First Chemical Investigation of Korean Wild Mushroom, Amanita hemibapha subsp. javanica and the Identification of Anti-Helicobacter pylori Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation of Compounds
2.2. Determination of the Structure of Compounds
2.3. Evaluation of Antibacterial Activity of the Isolated Compounds against H. pylori
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Fungal Material
3.3. Extraction and Separation/Isolation
Amanitahemic Acid A (1)
3.4. MS/MS Analysis of Compound 1
3.5. Experimental Procedures to Determine the Absolute Configuration of Compound 1
3.5.1. CEA Reaction
3.5.2. LC/MS Analysis
3.6. H. pylori Culture
3.7. Anti-H. pylori Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poliwoda, A.; Zielińska, K.; Halama, M.; Wieczorek, P.P. Determination of muscimol and ibotenic acid in mushrooms of Amanitaceae by capillary electrophoresis. Electrophoresis 2014, 35, 2593–2599. [Google Scholar] [CrossRef]
- Wei, J.; Wu, J.; Chen, J.; Wu, B.; He, Z.; Zhang, P.; Li, H.; Sun, C.; Liu, C.; Chen, Z.; et al. Determination of cyclopeptide toxins in Amanita subpallidorosea and Amanita virosa by high-performance liquid chromatography coupled with high-resolution mass spectrometry. Toxicon 2017, 133, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, I.; Kaya, E.; Sinirlioglu, Z.A.; Bayram, R.; Surmen, M.G.; Colakoglu, S. Clinical importance of toxin concentration in Amanita verna mushroom. Toxicon 2014, 87, 68–75. [Google Scholar] [CrossRef]
- Surayot, U.; Wangtueai, S.; You, S.; Palanisamy, S.; Krusong, W.; Brennan, C.S.; Barba, F.J.; Phimolsiripol, Y.; Seesuriyachan, P. Extraction, Structural Characterisation, and Immunomodulatory Properties of Edible Amanita Hemibapha Subspecies Javanica (Corner and Bas) Mucilage Polysaccharide as a Potential of Functional Food. J. Fungi 2021, 7, 683. [Google Scholar] [CrossRef]
- Surayot, U.; Wangtueai, S.; You, S.; Techapun, C.; Phimolsiripol, Y.; Leksawasdi, N.; Krusong, W.; Barba, F.J.; Seesuriyachan, P. Sulphation and Hydrolysis Improvements of Bioactivities, and Immuno-Modulatory Properties of Edible Amanita Hemibapha Subspecies Javanica (Corner and Bas) Mucilage Polysaccharide as a Potential in Personalized Functional Foods. J. Fungi 2021, 7, 847. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, J.K.; Yu, J.S.; Jeong, S.Y.; Choi, J.H.; Kim, J.-C.; Ko, Y.-J.; Kim, S.-H.; Kim, K.H. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch. Pharm. Res. 2021, 44, 514–524. [Google Scholar] [CrossRef]
- Lee, S.; Ryoo, R.; Choi, J.H.; Kim, J.-H.; Kim, S.-H.; Kim, K.H. Trichothecene and Tremulane Sesquiterpenes from a Halluci-nogenic Mushroom Gymnopilus Junonius and Their Cytotoxicity. Arch. Pharm. Res. 2020, 43, 214–223. [Google Scholar] [CrossRef]
- Ha, J.W.; Kim, J.; Kim, H.; Jang, W.; Kim, K.H. Mushrooms: An Important Source of Natural Bioactive Compounds. Nat. Prod. Sci. 2020, 26, 118–131. [Google Scholar]
