intervention | Study Design (Status) | Enrollment and Key Inclusion Criteria (DLCO Impairment|CT Abnormalities|Inflammation|Respiratory Symptoms|Time since COVID-19) | Objectives | |
---|---|---|---|---|
Anti-inflammatory therapy | Methylprednisolone PO 0.5 mg/kg QD/1 mth (NCT04988282) [132] | MC, RCT, Ph 4 (RECRUTING) | 642 patients in 2 groups (+ | + | − | + | ≥30 d) | Primary: % of pts with mMRC = 0, FVC and CT imprv Secondary: % CT improvement, DLCO, FVC, SaO2, 6MWD |
Prednisone PO 20 mg QD/14 d (NCT04551781) [133] | SC, SBRCT (COMPLETED) | 450 patients in 2 groups (− | + | − | −) | Primary: improved resolution of CT infiltrates, <5%, 5–25%, and >25% infiltrates | |
Prednisone PO QD/6 wk 1, PO 10 mg QD/6 wk (NCT04657484) [134] | SC, RCT (COMPLETED) | 130 patients in 2 groups (+ | + | − | + | 3–8 wk) | Primary: % of pts with ≥90% CT improvement Secondary: CT improvement (>50%, but <90%), FVC, SpO2, dyspnea score (mMRC), 1 m STS, 6MWD, KBILD, SF-36 | |
Prednisone PO QD/24 wk 2, PO QD/12 wk 3, (NCT04534478) [135] | SC, RCT, Ph 4 (NOT YET RECRUITING) | 120 pts in 2 groups (ratio 1:1) (+ | + | − | +) | Primary: change in DLCO Secondary: % of pts with DLCO <80%, 6MWD, CT, complications, mortality | |
Montelukast PO 10 mg QD/1 mth (NCT04695704) [136] | MC, DBRCT, Ph 3 (RECRUITING) | 284 pts in 2 groups (− | − | CRP | mMRC | 1–12 mth) | Primary: COPD Assessment Test Scale Secondary: 1 min sit-to-stand test; O2 desaturation; VAS; mortality; etc. | |
Treamid PO 50 mg QD/1 mth (NCT04527354) [137] | MC, DBRCT, Ph 2 (COMPLETED) | 60 pts in 2 groups (ratio 1:1) (DLCO < 80% | + | − | mMRC | 2–8 wk) | Primary: % pts with FVC and/or DLCO improvement Secondary: change in 6MWD, mBDS, mMRC, FEV1, FVC, FEV1/FVC, DLCO, TLC, FRC, KBILD, rate of reduction in the lung damage (CT) | |
Treamid PO 50 mg QD/1 mth (NCT05516550) [138] | DBRCT, Ph 2/3 (NOT YET RECRUITING) | 412 pts in 4 groups (ratio 1:1:1:1) (DLCO < 80% | >10% | − | mMRC | 1–3 mth) | Primary: % of pts with CT and 6MWT improvement Secondary: frequency of clinically significant change in DLCO, rate of clinically significant recovery of exercise tolerance (Borg, BDI/TDI, MFIS scores) | |
Colchicine PO 0.5 mg BID/3 wk (NCT04818489) [139] | SC, SBRCT, Ph 4 (COMPLETED) | 260 pts in 2 groups (− | + | − | − | −) | Primary: % of participants with fibrosis Secondary: FVC and FEV1, C-reactive protein, ferritin, erythrocyte sedimentation rate, LDH | |
BIO 300 (genistein) PO 1500 mg QD/3 mth (NCT04482595) [140] | MC, DBRCT, Ph 2 (RECRUITING) | 66 pts in 2 groups (ratio 1:1) (− | + | + | + | <12) | Primary: RAND 36 score Secondary: change in RHI, 6MWD, 30/60 sec chair stand | |
Antifibrotic therapy | Nintedanib PO 150 mg BID/12 mth (NCT04541680) [141] | SC, DBRCT, Ph 3 (RECRUITING) | 250 pts in 2 groups (DLCO < 70% | ≥10% | − | − | −) | Primary: change in FVC Secondary: DLCO, HRCT, Dyspnea, Biomarker assay (KL-6, NT-proBNP, CRP, D-dimers), etc. |
Nintedanib PO 150 mg BID/6 mth (NCT04619680) [142] | MC, DBRCT, Ph 4 (RECRUITING) | 170 pts in 2 groups (ratio 1:1) (DLCO < 80% | + | − | − |1 mth) | Primary: change in FVC Secondary: HRCT, SGRQ, KBILD, LCQ, etc. | |
Nintedanib PO 150 mg BID/2 mth (NCT04338802) [143] | RCT, Ph 2 (UNKNOWN STATUS) | 96 pts in 2 groups (− | + | − | − | −) | Primary: change in FVC Secondary: DLCO, CT, 6MWT | |
Nintedanib PO 150 mg BID/6 mth (NCT04856111) [144] | SC, SBRCT, Ph 4 (ACTIVE, NOT RECRUITING) | 48 pts in 2 groups (− | ≥10% | − | − | ≤4 mth) | Primary: change in FVC Secondary: % of pts with composite response (mMRC score < 2, FVC ↑, improvement in SaO2 >92%); mMRC score, 6MWD, SaO2, HRCT scores, SF-36 score, KBILD score; FACIT-Dyspnea-10 scale; etc. | |
Pirfenidone 2400 mg QD/6 mth (NCT04856111) [144] | ||||
LYT-100 PO BID/3 mth (NCT04652518) [145] | MC, DBRCT, Ph 2 (COMPLETED) | 185 pts in 2 groups (− | + | − | mMRC | −) | Primary: change in 6MWD Secondary: change in Dyspnoea-12, SGRQ-I and mBDS scores, SF-36 score assessment | |
Fuzheng Huayu PO 1600 mg TID/3 mth (NCT04279197) [146] | SC, DBRCT, Ph 2 (COMPLETED) | 142 pts in 2 groups (− | + | + | − | ≥1 wk) | Primary: % of pulmonary fibrosis and FVC impairment Secondary: 6MWD, % of pulmonary inflammation, clinical symptoms, QOL-BREF, PHQ-9, and GAD-7 | |
Hypoxemia Management | S-1226 inh 240 kPa for 90 min (NCT04842448) [147] | DBRCT, Ph 2 (NOT YET RECRUITING) | 48 pts in 2 groups (ratio 1:1) (− | − | − | + | ≥ 1 mth) | Primary: safety and tolerability Secondary: resp. symptoms (cough, breathlessness, 6MWD) and lung function (FEV1, SGRQ, FVC, DLCO, SpO2, mMRC, RPE, VAS) |
HBO2 inh 3–4 min BID/1 wk (NCT04949386) [148] | SC, DBRCT, Ph 2 (RECRUITING) | 80 pts in 2 groups (ratio 1:1) (− | − | − | + | ≥ 3 mth) | Primary: RAND 36 score Secondary: change in RHI, 6MWD, 30/60 sec chair stand | |
Ozone plasma (NCT05089305) [149] | MC, Non-RT, Ph 2 (ENROLLING BY INVITATION) | 35 pts in 1 group (− | + | − | + | −) | Primary: TLco, 6MWT and inflammation (CRP, TNFa, IL6) Secondary: EQ-5D and mMRC, CRP, D-dimer, etc. | |
Cell therapy | ExoFlo IV at Day 0, 2, 4 (NCT05116761) [150] | DBRCT, Ph 1/2 (NOT YET RECRUITING) | 60 pts in 2 groups (− | − | − | + | 1–5 mth) | Primary: increased 6MWD Secondary: EQ-5D and MRC scores, levels of C-reactive protein, D-dimer, atrial natriuretic peptides |
COVI-MSC IV at Day 0, 2, 4 (NCT04992247) [151] | DBRCT, Ph 2 (NOT YET RECRUITING) | 60 pts in 2 groups (− | − | − | + | ≥ 3 mth) | Primary: change in 6MWD Secondary: change in 6MWD, pulmonary function, SpO2, etc. | |
MON002 Single infusion (NCT04805086) [152] | SC, Non-RT, Ph 1/2 (RECRUITING) | 5 pts in 1 group (− | + | − | + | −) | Primary: safety profile Secondary: change in FVC and TLCO; % of FVC ↓; time to ≥10% decrease in FVC; etc. |
4.2. Anti-Inflammatory Therapy in Clinical Trials
4.3. Antifibrotic Therapy in the Management of OP-like PCPS
4.4. Hypoxemia and Pulmonary Hypertension as PCPS Targets
4.5. Cell Therapy in the Management of OP-like PCPS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6MWD | Distance Walked in a 6 Min Walk Test |
ASA | American Society of Anesthesiologists |
COVID: COVID-19 | Coronavirus-Induced Disease 2019 |
CRP | C-reactive Protein |
CT | Computed Tomography |
DBRCT | Double-blind Randomized Clinical Trials |
DLCO | Diffusing Capacity of the Lungs for Carbon Monoxide |
ECM | Extracellular Matrix |
EQ-5D | EuroQol-5 Dimensions Questionnaire |
FACIT-Dyspnea-10 | Functional Assessment of Chronic Illness Therapy–Dyspnea Questionnaire–10 items |
FEV1 | Forced Expiratory Volume in 1 s |
FGF | Fibroblast Growth Factor |
FVC | Forced Vital Capacity |
GAD-7 | General Anxiety Disorder-7 score |
GGO | Ground-Glass Opacity |
HRV | Heart Rate Variability |
ICD-10 | 10th revision of the International Statistical Classification of Diseases and Related Health Problems |
ICU | Intensive Care Unit |
IL-1 | Interleukin 1 |
IL-1β | Interleukin 1β |
IL-6 | Interleukin 6 |
IL-8 | Interleukin 8 |
IL-10 | Interleukin 10 |
IL-13 | Interleukin 13 |
IL-2R | Interleukin-2 Receptor |
IPF | Idiopathic Pulmonary Fibrosis |
KBILD | King’s Brief ILD Questionnaire |
LPS | Lipopolysaccharide |
mBDS | Modified Borg Dyspnea Scale |
MC | Multicenter |
MMF | Mycophenolate Mofetil |
mMRC | Modified Medical Research Council |
NALRP3 | Cryopyrin |
NF-KB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
Non-RCT | Nonrandomized Controlled Trial |
Non-RT | Nonrandomized Trial |
OP | Organizing Pneumonia |
PBMC | Peripheral Blood Mononuclear Cell |
PCOP | Post-COVID-19 Organizing Pneumonia |
PCPS | Post-COVID-19 Pulmonary Sequelae |
PDGF | Platelet-Derived Growth Factor |
