Antioxidant–Anti-Inflammatory Evaluation of a Polyherbal Formula
Abstract
:1. Introduction
2. Results
2.1. Analytical Studies
2.1.1. Qualitative Analysis by High-Performance Thin-Layer Chromatography (HPTLC)
2.1.2. Spectrophotometric Analysis of Phenolic Compounds
2.1.3. Quantitative Analysis by High-Performance Liquid Chromatography (HPLC)
2.2. Pharmacological Studies
2.2.1. Total Antioxidant Capacity
2.2.2. DPPH Scavenging Assay
2.2.3. In-Vitro Assays
Evaluation of Nitric Oxide (NO) Production
Intercellular Adhesion Molecule (ICAM)-1 Quantification
2.2.4. In-Vivo Assay
- (a)
- 30 min after the edema was caused, a detectable anti-inflammatory effect (>20%) was perceived for formula F and the ASP 100 reference substance.
- (b)
- At 60 min after causing the edema, the samples were above the 20% level.
- (c)
- At 120 min, the samples had an anti-inflammatory effect.
- (d)
- At 180 min there was a marked anti-inflammatory effect of the ASP 100 sample while formula F had no anti-inflammatory effect.
3. Materials and Methods
3.1. Method of Preparation (According to Patent No.RO126280/29.06.2012)
3.2. Analytical Studies
3.2.1. HPTLC
3.2.2. Spectrophotometric Analysis of Phenolic Compounds
3.2.3. HPLC
3.3. Pharmacological Studies
3.3.1. Total Antioxidant Capacity
3.3.2. DPPH Scavenging Assay
3.3.3. In-Vitro Assays
- -
- Formula F was solubilized in the culture medium and applied in concentrations of 50, 75, 100 and 200 μg/mL (in duplicate) and maintained at 37 °C with 5% CO2 for 2 h
- -
- After the incubation time elapsed in the presence of the formula, the cells were stimulated with 50 ng/mL TNF-α (human, recombinant TNF-α, Alexis Biochemicals, Lausen, Switzerland) dissolved in serum medium and incubated at 37 °C with 5% CO2 for 17 h; in parallel, control groups were settled: formula F alone; untreated control; ASP 1µM; ASP+ TNF-α; TNF-α 50 ng/mL
- -
- After the incubation time elapsed in the presence of the inflammatory stimulus, the ICAM and NO levels were assessed.
Evaluation of NO Production
ICAM-1 Quantification
3.3.4. In-Vivo Assay
3.4. Ethical Statement
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Wu, L. Local Inflammatory Diseases Are at Risk of Developing Myocardial Infarction, Stroke, Renal Failure and Cancer via Chronic Systemic Inflammation. J. Biomed. Lab. Sci. 2007, 19, 35–38. [Google Scholar]
- Xu, Q.; Wang, Y.; Guo, S.; Shen, Z.; Wang, Y.; Yang, L. Anti-inflammatory and analgesic activity of aqueous extract of Flos populi. J. Ethnopharmacol. 2014, 152, 540–545. [Google Scholar]
- Jeong, Y.E.; Lee, M.Y. Anti-Inflammatory Activity of Populus deltoides Leaf Extract via Modulating NF-κB and p38/JNK Pathways. Int. J. Mol. Sci. 2018, 19, 3746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pobłocka-Olech, L.; Inkielewicz-Stepniak, I.; Krauze-Baranowska, M. Anti-inflammatory and antioxidative effects of the buds from different species of Populus in human gingival fibroblast cells: Role of bioflavanones. Phytomedicine 2019, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tawfeek, N.; Sobeh, M.; Hamdan, D.I.; Farrag, N.; Roxo, M.; El-Shazly, A.M.; Wink, M. Phenolic Compounds from Populus alba L. and Salix subserrata Willd. (Salicaceae) Counteract Oxidative Stress in Caenorhabditis elegans. Molecules 2019, 24, 1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Rosa, J.S.; Facchin, B.M.; Bastos, J.; Siqueira, M.A.; Micke, G.A.; Dalmarco, E.M.; Pizzolatti, M.G.; Fröde, T.S. Systemic administration of Rosmarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy. Planta Med. 2013, 79, 1605–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.H.; Chuang, L.T.; Lien, T.J.; Liing, Y.R.; Chen, W.Y.; Tsai, P.J. Rosmarinus officinalis extract suppresses Propionibacterium acnes-induced inflammatory responses. J. Med. Food 2013, 16, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, R.; Alvarado, J.L.; Presno, M.; Pérez-Veyna, O.; Serrano, C.J.; Yahuaca, P. Oxidative stress modulation by Rosmarinus officinalis in CCl4-induced liver cirrhosis. Phytother. Res. 2010, 24, 595–601. [Google Scholar] [CrossRef]