- Kang, H.; Yoo, M.J.; Yi, S.A.; Kim, T.W.; Ha, J.W.; Na, M.W.; Park, K.H.; Kim, S.H.; Han, J.W.; Jang, T.S.; et al. Phytochemical Constituents Identified from the Aerial Parts of Lespedeza cuneata and their Effects on Lipid Metabolism during Adipocyte Maturation. Separations 2021, 8, 203. [Google Scholar] [CrossRef]
- Rodríguez, E.; Espuny, M.; Manresa, A.; Guerrero, A. Identification of (E)-11-Hydroxy-9-Octadecenoic Acid and (E)-9-Hydroxy-10-Octadecenoic Acid by Biotransformation of Oleic Acid by Pseudomonas Sp. 32t3. J. Am. Oil Chem. Soc. 2001, 78, 593. [Google Scholar] [CrossRef]
- Lee, S.R.; Park, H.B.; Kim, K.H. Highly Sensitive, Simple, and Cost- and Time-Effective Method to Determine the Absolute Configuration of a Secondary Alcohol Using Competing Enantioselective Acylation Coupled with LC/MS. Anal. Chem. 2018, 90, 13212–13216. [Google Scholar] [CrossRef]
- Buchta, E.; Fuchs, F. 10.13-Dioxo-Und 7.10. 13-Trioxohexadecansäure Sowie 10.13-Dihydroxy-Hexadecansäuremethylester Und Hexadecan-Triol-(1.10. 13). Naturwissenschaften 1961, 48, 454. [Google Scholar] [CrossRef]
- Porter, N.A.; Wujek, J.S. Allylic hydroperoxide rearrangement beta. -Scission or concerted pathway? J. Org. Chem. 1987, 52, 5085–5089. [Google Scholar] [CrossRef]
- Jie, M.S.L.K.; Lam, C.N. Reaction of Mono-Epoxidized Conjugated Linoleic Acid Ester with Boron Trifluoride Etherate Complex. Lipids 2004, 39, 583–587. [Google Scholar] [CrossRef]
- Pai, Z.P.; Khlebnikova, T.B.; Mattsat, Y.V.; Parmon, V.N. Catalytic oxidation of fatty acids. I. Epoxidation of unsaturated fatty acids. React. Kinet. Catal. Lett. 2009, 98, 1–8. [Google Scholar] [CrossRef]
- Gladitz, M.; Reinemann, S.; Radusch, H.-J. Preparation of Silver Nanoparticle Dispersions via a Dendritic-Polymer Template Approach and their Use for Antibacterial Surface Treatment. Macromol. Mater. Eng. 2009, 294, 178–189. [Google Scholar] [CrossRef]
- Luo, X.; Li, F.; Shinde, P.B.; Hong, J.; Lee, C.-O.; Im, A.K.S.; Jung, J.H. 26,27-Cyclosterols and Other Polyoxygenated Sterols from a Marine Sponge Topsentia sp. J. Nat. Prod. 2006, 69, 1760–1768. [Google Scholar] [CrossRef]
- Chen, Y.-K.; Kuo, Y.-H.; Chiang, B.-H.; Lo, J.-M.; Sheen, L.-Y. Cytotoxic Activities of 9,11-Dehydroergosterol Peroxide and Ergosterol Peroxide from the Fermentation Mycelia of Ganoderma lucidum Cultivated in the Medium Containing Leguminous Plants on Hep 3B Cells. J. Agric. Food Chem. 2009, 57, 5713–5719. [Google Scholar] [CrossRef]
- Li, G.; Li, B.; Liu, G.; Zhang, G. Sterols from Aspergillus Ocharceus 43. Chin. J. Appl. Environ. Biol. 2005, 11, 67–70. [Google Scholar]
- McGee, D.J.; George, A.E.; Trainor, E.A.; Horton, K.E.; Hildebrandt, E.; Testerman, T. Cholesterol Enhances Helicobacter pylori Resistance to Antibiotics and LL-37. Antimicrob. Agents Chemother. 2011, 55, 2897–2904. [Google Scholar] [CrossRef] [Green Version]
- Chey, W.D.; Wong, B.C.; Practice Parameters Committee of the American College of Gastroenterology. American College of Gastroenterology Guideline on the Management of Helicobacter Pylori Infection. Off. J. Am. Coll. Gastroenterol. ACG 2007, 102, 1808–1825. [Google Scholar] [CrossRef]