PHQ-9 | Patient Health Questionnaire-9 |
PIOP | Postinfection Organizing Pneumonia |
QD | Once-a-Day |
QOL-BREF | Quality of Life-BREF Score |
RAND 36 | Rand 36-item Health Survey |
RCT | Randomized Controlled Trial |
RHI | Reactive Hyperemia Index |
ROS | Reactive Oxygen Species |
RPE | Borg Rating of Perceived Exertion |
RR | Risk Ratio |
SARS | Severe Acute Respiratory Syndrome |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
SBRCT | Single-blind Randomized Clinical Trials |
SC | Single Center |
SF-36 | Thirty-Six-Item Short-Form Health Survey questionnaire |
SGRQ | the St. George’s Respiratory Questionnaire scale |
SpO2 | Oxygen Saturation |
TGF-β | Tumor Necrosis Factor Beta |
TLC | Total Lung Capacity |
TLCO | Transfer Capacity of the Lung |
TNF-α | Tumor Necrosis Factor Alpha |
VAS | Visual Analogue Scale |
VEGF | Vascular Endothelial Growth Factor |
References
- CDC COVID-19 and Your Health. Available online: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html (accessed on 1 November 2022).
- Information on COVID-19 Treatment, Prevention and Research. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 1 November 2022).
- Wang, R.; Chen, J.; Hozumi, Y.; Yin, C.; Wei, G.-W. Emerging Vaccine-Breakthrough SARS-CoV-2 Variants. ACS Infect. Dis. 2022, 8, 546–556. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, O. Long-Term Sequelae Following Previous Coronavirus Epidemics. Clin. Med. 2021, 21, e68–e70. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wen, G.; Wang, J.; Zhou, S.; Da, W.; Meng, Y.; Xue, Y.; Tao, L. Complication and Sequelae of COVID-19: What Should We Pay Attention to in the Post-Epidemic Era. Front. Immunol. 2021, 12, 711741. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. COVID-19: WHO Urges Action as 17 Million Long COVID Cases Are Estimated in Europe. BMJ 2022, 378, o2232. [Google Scholar] [CrossRef]
- Bieksiene, K.; Zaveckiene, J.; Malakauskas, K.; Vaguliene, N.; Zemaitis, M.; Miliauskas, S. Post COVID-19 Organizing Pneumonia: The Right Time to Interfere. Medicina 2021, 57, 283. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.; Wu, C.C.; Zhao, H.; Liang, T.; Liu, Z.; Jian, Z.; Li, R.; Wang, Z.; Li, F.; et al. Organizing Pneumonia of COVID-19: Time-Dependent Evolution and Outcome in CT Findings. PLoS ONE 2020, 15, e0240347. [Google Scholar] [CrossRef]
- Nuñez-Conde, A.; Marquez-Algaba, E.; Falcó, V.; Almirante, B.; Burgos, J. Organizing Pneumonia Secondary to Influenza Infection: Two Case Reports and a Literature Review. Enferm. Infecc. Y Microbiol. Clin. Engl. Ed. 2020, 38, 123–126. [Google Scholar] [CrossRef]
- Gonda, H.; Noda, Y. A Case of Organizing Pneumonia with Increasing Type 2 Parainfluenza Virus Antibody Titer. J. Jpn. Bronchoesophagol. Soc. 1999, 50, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.N.; Wewers, M.D. HIV-Associated Bronchiolitis Obliterans Organizing Pneumonia. Chest 1989, 96, 197–198. [Google Scholar] [CrossRef]
- Messina, M.; Scichilone, N.; Guddo, F.; Bellia, V. Rapidly Progressive Organising Pneumonia Associated with Cytomegalovirus Infection in a Patient with Psoriasis. Monaldi. Arch. Chest Dis. 2016, 67. [Google Scholar] [CrossRef]
- Drakopanagiotakis, F.; Paschalaki, K.; Abu-Hijleh, M.; Aswad, B.; Karagianidis, N.; Kastanakis, E.; Braman, S.S.; Polychronopoulos, V. Cryptogenic and Secondary Organizing Pneumonia: Clinical Presentation, Radiographic Findings, Treatment Response, and Prognosis. Chest 2011, 139, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Sveinsson, O.A.; Isaksson, H.J.; Sigvaldason, A.; Yngvason, F.; Aspelund, T.; Gudmundsson, G. Clinical Features in Secondary and Cryptogenic Organising Pneumonia. Int. J. Tuberc. Lung Dis 2007, 11, 689–694. [Google Scholar] [PubMed]
- American Thoracic Society; European Respiratory Society American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This Joint Statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) Was Adopted by the ATS Board of Directors, June 2001 and by the ERS Executive Committee, June 2001. Am. J. Respir. Crit. Care Med. 2002, 165, 277–304. [Google Scholar] [CrossRef] [Green Version]
- Myall, K.J.; Mukherjee, B.; Castanheira, A.M.; Lam, J.L.; Benedetti, G.; Mak, S.M.; Preston, R.; Thillai, M.; Dewar, A.; Molyneaux, P.L.; et al. Persistent Post-COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Ann. Am. Thorac. Soc. 2021, 18, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Goyal, N.; Nagaraja, R.; Kumar, R. Systemic Corticosteroids for Management of “Long-COVID”: An Evaluation after 3 Months of Treatment. Monaldi. Arch. Chest Dis. 2021, 92. [Google Scholar] [CrossRef]
- Dhooria, S.; Chaudhary, S.; Sehgal, I.S.; Agarwal, R.; Arora, S.; Garg, M.; Prabhakar, N.; Puri, G.D.; Bhalla, A.; Suri, V.; et al. High-Dose versus Low-Dose Prednisolone in Symptomatic Patients with Post-COVID-19 Diffuse Parenchymal Lung Abnormalities: An Open-Label, Randomised Trial (the COLDSTER Trial). Eur. Respir. J. 2022, 59. [Google Scholar] [CrossRef]
- Ailing, L.; Ning, X.; Tao, Q.; Aijun, L. Successful Treatment of Suspected Organizing Pneumonia in a Patient without Typical Imaging and Pathological Characteristic: A Case Report. Respir. Med. Case. Rep. 2017, 22, 246–250. [Google Scholar] [CrossRef]
- Lazor, R.; Vandevenne, A.; Pelletier, A.; Leclerc, P.; Court-Fortune, I.; Cordier, J.F. Cryptogenic Organizing Pneumonia. Characteristics of Relapses in a Series of 48 Patients. The Groupe d’Etudes et de Recherche Sur Les Maladles “Orphelines” Pulmonaires (GERM”O”P). Am. J. Respir. Crit. Care Med. 2000, 162, 571–577. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-Month Consequences of COVID-19 in Patients Discharged from Hospital: A Cohort Study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- van den Borst, B.; Peters, J.B.; Brink, M.; Schoon, Y.; Bleeker-Rovers, C.P.; Schers, H.; van Hees, H.W.H.; van Helvoort, H.; van den Boogaard, M.; van der Hoeven, H.; et al. Comprehensive Health Assessment 3 Months After Recovery From Acute Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2021, 73, e1089–e1098. [Google Scholar] [CrossRef]
- Zhao, Y.-M.; Shang, Y.-M.; Song, W.-B.; Li, Q.-Q.; Xie, H.; Xu, Q.-F.; Jia, J.-L.; Li, L.-M.; Mao, H.-L.; Zhou, X.-M.; et al. Follow-up Study of the Pulmonary Function and Related Physiological Characteristics of COVID-19 Survivors Three Months after Recovery. EClinicalMedicine 2020, 25, 100463. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Zuil, M.; Benítez, I.D.; de Gonzalo-Calvo, D.; Aguilar, M.; Santisteve, S.; Vaca, R.; Minguez, O.; Seck, F.; Torres, G.; et al. One Year Overview and Follow-Up in a Post-COVID Consultation of Critically Ill Patients. Front. Med. 2022, 9, 897990. [Google Scholar] [CrossRef] [PubMed]
- Hellemons, M.E.; Huijts, S.; Bek, L.M.; Berentschot, J.C.; Nakshbandi, G.; Schurink, C.A.M.; Vlake, J.H.; van Genderen, M.E.; van Bommel, J.; Gommers, D.; et al. Persistent Health Problems beyond Pulmonary Recovery up to 6 Months after Hospitalization for COVID-19: A Longitudinal Study of Respiratory, Physical, and Psychological Outcomes. Ann. Am. Thorac. Soc. 2022, 19, 551–561. [Google Scholar] [CrossRef]
- Qin, W.; Chen, S.; Zhang, Y.; Dong, F.; Zhang, Z.; Hu, B.; Zhu, Z.; Li, F.; Wang, X.; Wang, Y.; et al. Diffusion Capacity Abnormalities for Carbon Monoxide in Patients with COVID-19 at 3-Month Follow-Up. Eur. Respir. J. 2021, 58, 2003677. [Google Scholar] [CrossRef] [PubMed]
- The Hidden Pandemic: Long COVID. Institute for Global Change. Available online: https://institute.global/policy/hidden-pandemic-long-COVID (accessed on 6 December 2022).