- Medicherla, K.; Ketkar, A.; Sahu, B.D.; Sudhakar, G.; Sistla, R. Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis. Food Funct. 2016, 7, 3233–3243. [Google Scholar] [CrossRef]
- Ghasemzadeh Rahbardar, M.; Amin, B.; Mehri, S.; Mirnajafi-Zadeh, S.J.; Hosseinzadeh, H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed. Pharmacother. 2017, 86, 441–449. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, X.; Zhou, L.; Liu, Z.; Yuan, J.; Cheng, J.; Zhao, J.; Wu, L.; Li, H.; Qiu, H.; et al. Carnosic acid inhibits inflammation response and joint destruction on osteoclasts, fibroblast-like synoviocytes, and collagen-induced arthritis rats. J. Cell. Physiol. 2018, 233, 6291–6303. [Google Scholar] [CrossRef]
- Schwager, J.; Richard, N.; Fowler, A.; Seifert, N.; Raederstorff, D. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes. Molecules 2016, 21, 465. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-Spectrum Analysis of Bioactive Compounds in Rosemary (Rosmarinus officinalis L.) as Influenced by Different Extraction Methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.; Dall Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
- Mulinacci, N.; Innocenti, M.; Bellumori, M.; Giaccherini, C.; Martini, V.; Michelozzi, M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 2011, 85, 167–176. [Google Scholar] [CrossRef]
- Romo-Vaquero, M.; Yáñez-Gascón, M.J.; Villalba, R.; Larrosa, M.; Fromentin, E.; Ibarra, A.; Roller, M.; Tomás-Barberán, F.; de Gea, J.C.; García-Conesa, M.T. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS ONE 2012, 7, e39773. [Google Scholar]
- Kis, B.; Avram, S.; Pavel, I.Z.; Lombrea, A.; Buda, V.; Dehelean, C.; Soica, C.; Yerer, M.B.; Bojin, F.; Folescu, R.; et al. Recent Advances Regarding the Phytochemical and Therapeutic Uses of Populus nigra L. Buds. Plants 2020, 9, 1464. [Google Scholar] [CrossRef]
- Dudonné, S.; Poupard, P.; Coutière, P.; Woillez, M.; Richard, T.; Mérillon, J.-M.; Vitrac, X. Phenolic Composition and Antioxidant Properties of Poplar Bud (Populus nigra) Extract: Individual Antioxidant Contribution of Phenolics and Transcriptional Effect on Skin Aging. J. Agric. Food Chem. 2011, 59, 4527–4536. [Google Scholar] [CrossRef]
- Jaganjac, M.; Sredoja Tisma, V.; Zarkovic, N. Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules 2021, 26, 5301. [Google Scholar] [CrossRef]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.; Zoumpoulakis, P.; Sinanoglou, V. Antioxidant Capacity of Selected Plant Extracts and Their Essential Oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef]
- Cecchini, S.; Paciolla, M.; Caputo, A.R.; Bavoso, A. Antioxidant Potential of the Polyherbal Formulation “ImmuPlus”: A Nutritional Supplement for Horses. Vet. Med. Int. 2014, 2014, 434239. [Google Scholar] [CrossRef]
- Rajurkar, N.S.; Hande, S.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Gîrd, C.; Nencu, I.; Popescu, M.; Costea, T.; Duţu, L.; Balaci, T.; Olaru, O. Chemical, antioxidant and toxicity evaluation of rosemary leaves and its dry extract. Farmacia 2017, 65, 978–983. [Google Scholar]