- Ortiz, V.; Estevez-Ordonez, D.; Montalvan-Sanchez, E.; Urrutia-Argueta, S.; Israel, D.; Krishna, U.S.; Romero-Gallo, J.; Wilson, K.T.; Peek, R.M.; Dominguez, R. Helicobacter Pylori Antimicrobial Resistance and Antibiotic Consumption in the Low-Resource Central America Setting. Helicobacter 2019, 24, e12595. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Q.; Yuan, Y.; Gong, Y. The antibiotic resistance of Helicobacter pylori to five antibiotics and influencing factors in an area of China with a high risk of gastric cancer. BMC Microbiol. 2019, 19, 152. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Kawase, M.; Tani, S. Urease inhibitory activity of simple α, β-unsaturated ketones. Life Sci. 2003, 73, 2985–2990. [Google Scholar] [CrossRef]
- Lee, S.B.; Taylor, J.W. Isolation of DNA from Fungal Mycelia and Single Spores. In PCR Protocols: A Guide to Methods and Applications; Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 282–287. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Khalil, A.A.K.; Park, W.S.; Lee, J.; Kim, H.-J.; Akter, K.-M.; Goo, Y.-M.; Bae, J.-Y.; Chun, M.-S.; Kim, J.-H.; Ahn, M.-J. A new anti-Helicobacter pylori juglone from Reynoutria japonica. Arch. Pharm. Res. 2019, 42, 505–511. [Google Scholar] [CrossRef]
Compound | Concentration (μm) | Inhibition (%) | MIC50 (μm) | MIC90 (μm) |
---|---|---|---|---|
1 | 100 | 27.4 | ||
2 | 3.4 | |||
3 | 38.0 | |||
4 | 80.5 | 72 | >100 | |
5 | 14.6 | |||
6 | 15.8 | |||
7 | 0.0 | |||
8 | 5.7 | |||
9 | 0.6 | |||
10 | 4.9 | |||
Quercetin a | 100 | 34.4 | ||
Metronidazole a | 97.0 | 17 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Alishir, A.; Kim, T.W.; Kang, D.-M.; Ryoo, R.; Pang, C.; Ahn, M.-J.; Kim, K.H. First Chemical Investigation of Korean Wild Mushroom, Amanita hemibapha subsp. javanica and the Identification of Anti-Helicobacter pylori Compounds. Pharmaceuticals 2022, 15, 152. https://doi.org/10.3390/ph15020152
Lee S, Alishir A, Kim TW, Kang D-M, Ryoo R, Pang C, Ahn M-J, Kim KH. First Chemical Investigation of Korean Wild Mushroom, Amanita hemibapha subsp. javanica and the Identification of Anti-Helicobacter pylori Compounds. Pharmaceuticals. 2022; 15(2):152. https://doi.org/10.3390/ph15020152
Chicago/Turabian StyleLee, Seulah, Akida Alishir, Tae Wan Kim, Dong-Min Kang, Rhim Ryoo, Changhyun Pang, Mi-Jeong Ahn, and Ki Hyun Kim. 2022. "First Chemical Investigation of Korean Wild Mushroom, Amanita hemibapha subsp. javanica and the Identification of Anti-Helicobacter pylori Compounds" Pharmaceuticals 15, no. 2: 152. https://doi.org/10.3390/ph15020152
APA StyleLee, S., Alishir, A., Kim, T. W., Kang, D. -M., Ryoo, R., Pang, C., Ahn, M. -J., & Kim, K. H. (2022). First Chemical Investigation of Korean Wild Mushroom, Amanita hemibapha subsp. javanica and the Identification of Anti-Helicobacter pylori Compounds. Pharmaceuticals, 15(2), 152. https://doi.org/10.3390/ph15020152