- Byambasuren, O.; Stehlik, P.; Clark, J.; Alcorn, K.; Glasziou, P. Impact of COVID-19 Vaccination on Long COVID: A Systematic Review and Meta-Analysis 2022. Medrxiv 2022. [Google Scholar] [CrossRef]
- Azzolini, E.; Levi, R.; Sarti, R.; Pozzi, C.; Mollura, M.; Mantovani, A.; Rescigno, M. Association Between BNT162b2 Vaccination and Long COVID After Infections Not Requiring Hospitalization in Health Care Workers. JAMA 2022, 328, 676–678. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Penfold, R.S.; Merino, J.; Sudre, C.H.; Molteni, E.; Berry, S.; Canas, L.S.; Graham, M.S.; Klaser, K.; Modat, M.; et al. Risk Factors and Disease Profile of Post-Vaccination SARS-CoV-2 Infection in UK Users of the COVID Symptom Study App: A Prospective, Community-Based, Nested, Case-Control Study. Lancet Infect. Dis. 2022, 22, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Self-Reported Long COVID after Infection with the Omicron Variant in the UK: 18 July 2022. Available online: https://www.gov.uk/government/statistics/self-reported-long-COVID-after-infection-with-the-omicron-variant-in-the-uk-18-july-2022 (accessed on 6 December 2022).
- Hu, Y.; Sun, J.; Dai, Z.; Deng, H.; Li, X.; Huang, Q.; Wu, Y.; Sun, L.; Xu, Y. Prevalence and Severity of Corona Virus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. J. Clin. Virol. 2020, 127, 104371. [Google Scholar] [CrossRef]
- COVID-19: Clinical Features–UpToDate. Available online: https://www.uptodate.com/contents/COVID-19-clinical-features (accessed on 3 November 2022).
- Kloka, J.A.; Blum, L.V.; Old, O.; Zacharowski, K.; Friedrichson, B. Characteristics and Mortality of 561,379 Hospitalized COVID-19 Patients in Germany until December 2021 Based on Real-Life Data. Sci. Rep. 2022, 12, 11116. [Google Scholar] [CrossRef]
- Mahendra, M.; Nuchin, A.; Kumar, R.; Shreedhar, S.; Mahesh, P.A. Predictors of Mortality in Patients with Severe COVID-19 Pneumonia–a Retrospective Study. Adv. Respir. Med. 2021, 89, 135–144. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, L.; Li, H.; Guo, J.; Li, Y.; Hou, X.; Yang, F.; Xie, Y.; Li, L.; Xing, Z. A Follow-Up Study of Lung Function and Chest Computed Tomography at 6 Months after Discharge in Patients with Coronavirus Disease 2019. Can. Respir. J. 2021, 2021, 6692409. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-Month, 6-Month, 9-Month, and 12-Month Respiratory Outcomes in Patients Following COVID-19-Related Hospitalisation: A Prospective Study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Huang, H.; Wang, C.; Jin, Z.; Zhang, Z.; He, J.; Yin, S.; Fan, M.; Huang, J.; Chen, F.; et al. Follow-up Study of Pulmonary Function among COVID-19 Survivors 1 Year after Recovery. J. Infect. 2021, 83, 381–412. [Google Scholar] [CrossRef] [PubMed]
- Faverio, P.; Luppi, F.; Rebora, P.; D’Andrea, G.; Stainer, A.; Busnelli, S.; Catalano, M.; Modafferi, G.; Franco, G.; Monzani, A.; et al. One-Year Pulmonary Impairment after Severe COVID-19: A Prospective, Multicenter Follow-up Study. Respir. Res. 2022, 23, 65. [Google Scholar] [CrossRef]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-Year Outcomes in Hospital Survivors with COVID-19: A Longitudinal Cohort Study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef]
- Zhou, F.; Tao, M.; Shang, L.; Liu, Y.; Pan, G.; Jin, Y.; Wang, L.; Hu, S.; Li, J.; Zhang, M.; et al. Assessment of Sequelae of COVID-19 Nearly 1 Year After Diagnosis. Front. Med. 2021, 8, 717194. [Google Scholar] [CrossRef]
- Liao, T.; Meng, D.; Xiong, L.; Wu, S.; Yang, L.; Wang, S.; Zhou, M.; He, X.; Cao, X.; Xiong, H.; et al. Long-Term Effects of COVID-19 on Health Care Workers 1-Year Post-Discharge in Wuhan. Infect. Dis. Ther. 2022, 11, 145–163. [Google Scholar] [CrossRef]
- Chippa, V.; Aleem, A.; Anjum, F. Post Acute Coronavirus (COVID-19) Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Gameil, M.A.; Marzouk, R.E.; Elsebaie, A.H.; Rozaik, S.E. Long-Term Clinical and Biochemical Residue after COVID-19 Recovery. Egypt Liver J. 2021, 11, 74. [Google Scholar] [CrossRef]
- Li, X.; Shen, C.; Wang, L.; Majumder, S.; Zhang, D.; Deen, M.J.; Li, Y.; Qing, L.; Zhang, Y.; Chen, C.; et al. Pulmonary Fibrosis and Its Related Factors in Discharged Patients with New Corona Virus Pneumonia: A Cohort Study. Respir. Res. 2021, 22, 203. [Google Scholar] [CrossRef]
- Sibila, O.; Albacar, N.; Perea, L.; Faner, R.; Torralba, Y.; Hernandez-Gonzalez, F.; Moisés, J.; Sanchez-Ruano, N.; Sequeira-Aymar, E.; Badia, J.R.; et al. Lung Function Sequelae in COVID-19 Patients 3 Months After Hospital Discharge. Arch. Bronconeumol. 2021, 57, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Liu, Y.; Fu, Y.; Di, Z.; Xu, K.; Tang, B.; Wu, H.; Di, M. A Comprehensive Evaluation of Early Potential Risk Factors for Disease Aggravation in Patients with COVID-19. Sci. Rep. 2021, 11, 8062. [Google Scholar] [CrossRef] [PubMed]
- Grommes, J.; Soehnlein, O. Contribution of Neutrophils to Acute Lung Injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Krupar, R.; Kümpers, C.; Haenel, A.; Perner, S.; Stellmacher, F. Cryptogenic organizing pneumonia versus secondary organizing pneumonia. Pathologe 2021, 42, 55–63. [Google Scholar] [CrossRef]
- Schlesinger, C.; Koss, M.N. The Organizing Pneumonias: An Update and Review. Curr. Opin. Pulm. Med. 2005, 11, 422–430. [Google Scholar] [CrossRef]
- Pannone, G.; Caponio, V.C.A.; De Stefano, I.S.; Ramunno, M.A.; Meccariello, M.; Agostinone, A.; Pedicillo, M.C.; Troiano, G.; Zhurakivska, K.; Cassano, T.; et al. Lung Histopathological Findings in COVID-19 Disease—A Systematic Review. Infect. Agent. Cancer 2021, 16, 34. [Google Scholar] [CrossRef]
- Lazor, R. Organizing Pneumonias. In Orphan Lung Diseases; Cottin, V., Cordier, J.-F., Richeldi, L., Eds.; Springer: London, UK, 2015; pp. 363–378. ISBN 978-1-4471-2400-9. [Google Scholar]