- Merghachea, D.; Boucherit-Otmania, Z.; El Hacib, I.; Merghachec, C.I.; Boucherita, K. Antioxidant and antimicrobial activities of algerian Populus nigra L. buds extracts. Biosci. Eng. Int. J. (BIOEJ) 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Huang, S.; Zheng, R. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett. 2006, 239, 271–280. [Google Scholar] [CrossRef]
- Osakabe, N.; Takano, H.; Sanbongi, C.; Yasuda, A.; Yanagisawa, R.; Inoue, K.; Yoshikawa, T. Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. Biofactors 2004, 21, 127–131. [Google Scholar] [CrossRef]
- Khayyal, M.; El-Ghazaly, M.; Abdallah, D.; Okpanyi, S.; Kelber, O.; Weiser, D. Mechanisms involved in the anti-inflammatory effect of a standardized willow bark extract. Arzneimittelforschung 2005, 55, 677–687. [Google Scholar] [CrossRef]
- Altinier, G.; Sosa, S.; Aquino, R.P.; Mencherini, T.; Della Loggia, R.; Tubaro, A. Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L. J. Agric. Food Chem. 2007, 55, 1718–1723. [Google Scholar] [CrossRef]
- Warnant, P.; Mertens, P.; Marche, C. Screening of poplar biomass for bio-active compounds: A simple method to assess antioxidant activity. Bioresour. Technol. 2004, 93, 43–48. [Google Scholar] [CrossRef]
- Pérez-Fons, L.; Aranda, F.J.; Guillén, J.; Villalaín, J.; Micol, V. Rosemary (Rosmarinus officinalis) diterpenes affect lipid polymorphism and fluidity in phospholipid membranes. Arch. Biochem. Biophys. 2006, 453, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, A.; Cases, J.; Bily, A.; He, K.; Bai, N.; Roller, M.; Coussaert, A.; Ripoll, C. Importance of extract standardization and in vitro/ex vivo assay selection for the evaluation of antioxidant activity of botanicals: A case study on three Rosmarinus officinalis L. extracts. J. Med. Food 2010, 13, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Li, W.; Tsubouchi, R.; Takeuchi, F.; Murakami, K.; Nisimoto, Y.; Yoshino, M. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic. Res. 2005, 39, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Yimam, M.; Lee, Y.C.; Jiao, P.; Hong, M.; Brownell, L.; Jia, Q. A Standardized Composition Comprised of Extracts from Rosmarinus officinalis, Annona squamosa and Zanthoxylum clava-herculis for Cellulite. Pharmacogn. Res. 2017, 9, 319–324. [Google Scholar] [CrossRef]
- Lo, A.H.; Liang, Y.C.; Lin-Shiau, S.Y.; Ho, C.T.; Lin, J.K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis 2002, 23, 983–991. [Google Scholar]
- Moon, M.K.; Lee, Y.J.; Kim, J.S.; Kang, D.G.; Lee, H.S. Effect of Caffeic Acid on Tumor Necrosis Factor-Alpha-Induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells. Biol. Pharm. Bull. 2009, 32, 1371–1377. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.; Serra, A.; Pinto, R.; Freitas, M.; et al. Anti-inflammatory Effect of Rosmarinic Acid and an Extract of Rosmarinus officinalis in Rat Models of Local and Systemic Inflammation. Basic Clin. Pharmacol. Toxicol. 2015, 116, 398–413. [Google Scholar] [CrossRef]
- De Almeida Goncalves, G.; de Sa-Nakanishi, A.; Comar, J.; Bracht, L.; Dias, M.; Barros, L.; Peralta, R.; Ferreira, I.; Bracht, A. Water soluble compounds of Rosmarinus officinalis L. improve the oxidative and inflammatory states of rats with adjuvant-induced arthritis. Food Funct. 2018, 9, 2328–2340. [Google Scholar] [CrossRef]
- Bouamra, D.; Chekib-Arslane, B.; Bouchebour, A.; Dahamna, S.; Bourriche, H.; Krache, S. Effects of Rosmarinus officinalis L. aqueous extract on acute inflammation. Sci. Technol. 2015, 42, 9–15. [Google Scholar]