- Montazersaheb, S.; Hosseiniyan Khatibi, S.M.; Hejazi, M.S.; Tarhriz, V.; Farjami, A.; Ghasemian Sorbeni, F.; Farahzadi, R.; Ghasemnejad, T. COVID-19 Infection: An Overview on Cytokine Storm and Related Interventions. Virol. J. 2022, 19, 92. [Google Scholar] [CrossRef]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae among Patients with COVID-19 Four Months after Hospital Discharge. JAMA Netw Open 2021, 4, e2036142. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. eClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Ng, B.H.; Ban, A.Y.-L.; Nik Abeed, N.N.; Faisal, M. Organising Pneumonia Manifesting as a Late-Phase Complication of COVID-19. BMJ Case Rep. 2021, 14, e246119. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Florencio, L.L.; Cuadrado, M.L.; Plaza-Manzano, G.; Navarro-Santana, M. Prevalence of Post-COVID-19 Symptoms in Hospitalized and Non-Hospitalized COVID-19 Survivors: A Systematic Review and Meta-Analysis. Eur. J. Intern. Med. 2021, 92, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Alasaly, K.; Müller, N.; Ostrow, D.N.; Champion, P.; Fitzgerald, M.J. Cryptogenic Organizing Pneumonia A Report of 25 Cases and a Review of the Literature. Medicine 1995, 74, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Baha, A.; Yıldırım, F.; Köktürk, N.; Galata, Z.; Akyürek, N.; Demirci, N.Y.; Türktaş, H. Cryptogenic and Secondary Organizing Pneumonia: Clinical Presentation, Radiological and Laboratory Findings, Treatment, and Prognosis in 56 Cases. Turk. Thorac. J. 2018, 19, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Siafarikas, C.; Stafylidis, C.; Tentolouris, A.; Samara, S.; Eliadi, I.; Makrodimitri, S.; Spandidos, D.A.; Mathioudakis, N.; Karamichalos, P.; Papalexis, P.; et al. Radiologically Suspected COVID-19-Associated Organizing Pneumonia Responding Well to Corticosteroids: A Report of Two Cases and a Review of the Literature. Exp. Ther. Med. 2022, 24, 453. [Google Scholar] [CrossRef] [PubMed]
- Ravaglia, C.; Doglioni, C.; Chilosi, M.; Piciucchi, S.; Dubini, A.; Rossi, G.; Pedica, F.; Puglisi, S.; Donati, L.; Tomassetti, S.; et al. Clinical, Radiological, and Pathological Findings in Patients with Persistent Lung Disease Following SARS-CoV-2 Infection. Eur. Respir. J. 2022, 2102411. [Google Scholar] [CrossRef] [PubMed]
- Simões, J.P.; Alves Ferreira, A.R.; Almeida, P.M.; Trigueiros, F.; Braz, A.; Inácio, J.R.; Medeiros, F.C.; Braz, S.; Pais de Lacerda, A. Organizing Pneumonia and COVID-19: A Report of Two Cases. Respir. Med. Case Rep. 2021, 32, 101359. [Google Scholar] [CrossRef]
- Horii, H.; Kamada, K.; Nakakubo, S.; Yamashita, Y.; Nakamura, J.; Nasuhara, Y.; Konno, S. Rapidly Progressive Organizing Pneumonia Associated with COVID-19. Respir. Med. Case Rep. 2020, 31, 101295. [Google Scholar] [CrossRef]
- Rocha, A.S.; Meireles, M.; Vilaça, H.; Guimarães, T.C.; Martins, M.D.; Santos, L.R.; Castro, A.; Mesquita, M. Outcomes of COVID-19 Organizing Pneumonia in Critically Ill Patients. J. Infect. 2021, 83, 496–522. [Google Scholar] [CrossRef]
- Cortés-Vieyra, R.; Gutiérrez-Castellanos, S.; Álvarez-Aguilar, C.; Baizabal-Aguirre, V.M.; Nuñez-Anita, R.E.; Rocha-López, A.G.; Gómez-García, A. Behavior of Eosinophil Counts in Recovered and Deceased COVID-19 Patients over the Course of the Disease. Viruses 2021, 13, 1675. [Google Scholar] [CrossRef]
- P16-97: Secondary Organizing Pneumonia following COVID-19 Infection—2021—Respirology—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/resp.14150_1006 (accessed on 6 December 2022).
- Samsonova, M.V.; Kontorschikov, A.S.; Cherniaev, A.L.; Mikhajlichenko, K.Y.; Mikhaleva, L.M.; Mishnev, O.D.; Zayratyants, O.V. Long-Term Pathological Changes in Lungs after COVID-19. Pulʹmonologiâ 2021, 31, 571–579. [Google Scholar] [CrossRef]
- Arrossi, A.V.; Farver, C. The Pulmonary Pathology of COVID-19. Clevel. Clin. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Radzikowska, E.; Wiatr, E.; Langfort, R.; Bestry, I.; Skoczylas, A.; Szczepulska-Wójcik, E.; Gawryluk, D.; Rudziński, P.; Chorostowska-Wynimko, J.; Roszkowski-Śliż, K. Cryptogenic Organizing Pneumonia—Results of Treatment with Clarithromycin versus Corticosteroids—Observational Study. PLoS ONE 2017, 12, e0184739. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Dai, H.; Sarria, R.; Guzman, J.; Costabel, U. Increased Expression of Tumor Necrosis Factor Receptors in Cryptogenic Organizing Pneumonia. Respir. Med. 2011, 105, 292–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.-J.; Yoo, E.-H.; Kim, K.C.; Kim, E.J. Comparison of Clinical Features and Prognosis in Patients with Cryptogenic and Secondary Organizing Pneumonia. BMC Pulm. Med. 2021, 21, 336. [Google Scholar] [CrossRef]
- Narasimhaiah, D.H.; Chakravorty, I.; Swamy, R.; Prakash, D. Organising Pneumonia Presenting as Acute Life Threatening Pulmonary Haemorrhage. BMJ Case. Rep. 2011, 2011, bcr0320091689. [Google Scholar] [CrossRef] [Green Version]
- Forlani, S.; Ratta, L.; Bulgheroni, A.; Cascina, A.; Paschetto, E.; Cervio, G.; Luinetti, O.; Fietta, A.M.; Meloni, F. Cytokine Profile of Broncho-Alveolar Lavage in BOOP and UIP. Sarcoidosis. Vasc. Diffuse Lung Dis. 2002, 19, 47–53. [Google Scholar]
- Carotti, M.; Salaffi, F.; Sarzi-Puttini, P.; Agostini, A.; Borgheresi, A.; Minorati, D.; Galli, M.; Marotto, D.; Giovagnoni, A. Chest CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia: Key Points for Radiologists. Radiol. Med. 2020, 125, 636–646. [Google Scholar] [CrossRef]
- Kanne, J.P.; Little, B.P.; Schulte, J.J.; Haramati, A.; Haramati, L.B. Long-Term Lung Abnormalities Associated with COVID-19 Pneumonia. Radiology 2022, 221806. [Google Scholar] [CrossRef]
- Kanne, J.P.; Bai, H.; Bernheim, A.; Chung, M.; Haramati, L.B.; Kallmes, D.F.; Little, B.P.; Rubin, G.D.; Sverzellati, N. COVID-19 Imaging: What We Know Now and What Remains Unknown. Radiology 2021, 299, E262–E279. [Google Scholar] [CrossRef]
- Lerum, T.V.; Aaløkken, T.M.; Brønstad, E.; Aarli, B.; Ikdahl, E.; Lund, K.M.A.; Durheim, M.T.; Rodriguez, J.R.; Meltzer, C.; Tonby, K.; et al. Dyspnoea, Lung Function and CT Findings 3 Months after Hospital Admission for COVID-19. Eur. Respir. J. 2021, 57, 2003448. [Google Scholar] [CrossRef]
- Froidure, A.; Mahsouli, A.; Liistro, G.; De Greef, J.; Belkhir, L.; Gérard, L.; Bertrand, A.; Koenig, S.; Pothen, L.; Yildiz, H.; et al. Integrative Respiratory Follow-up of Severe COVID-19 Reveals Common Functional and Lung Imaging Sequelae. Respir. Med. 2021, 181, 106383. [Google Scholar] [CrossRef] [PubMed]
- Balbi, M.; Conti, C.; Imeri, G.; Caroli, A.; Surace, A.; Corsi, A.; Mercanzin, E.; Arrigoni, A.; Villa, G.; Di Marco, F.; et al. Post-Discharge Chest CT Findings and Pulmonary Function Tests in Severe COVID-19 Patients. Eur. J. Radiol. 2021, 138, 109676. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Benítez, I.D.; Carmona, P.; Santisteve, S.; Monge, A.; Moncusí-Moix, A.; Gort-Paniello, C.; Pinilla, L.; Carratalá, A.; Zuil, M.; et al. Pulmonary Function and Radiologic Features in Survivors of Critical COVID-19. Chest 2021, 160, 187–198. [Google Scholar] [CrossRef]
- Faria, I.M.; Zanetti, G.; Barreto, M.M.; Rodrigues, R.S.; Araujo-Neto, C.A.; Silva, J.L.; Escuissato, D.L.; Souza, A.S.; Irion, K.L.; Mançano, A.D.; et al. Organizing Pneumonia: Chest HRCT Findings. J. Bras. Pneumol. 2015, 41, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, K.S.; Lee, H.Y.; Chung, M.P.; Yi, C.A.; Kim, T.S.; Chung, M.J. Cryptogenic Organizing Pneumonia: Serial High-Resolution CT Findings in 22 Patients. Am. J. Roentgenol. 2010, 195, 916–922. [Google Scholar] [CrossRef]