- Debbache-Benaida, N.; Atmani-Kilani, D.; Schini-Keirth, V.; Djebbli, N.; Atmani, D. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent. Asian Pac. J. Trop. Biomed. 2015, 3, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Pacher, P.; Beckman, J.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.; Bladt, S. Plant Drug Analysis—A Thin Layer Chromatography Atlas, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; p. 210. [Google Scholar]
- Kovac-Besović, E.E.; Durić, K.; Kalodera, Z.; Sofić, E. Identification and isolation of pharmacologically active triterpenes in Betuale cortex, Betula pendula Roth, Betulaceae. Bosn. J. Basic Med. Sci. 2009, 9, 31–38. [Google Scholar] [CrossRef] [Green Version]
- National Agency for Medicines and Medical Devices. Farmacopeea Romana, 10th ed.; Medical Publishing House: Bucharest, Romania, 1993; p. 335. [Google Scholar]
- Council of Europe. European Pharmacopoeia 6.0 European Directorate for the Quality of Medicines and Health Care; European Pharmacopoeia/Monograph; Council of Europe: Strasbourg, France, 2007; pp. 2355–2356. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Vogel, H.G. Drug Discovery and Evaluation: Pharmacological Assays, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2008; p. 1103. [Google Scholar]
Sample | Total Polyphenols Expressed as Gallic Acid (%) | Flavones Expressed as Rutin (%) |
---|---|---|
Formula F | 12.12 ± 0.542 | 6.14 ± 0.384 |
Compound | Formula F |
---|---|
chlorogenic acid | 14.85 ± 0.25 mg/g |
caffeic acid | 62.16 ± 0.12 mg/g |
ferulic acid | 13.94 ± 0.14 mg/g |
rosmarinic acid | 8.91 ± 0.27 mg/g |
quercetin | 15.4 ± 0.24 mg/g |
apigenin | 0.342 ± 0.18 mg/g |
salicin | 7.7 ± 0.13 mg/g |
oleanolic acid | 1.86 ± 0.12 mg/g |
acteoside | 12.54 ± 0.2 mg/g |
Time (min) | 30 | 60 | 120 | 180 |
---|---|---|---|---|
% inhibition of paw volume | ||||
formula F | 38.65 | 35.42 | 36.64 | 12.76 |
ASP 100 | 42.98 | 58.20 | 64.25 | 54.40 |
Time (min) | 0 | 30 | 60 | 120 | 180 | 30 | 60 | 120 | 180 |
---|---|---|---|---|---|---|---|---|---|
Groups | Average Paw Size (mL) ± SD | Average Rise in Paw Volume (mL) ± SD | |||||||
control | 1.523 ± 0.137 | 2.830 ± 0.314 | 2.895 ± 0.290 | 2.843 ± 0.298 | 2.547 ± 0.244 | 1.307 ± 0.177 | 1.372 ± 0.153 | 1.32 ± 0.161 | 1.024 ± 0.107 |
formula F | 1.148 ± 0.044 | * 1.949 ± 0.111 | * 2.033 ± 0.025 | * 1.983 ± 0.085 | 2.040 ± 0.026 | * 0.801 ± 0.071 | * 0.885 ± 0.019 | * 0.835 ± 0.041 | 0.892 ± 0.018 |
ASP 100 | 1.744 ± 0.297 | 2.489 ± 0.241 | 2.318 ± 0.161 | 2.216 ± 0.197 | 2.211 ± 0.263 | 0.745 ± 0.056 | 0.574 ± 0.136 | 0.472 ± 0.1 | 0.467 ± 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigore, A.; Vulturescu, V.; Neagu, G.; Ungureanu, P.; Panteli, M.; Rasit, I. Antioxidant–Anti-Inflammatory Evaluation of a Polyherbal Formula. Pharmaceuticals 2022, 15, 114. https://doi.org/10.3390/ph15020114
Grigore A, Vulturescu V, Neagu G, Ungureanu P, Panteli M, Rasit I. Antioxidant–Anti-Inflammatory Evaluation of a Polyherbal Formula. Pharmaceuticals. 2022; 15(2):114. https://doi.org/10.3390/ph15020114
Chicago/Turabian StyleGrigore, Alice, Virginia Vulturescu, Georgeta Neagu, Paul Ungureanu, Minerva Panteli, and Iuksel Rasit. 2022. "Antioxidant–Anti-Inflammatory Evaluation of a Polyherbal Formula" Pharmaceuticals 15, no. 2: 114. https://doi.org/10.3390/ph15020114
APA StyleGrigore, A., Vulturescu, V., Neagu, G., Ungureanu, P., Panteli, M., & Rasit, I. (2022). Antioxidant–Anti-Inflammatory Evaluation of a Polyherbal Formula. Pharmaceuticals, 15(2), 114. https://doi.org/10.3390/ph15020114