- Lee, K.S.; Kullnig, P.; Hartman, T.E.; Müller, N.L. Cryptogenic Organizing Pneumonia: CT Findings in 43 Patients. Am. J. Roentgenol. 1994, 162, 543–546. [Google Scholar] [CrossRef]
- Ujita, M.; Renzoni, E.A.; Veeraraghavan, S.; Wells, A.U.; Hansell, D.M. Organizing Pneumonia: Perilobular Pattern at Thin-Section CT. Radiology 2004, 232, 757–761. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, K.S.; Ryu, Y.H.; Yoon, Y.C.; Choe, K.O.; Kim, T.S.; Sung, K.J. Reversed Halo Sign on High-Resolution CT of Cryptogenic Organizing Pneumonia: Diagnostic Implications. AJR Am. J. Roentgenol. 2003, 180, 1251–1254. [Google Scholar] [CrossRef]
- Cordier, J.-F. Cryptogenic Organising Pneumonia. Eur. Respir. J. 2006, 28, 422–446. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Birkenbach, M.; Chen, S. Patterns of Inflammatory Cell Infiltration and Expression of STAT6 in the Lungs of Patients with COVID-19: An Autopsy Study. Appl. Immunohistochem. Mol. Morphol. 2022, 30, 350–357. [Google Scholar] [CrossRef]
- Ojo, A.S.; Balogun, S.A.; Williams, O.T.; Ojo, O.S. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm Med. 2020, 2020, 6175964. [Google Scholar] [CrossRef] [PubMed]
- Cordier, J.-F. Cryptogenic Organizing Pneumonia. Clin. Chest Med. 2004, 25, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, B.; Rassl, D. Fibrosing Organising Pneumonia. J. Clin. Pathol. 2013, 66, 875–881. [Google Scholar] [CrossRef]
- Brito-Azevedo, A.; Pinto, E.C.; de Cata Preta Corrêa, G.A.; Bouskela, E. SARS-CoV-2 Infection Causes Pulmonary Shunt by Vasodilatation. J. Med. Virol. 2021, 93, 573–575. [Google Scholar] [CrossRef]
- Siddique, M.; Nawaz, M.K.; Khalid, M.B.; Rai, A. Right to Left Intrapulmonary Shunt in a Case with COVID-19-Associated Pneumonia. J. Coll. Physicians Surg. Pak. 2021, 30, S23–S25. [Google Scholar] [CrossRef]
- Champion, H.R.; Panebianco, N.L.; De Waele, J.J.; Kaplan, L.J.; Malbrain, M.L.N.G.; Slaughter, A.L.; Biffl, W.L.; Burlew, C.C.; Moore, E.E.; Bhuva, P.; et al. Arterial Hypoxemia. In Encyclopedia of Intensive Care Medicine; Vincent, J.-L., Hall, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 257–266. ISBN 978-3-642-00417-9. [Google Scholar]
- Kell, D.B.; Laubscher, G.J.; Pretorius, E. A Central Role for Amyloid Fibrin Microclots in Long COVID/PASC: Origins and Therapeutic Implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, Y.; Ferrans, V.J.; Schoenberger, C.I.; Rennard, S.I.; Crystal, R.G. Patterns of Pulmonary Structural Remodeling after Experimental Paraquat Toxicity. The Morphogenesis of Intraalveolar Fibrosis. Am. J. Pathol. 1985, 118, 452–475. [Google Scholar]
- Myers, J.L.; Katzenstein, A.L. Ultrastructural Evidence of Alveolar Epithelial Injury in Idiopathic Bronchiolitis Obliterans-Organizing Pneumonia. Am. J. Pathol. 1988, 132, 102–109. [Google Scholar]
- Meduri, G.U. The Role of the Host Defence Response in the Progression and Outcome of ARDS: Pathophysiological Correlations and Response to Glucocorticoid Treatment. Eur. Respir. J. 1996, 9, 2650–2670. [Google Scholar] [CrossRef] [Green Version]
- Martínez Chamorro, E.; Díez Tascón, A.; Ibáñez Sanz, L.; Ossaba Vélez, S.; Borruel Nacenta, S. Radiologic Diagnosis of Patients with COVID-19. Radiologia 2021, 63, 56–73. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT Manifestations of New Coronavirus Disease 2019 (COVID-19): A Pictorial Review. Eur. Radiol. 2020, 30, 4381–4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojha, V.; Mani, A.; Pandey, N.N.; Sharma, S.; Kumar, S. CT in Coronavirus Disease 2019 (COVID-19): A Systematic Review of Chest CT Findings in 4410 Adult Patients. Eur. Radiol. 2020, 30, 6129–6138. [Google Scholar] [CrossRef] [PubMed]
- Hefeda, M.M. CT Chest Findings in Patients Infected with COVID-19: Review of Literature. Egypt J. Radiol. Nucl. Med. 2020, 51, 239. [Google Scholar] [CrossRef]
- Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological Findings from 81 Patients with COVID-19 Pneumonia in Wuhan, China: A Descriptive Study. Lancet Infect. Dis. 2020, 20, 425–434. [Google Scholar] [CrossRef]
- Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.-T.; Leung, S.T.; Chin, T.W.-Y.; Lo, C.S.Y.; Lui, M.M.-S.; Lee, J.C.Y.; Chiu, K.W.-H.; Chung, T.W.-H.; et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020, 296, E72–E78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, S.; Abedi, A.; Balakrishnan, S.; Gholamrezanezhad, A. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. AJR Am. J. Roentgenol. 2020, 215, 87–93. [Google Scholar] [CrossRef]
- Doane, J.J.; Hirsch, K.S.; Baldwin, J.O.; Wurfel, M.M.; Pipavath, S.N.; West, T.E. Progressive Pulmonary Fibrosis After Non-Critical COVID-19: A Case Report. Am. J. Case Rep. 2021, 22, e933458. [Google Scholar] [CrossRef]
- Hui, D.S.; Joynt, G.M.; Wong, K.T.; Gomersall, C.D.; Li, T.S.; Antonio, G.; Ko, F.W.; Chan, M.C.; Chan, D.P.; Tong, M.W.; et al. Impact of Severe Acute Respiratory Syndrome (SARS) on Pulmonary Function, Functional Capacity and Quality of Life in a Cohort of Survivors. Thorax 2005, 60, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.; Antonio, G.E.; Hui, D.S.C.; Ho, C.; Chan, P.; Ng, W.; Shing, K.; Wu, A.; Lee, N.; Yap, F.; et al. Severe Acute Respiratory Syndrome: Thin-Section Computed Tomography Features, Temporal Changes, and Clinicoradiologic Correlation during the Convalescent Period. J. Comput. Assist. Tomogr. 2004, 28, 790–795. [Google Scholar] [CrossRef]
- Hui, D.S.; Wong, K.T.; Ko, F.W.; Tam, L.S.; Chan, D.P.; Woo, J.; Sung, J.J.Y. The 1-Year Impact of Severe Acute Respiratory Syndrome on Pulmonary Function, Exercise Capacity, and Quality of Life in a Cohort of Survivors. Chest 2005, 128, 2247–2261. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Li, J.; Liu, H.; Han, N.; Ju, J.; Kou, Y.; Chen, L.; Jiang, M.; Pan, F.; Zheng, Y.; et al. Long-Term Bone and Lung Consequences Associated with Hospital-Acquired Severe Acute Respiratory Syndrome: A 15-Year Follow-up from a Prospective Cohort Study. Bone Res. 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Park, W.B.; Jun, K.I.; Kim, G.; Choi, J.-P.; Rhee, J.-Y.; Cheon, S.; Lee, C.H.; Park, J.-S.; Kim, Y.; Joh, J.-S.; et al. Correlation between Pneumonia Severity and Pulmonary Complications in Middle East Respiratory Syndrome. J. Korean Med. Sci. 2018, 33, e169. [Google Scholar] [CrossRef]
- Ngai, J.C.; Ko, F.W.; Ng, S.S.; To, K.-W.; Tong, M.; Hui, D.S. The Long-Term Impact of Severe Acute Respiratory Syndrome on Pulmonary Function, Exercise Capacity and Health Status. Respirology 2010, 15, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Bazdyrev, E.; Rusina, P.; Panova, M.; Novikov, F.; Grishagin, I.; Nebolsin, V. Lung Fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals 2021, 14, 807. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Cha, S.-I.; Seo, H.; Shin, K.-M.; Lim, J.-K.; Kim, H.; Yoo, S.-S.; Lee, J.; Lee, S.-Y.; Kim, C.-H.; et al. Predictors of Relapse in Patients with Organizing Pneumonia. Tuberc. Respir. Dis. 2015, 78, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, D.; Maini, R.; Hershberger, D.M. Cryptogenic Organizing Pneumonia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Onishi, Y.; Kawamura, T.; Higashino, T.; Mimura, R.; Tsukamoto, H.; Sasaki, S. Clinical Features of Acute Fibrinous and Organizing Pneumonia: An Early Histologic Pattern of Various Acute Inflammatory Lung Diseases. PLoS ONE 2021, 16, e0249300. [Google Scholar] [CrossRef]
- Bradley, B.; Branley, H.M.; Egan, J.J.; Greaves, M.S.; Hansell, D.M.; Harrison, N.K.; Hirani, N.; Hubbard, R.; Lake, F.; Millar, A.B.; et al. Interstitial Lung Disease Guideline: The British Thoracic Society in Collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society. Thorax 2008, 63 (Suppl. S5), v1–v58. [Google Scholar] [CrossRef] [Green Version]
- Okamori, S.; Lee, H.; Kondo, Y.; Akiyama, Y.; Kabata, H.; Kaneko, Y.; Ishii, M.; Hasegawa, N.; Fukunaga, K. Coronavirus Disease 2019-Associated Rapidly Progressive Organizing Pneumonia with Fibrotic Feature: Two Case Reports. Medicine 2020, 99, e21804. [Google Scholar] [CrossRef]
- Kim, T.; Son, E.; Jeon, D.; Lee, S.J.; Lim, S.; Cho, W.H. Effectiveness of Steroid Treatment for SARS-CoV-2 Pneumonia with Cryptogenic Organizing Pneumonia-Like Reaction: A Case Report. Disaster Med. Public Health Prep. 2022, 16, 491–494. [Google Scholar] [CrossRef]
- Golbets, E.; Kaplan, A.; Shafat, T.; Yagel, Y.; Jotkowitz, A.; Awesat, J.; Barski, L. Secondary Organizing Pneumonia after Recovery of Mild COVID-19 Infection. J. Med. Virol. 2022, 94, 417–423. [Google Scholar] [CrossRef]
- Cortés Colorado, J.M.; Cardona Ardila, L.F.; Aguirre Vásquez, N.; Gómez Calderón, K.C.; Lozano Álvarez, S.L.; Carrillo Bayona, J.A. Organizing Pneumonia Associated with SARS-CoV-2 Infection. Radiol. Case Rep. 2021, 16, 2634–2639. [Google Scholar] [CrossRef] [PubMed]
- Vadász, I.; Husain-Syed, F.; Dorfmüller, P.; Roller, F.C.; Tello, K.; Hecker, M.; Morty, R.E.; Gattenlöhner, S.; Walmrath, H.-D.; Grimminger, F.; et al. Severe Organising Pneumonia Following COVID-19. Thorax 2021, 76, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Alsulami, F.; Dhaliwal, I.; Mrkobrada, M.; Nicholson, M. Post COVID-19 Organizing Pneumonia: Case Series for 6 Patients with Post-COVID Interstitial Lung Disease. J Lung Pulm Respir. Res. 2021, 8, 108–111. [Google Scholar] [CrossRef]
- Waljee, A.K.; Rogers, M.A.M.; Lin, P.; Singal, A.G.; Stein, J.D.; Marks, R.M.; Ayanian, J.Z.; Nallamothu, B.K. Short Term Use of Oral Corticosteroids and Related Harms among Adults in the United States: Population Based Cohort Study. BMJ 2017, 357, j1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Hooft, C.S.; Heeringa, J.; Brusselle, G.G.; Hofman, A.; Witteman, J.C.M.; Kingma, J.H.; Sturkenboom, M.C.J.M.; Stricker, B.H.C. Corticosteroids and the Risk of Atrial Fibrillation. Arch. Intern. Med. 2006, 166, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardet, L.; Kassar, A.; Cabane, J.; Flahault, A. Corticosteroid-Induced Adverse Events in Adults: Frequency, Screening and Prevention. Drug Saf. 2007, 30, 861–881. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-H.; Wang, X.-L.; Yang, H.-L.; Zhao, D.-W.; Qin, L. Steroid-Associated Osteonecrosis: Epidemiology, Pathophysiology, Animal Model, Prevention, and Potential Treatments (an Overview). J. Orthop. Translat. 2015, 3, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, J.F.; Antonio, G.E.; Kumta, S.M.; Hui, D.S.C.; Wong, J.K.T.; Joynt, G.M.; Wu, A.K.L.; Cheung, A.Y.K.; Chiu, K.H.; Chan, K.M.; et al. Osteonecrosis of Hip and Knee in Patients with Severe Acute Respiratory Syndrome Treated with Steroids. Radiology 2005, 235, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Akulkina, L.A.; Shchepalina, A.A.; Kitbalian, A.A.; Potapov, P.P.; Moiseev, A.S.; Brovko, M.Y.; Sholomova, V.I.; Moiseev, S.V. Organizing pneumonia as a pulmonary manifestation of post-COVID syndrome: Features of diagnosis and treatment. Ter. Arkhiv 2022, 94, 497–502. [Google Scholar] [CrossRef]
- Tan, H.X.; Wong, C.K.; Yik, W.F.; Lam, Y.F.; Lachmanan, K.R. Post COVID-19 Organizing Pneumonia Treated with Mycophenolate Mofetil. Respirol. Case Rep. 2022, 10. [Google Scholar] [CrossRef]
- Achkar, M.; Jamal, O.; Chaaban, T. Post-COVID Lung Disease(s). Ann. Thorac. Med. 2022, 17, 137. [Google Scholar] [CrossRef] [PubMed]
- Akgun, M. Systemic Corticosteroids in Treatment of Post-COVID-19 Interstitial Lung Disease; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- Rashad, A. Short Term Low Dose Corticosteroids for Management of Post COVID-19 Pulmonary Fibrosis; Clinicaltrials.gov: Bethesda, AR, USA, 2020.
- Dhooria, S. Comparison of the Efficacy and Safety of Two Corticosteroid Regimens in the Treatment of Diffuse Lung Disease after Coronavirus Disease 2019 (COVID-19) Pneumonia; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Hospital Universitari Vall d’Hebron Research Institute. Oral Prednisone Regimens to Optimize the Therapeutic Strategy in Patients with Organizing Pneumonia Post-COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2020.
- Jordi Gol i Gurina Foundation. Efficacy of Montelukast in Mild-Moderate Respiratory Symptoms in Patients with Long-COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Pharmenterprises LLC. Pilot Study to Assess Efficacy and Safety of Treamid in the Rehabilitation of Patients after COVID-19 Pneumonia; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- Pharmenterprises LLC. Study to Assess Efficacy and Safety of Treamid for Patients with Reduced Exercise Tolerance after COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Issak, E.R. Colchicine and Post-COVID-19 Pulmonary Fibrosis; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- Humanetics Corporation. BIO 300 Oral Suspension in Previously Hospitalized Long COVID Patients; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Assistance Publique–Hôpitaux de Paris. Nintedanib for the Treatment of SARS-COV-2 Induced Pulmonary Fibrosis; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Padilla, M.L. The Study of the Use of Nintedanib in Slowing Lung Disease in Patients with Fibrotic or Non-Fibrotic Interstitial Lung Disease Related to COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Zhang, H. Efficacy and Safety of Nintedanib in the Treatment of Pulmonary Fibrosis in Patients with Moderate to Severe COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2020.
- Dhooria, S. Pirfenidone vs. Nintedanib for Fibrotic Lung Disease after Coronavirus Disease-19 Pneumonia; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- PureTech. LYT-100 in Post-Acute COVID-19 Respiratory Disease; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Chenghai, L. Treatment of Pulmonary Fibrosis Due to COVID-19 with Fuzheng Huayu; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- MD, A.K. Safety and Efficacy of Hyperbaric Oxygen Therapy for Long COVID Syndrome; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- SolAeroMed Inc. Safety, Tolerability and Efficacy of S-1226 in Post-COVID-19 Subjects with Persistent Respiratory Symptoms.; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- Paez, F.G. Ozone Plasma on Lung Function and Inflammatory Parameters in Pulmonary Sequelae Associated with Coronavirus 19 Infection; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- Direct Biologics, LLC. ExoFloTM Infusion for Post-Acute COVID-19 and Chronic Post-COVID-19 Syndrome; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Sorrento Therapeutics, Inc. Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells to Treat Post COVID-19 “Long Haul” Pulmonary Compromise; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Guy’s and St Thomas’ NHS Foundation Trust. The MONACO Cell Therapy Study: Monocytes as an Anti-Fibrotic Treatment after COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- Littlefield, K.M.; Watson, R.O.; Schneider, J.M.; Neff, C.P.; Yamada, E.; Zhang, M.; Campbell, T.B.; Falta, M.T.; Jolley, S.E.; Fontenot, A.P.; et al. SARS-CoV-2-Specific T Cells Associate with Inflammation and Reduced Lung Function in Pulmonary Post-Acute Sequalae of SARS-CoV-2. PLoS Pathog. 2022, 18, e1010359. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine—Update on Mechanisms of Action and Therapeutic Uses. Semin. Arthritis Rheum. 2015, 45, 341–350. [Google Scholar] [CrossRef]
- Slobodnick, A.; Shah, B.; Krasnokutsky, S.; Pillinger, M.H. Update on Colchicine, 2017. Rheumatology 2018, 57, i4–i11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasmin, F.; Najeeb, H.; Moeed, A.; Hassan, W.; Khatri, M.; Asghar, M.S.; Naveed, A.K.; Ullah, W.; Surani, S. Safety and Efficacy of Colchicine in COVID-19 Patients: A Systematic Review and Meta-Analysis of Randomized Control Trials. PLoS ONE 2022, 17, e0266245. [Google Scholar] [CrossRef]
- Kanniess, F.; Richter, K.; Bohme, S.; Jorres, R.A.; Magnussen, H. Montelukast versus Fluticasone: Effects on Lung Function, Airway Responsiveness and Inflammation in Moderate Asthma. Eur. Respir. J. 2002, 20, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Allayee, H.; Hartiala, J.; Lee, W.; Mehrabian, M.; Irvin, C.G.; Conti, D.V.; Lima, J.J. The Effect of Montelukast and Low-Dose Theophylline on Cardiovascular Disease Risk Factors in Asthmatics. Chest 2007, 132, 868–874. [Google Scholar] [CrossRef]
- Davino-Chiovatto, J.E.; Oliveira-Junior, M.C.; MacKenzie, B.; Santos-Dias, A.; Almeida-Oliveira, A.R.; Aquino-Junior, J.C.J.; Brito, A.A.; Rigonato-Oliveira, N.C.; Damaceno-Rodrigues, N.R.; Oliveira, A.P.L.; et al. Montelukast, Leukotriene Inhibitor, Reduces LPS-Induced Acute Lung Inflammation and Human Neutrophil Activation. Arch. Bronconeumol. 2019, 55, 573–580. [Google Scholar] [CrossRef]
- Khan, A.R.; Misdary, C.; Yegya-Raman, N.; Kim, S.; Narayanan, N.; Siddiqui, S.; Salgame, P.; Radbel, J.; Groote, F.D.; Michel, C.; et al. Montelukast in Hospitalized Patients Diagnosed with COVID-19. J. Asthma 2022, 59, 780–786. [Google Scholar] [CrossRef]
- Wilchesky, M. The COVID-19 Outpatient Symptom Montelukast Oximetry Trial; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Mohamed Hussein, A.A.R.; Ibrahim, M.E.A.A.; Makhlouf, H.A.; Makhlouf, N.A.; Abd-Elaal, H.K.; Kholief, K.M.S.; Sayed, I.G. Value of Montelukast as a Potential Treatment of Post-COVID-19 Persistent Cough: A Non-Randomized Controlled Pilot Study. Egypt J. Bronchol. 2022, 16, 52. [Google Scholar] [CrossRef]
- Skurikhin, E.; Nebolsin, V.; Widera, D.; Ermakova, N.; Pershina, O.; Pakhomova, A.; Krupin, V.; Pan, E.; Zhukova, M.; Novikov, F.; et al. Antifibrotic and Regenerative Effects of Treamid in Pulmonary Fibrosis. Int. J. Mol. Sci. 2020, 21, 8380. [Google Scholar] [CrossRef]
- Bazdyrev, E.; Panova, M.; Brachs, M.; Smolyarchuk, E.; Tsygankova, D.; Gofman, L.; Abdyusheva, Y.; Novikov, F. Efficacy and Safety of Treamid in the Rehabilitation of Patients after COVID-19 Pneumonia: A Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial. J. Transl. Med. 2022, 20, 506. [Google Scholar] [CrossRef]
- Singh, V.K.; Fatanmi, O.O.; Wise, S.Y.; Carpenter, A.; Nakamura-Peek, S.; Serebrenik, A.A.; Kaytor, M.D. A Novel Oral Formulation of BIO 300 Confers Prophylactic Radioprotection from Acute Radiation Syndrome in Mice. Int. J. Radiat. Biol. 2022, 98, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Chen, J.; Tang, S.; Azzam, E.I.; Zhang, J.; Zhang, S. Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs. Radiat. Res. 2022, 198, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Hama Amin, B.J.; Kakamad, F.H.; Ahmed, G.S.; Ahmed, S.F.; Abdulla, B.A.; Mohammed, S.H.; Mikael, T.M.; Salih, R.Q.; Ali, R.K.; Salh, A.M.; et al. Post COVID-19 Pulmonary Fibrosis; a Meta-Analysis Study. Ann. Med. Surg. 2022, 77, 103590. [Google Scholar] [CrossRef]
- Takehara, K.; Koga, Y.; Hachisu, Y.; Utsugi, M.; Sawada, Y.; Saito, Y.; Yoshimi, S.; Yatomi, M.; Shin, Y.; Wakamatsu, I.; et al. Differential Discontinuation Profiles between Pirfenidone and Nintedanib in Patients with Idiopathic Pulmonary Fibrosis. Cells 2022, 11, 143. [Google Scholar] [CrossRef]
- Taniguchi, H.; Ebina, M.; Kondoh, Y.; Ogura, T.; Azuma, A.; Suga, M.; Taguchi, Y.; Takahashi, H.; Nakata, K.; Sato, A.; et al. Pirfenidone in Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2010, 35, 821–829. [Google Scholar] [CrossRef]
- Takeda, Y.; Tsujino, K.; Kijima, T.; Kumanogoh, A. Efficacy and Safety of Pirfenidone for Idiopathic Pulmonary Fibrosis. PPA 2014, 8, 361. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Huang, H.; Liu, J.; Wang, Y.; Lu, Z.; Xu, Z. Adverse Events of Pirfenidone for the Treatment of Pulmonary Fibrosis: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2012, 7, e47024. [Google Scholar] [CrossRef]
- Zhang, H. A Study to Evaluate the Efficacy and Safety of Pirfenidone with Novel Coronavirus Infection; Clinicaltrials.gov: Bethesda, AR, USA, 2020.
- Zhang, F.; Wei, Y.; He, L.; Zhang, H.; Hu, Q.; Yue, H.; He, J.; Dai, H. A Trial of Pirfenidone in Hospitalized Adult Patients with Severe Coronavirus Disease 2019. Chin. Med. J. 2022, 135, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Fraiha, Y.A. Treatment with Pirfenidone for COVID-19 Related Severe ARDS; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Tanvir, M.; Wagay, I.; Nisar, S.; Ahmed, R.; Maqbool, M.; Kareem, O.; Muzaffer, U. Early Intervention with Anti-Fibrotic Pirfenidone Is Effective than Corticosteroids in Preventing Pulmonary Fibrosis in Severe COVID Pneumonia Patients. Curr. Med. Res. Pract. 2022, 12, 53. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, D.; Kong, X.; Wei, C.; LvQiu, S.; Wang, L.; Lin, Y.; Yin, Z.; Zhou, Z.; Luo, H. Case Report: Pirfenidone in the Treatment of Post-COVID-19 Pulmonary Fibrosis. Front. Med. 2022, 9, 925703. [Google Scholar] [CrossRef] [PubMed]
- Molina, M. Pirfenidone Compared to Placebo in Post-COVID19 Pulmonary Fibrosis COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2021.
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; et al. BIBF 1120: Triple Angiokinase Inhibitor with Sustained Receptor Blockade and Good Antitumor Efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollin, L.; Maillet, I.; Quesniaux, V.; Holweg, A.; Ryffel, B. Antifibrotic and Anti-Inflammatory Activity of the Tyrosine Kinase Inhibitor Nintedanib in Experimental Models of Lung Fibrosis. J. Pharmacol. Exp. Ther. 2014, 349, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Cottin, V. The Safety and Tolerability of Nintedanib in the Treatment of Idiopathic Pulmonary Fibrosis. Expert Opin. Drug Saf. 2017, 16, 857–865. [Google Scholar] [CrossRef]
- Umemura, Y.; Mitsuyama, Y.; Minami, K.; Nishida, T.; Watanabe, A.; Okada, N.; Yamakawa, K.; Nochioka, K.; Fujimi, S. Efficacy and Safety of Nintedanib for Pulmonary Fibrosis in Severe Pneumonia Induced by COVID-19: An Interventional Study. Int. J. Infect. Dis. 2021, 108, 454–460. [Google Scholar] [CrossRef]
- Singh, P.; Behera, D.; Gupta, S.; Deep, A.; Priyadarshini, S.; Padhan, P. Nintedanib vs Pirfenidone in the Management of COVID-19 Lung Fibrosis: A Single-Centre Study. J. R. Coll. Physicians Edinb. 2022, 52, 100–104. [Google Scholar] [CrossRef]
- PureTech. LYT-100 in Healthy Volunteers and BCRL; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- PureTech. LYT-100 in Patients With Idiopathic Pulmonary Fibrosis (IPF); Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Jing, F.; Fan, H.; Zhao, Z.; Xing, F.; He, Y.; Liu, C. The Efficacy of Treating Pulmonary Fibrosis and Pulmonary Function Injury in COVID-19 with the Fuzheng Huayu Tablets: Study Protocol for a Multicenter Randomized Controlled Trial. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Maiuolo, J.; Mollace, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Paone, S.; Scicchitano, M.; Macrì, R.; Nucera, S.; Bosco, F.; et al. The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-COV-2 Infection. Int. J. Mol. Sci. 2020, 21, 9309. [Google Scholar] [CrossRef]
- Maniscalco, M.; Ambrosino, P.; Fuschillo, S.; Stufano, S.; Sanduzzi, A.; Matera, M.G.; Cazzola, M. Bronchodilator Reversibility Testing in Post-COVID-19 Patients Undergoing Pulmonary Rehabilitation. Respir. Med. 2021, 182, 106401. [Google Scholar] [CrossRef] [PubMed]
- SolAeroMed Inc. Single Dose Study to Evaluate the Safety, and Efficacy of S-1226 (8%) in Subjects with Mild Atopic Asthma; Clinicaltrials.gov: Bethesda, AR, USA, 2019.
- Shrestha, G.; Githumbi, R.; Oslanski, B.; Lachman, N.; Venkova, D.; Montgomery, B.; Pieron, C.; Dennis, J.; Bjornson, C.L.; Jarand, J.; et al. A Phase IIa Open Label Study to Evaluate the Safety, Tolerability and Efficacy of S-1226 Administered by Nebulization in Subjects with Cystic Fibrosis Lung Disease. Respir. Med. 2021. [Google Scholar] [CrossRef]
- Thom, S.R. Hyperbaric Oxygen: Its Mechanisms and Efficacy. Plast. Reconstr. Surg. 2011, 127, 131S–141S. [Google Scholar] [CrossRef] [PubMed]
- Kirby, J.P. Hyperbaric Oxygen Therapy and Radiation-Induced Injuries. Mo. Med. 2019, 116, 198–200. [Google Scholar] [PubMed]
- Bhutani, S.; Vishwanath, G. Hyperbaric Oxygen and Wound Healing. Indian J. Plast. Surg. 2012, 45, 316–324. [Google Scholar] [CrossRef]
- Anders Kjellberg, M.D. Safety and Efficacy of Hyperbaric Oxygen for ARDS in Patients With COVID-19; Clinicaltrials.gov: Bethesda, AR, USA, 2022.
- Izadi, M.; Cegolon, L.; Javanbakht, M.; Sarafzadeh, A.; Abolghasemi, H.; Alishiri, G.; Zhao, S.; Einollahi, B.; Kashaki, M.; Jonaidi-Jafari, N.; et al. Ozone Therapy for the Treatment of COVID-19 Pneumonia: A Scoping Review. Int. Immunopharmacol. 2021, 92, 107307. [Google Scholar] [CrossRef]
- Franzini, M.; Valdenassi, L.; Ricevuti, G.; Chirumbolo, S.; Depfenhart, M.; Bertossi, D.; Tirelli, U. Oxygen-Ozone (O2-O3) Immunoceutical Therapy for Patients with COVID-19. Preliminary Evidence Reported. Int. Immunopharmacol. 2020, 88, 106879. [Google Scholar] [CrossRef]
- Chirumbolo, S.; Valdenassi, L.; Simonetti, V.; Bertossi, D.; Ricevuti, G.; Franzini, M.; Pandolfi, S. Insights on the Mechanisms of Action of Ozone in the Medical Therapy against COVID-19. Int. Immunopharmacol. 2021, 96, 107777. [Google Scholar] [CrossRef]
- Beghini, D.G.; Horita, S.I.; Henriques-Pons, A. Mesenchymal Stem Cells in the Treatment of COVID-19, a Promising Future. Cells 2021, 10, 2588. [Google Scholar] [CrossRef]
- Gentile, P.; Sterodimas, A. Adipose-Derived Stromal Stem Cells (ASCs) as a New Regenerative Immediate Therapy Combating Coronavirus (COVID-19)-Induced Pneumonia. Expert Opin. Biol. Ther. 2020, 20, 711–716. [Google Scholar] [CrossRef]
OP-like PCPS | Secondary PIOP | Cryptogenic OP | |
---|---|---|---|
Etiology | Virus-induced damage to epithelial and endothelial cells associated with an aberrant inflammatory response [43] | Unknown | |
Pathogenesis | Intrapulmonary-induced lung damage, vascular leakage, intra-alveolar edema, gas exchange impairment, hypoxemia, and subsequent pulmonary hypertension [49,52]. Tissue injury causes fibroblasts proliferation and transition into myofibroblasts, and the subsequent formation of extracellular matrix [53]. In turn, damaged lung tissue and the immune cells produce proinflammatory cytokines and chemoattractants, thereby maintaining the inflammatory process [54]. The formation of a stable pathological cycle, including the processes of tissue damage and regeneration over time, leads to the formation of stable fibrotic lesions. | ||
Clinical manifestation | Gas exchange impairment [37,55], dyspnea [7,56,57], dry cough [57,58], fatigue [7,57], fever [58] | Gas exchange impairment [13,59], dyspnea [13,60], dry cough [13,60], fatigue [59], fever [13,60] | |
Inflammatory markers | Blood: Neutrophilia [61,62], lymphopenia [61,62,63], elevated CRP [45,46,47,61], TNF-a [45,46,47], ferritin [64,65], D-dimer [7] BAL: Neutrophilia [61,62], eosinophilia [62,66], hemorrhage [67,68,69] | Blood: Neutrophilia [13,60], lymphopenia [13,60], eosinophilia [13,60], elevated CRP [70], TNF-a [71], creatinine [13], D-dimer [72] BAL: Neutrophilia [13,60], eosinophilia [13,60], hemorrhage [73] elevated IL-12 and IL-18 levels [74] | |
Radiological features | Peripheral bilateral predominant diffuse multifocal GGO and consolidation and reticular pattern, located primarily in the lower fields [22,23,75,76,77,78,79,80,81] | Subpleural and/or peribronchovascular bilateral multifocal consolidation located primarily in the middle and lower field [13,82,83,84,85,86] | |
Fibrotic markers | Fibrinogen [7], LDH [61] | Fibrinogen [87], LDH [13] | |
Histopathological findings | Intra-alveolar granulation tissue, interstitial lymphocyte [53,62] infiltration [62,88], and fibroblastic tissue proliferation [62,89] | Intra-alveolar granulation tissue with mononuclear cells, foamy macrophages infiltration [87,90], interstitial lymphocyte infiltration [90,91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazdyrev, E.; Panova, M.; Zherebtsova, V.; Burdenkova, A.; Grishagin, I.; Novikov, F.; Nebolsin, V. The Hidden Pandemic of COVID-19-Induced Organizing Pneumonia. Pharmaceuticals 2022, 15, 1574. https://doi.org/10.3390/ph15121574
Bazdyrev E, Panova M, Zherebtsova V, Burdenkova A, Grishagin I, Novikov F, Nebolsin V. The Hidden Pandemic of COVID-19-Induced Organizing Pneumonia. Pharmaceuticals. 2022; 15(12):1574. https://doi.org/10.3390/ph15121574
Chicago/Turabian StyleBazdyrev, Evgeny, Maria Panova, Valeria Zherebtsova, Alexandra Burdenkova, Ivan Grishagin, Fedor Novikov, and Vladimir Nebolsin. 2022. "The Hidden Pandemic of COVID-19-Induced Organizing Pneumonia" Pharmaceuticals 15, no. 12: 1574. https://doi.org/10.3390/ph15121574
APA StyleBazdyrev, E., Panova, M., Zherebtsova, V., Burdenkova, A., Grishagin, I., Novikov, F., & Nebolsin, V. (2022). The Hidden Pandemic of COVID-19-Induced Organizing Pneumonia. Pharmaceuticals, 15(12), 1574. https://doi.org/10.3390/ph15121574