The Use of Janus Kinase Inhibitors in Axial Spondyloarthritis: Current Insights
Abstract
:1. Introduction
2. Key Mechanisms of Disease Pathogenesis in axSpA
3. The JAK/STAT Pathway
4. The Implication of the JAK/STAT Pathway in Spondyloarthritis
5. Clinical Trials of JAK Inhibitors in axSpA
5.1. Tofacitinib in axSpA
5.2. Upadacitinib in axSpA
5.3. Filgotinib in axSpA
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sieper, J.; Poddubnyy, D. Axial spondyloarthritis. Lancet 2017, 390, 73–84. [Google Scholar] [CrossRef]
- van der Linden, S.; Valkenburg, H.A.; Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheumatol. 1984, 27, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Rudwaleit, M.; Landewé, R.; van der Heijde, D.; Listing, J.; Brandt, J.; Braun, J.; Burgos-Vargas, R.; Collantes-Estevez, E.; Davis, J.; Dijkmans, B.; et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part I): Classification of paper patients by expert opinion including uncertainty appraisal. Ann. Rheum. Dis. 2009, 68, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Compán, V.; Sepriano, A.; El-Zorkany, B.; van der Heijde, D. Axial spondyloarthritis. Ann. Rheum. Dis. 2021, 80, 1511–1521. [Google Scholar] [CrossRef]
- Poddubnyy, D.; Sieper, J. Current Unmet Needs in Spondyloarthritis. Curr. Rheumatol. Rep. 2019, 21, 43. [Google Scholar] [CrossRef]
- Smolen, J.S.; Schöls, M.; Braun, J.; Dougados, M.; Fitzgerald, O.; Gladman, D.D.; Kavanaugh, A.; Landewé, R.; Mease, P.; Sieper, J.; et al. Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force. Ann. Rheum. Dis. 2018, 77, 3–17. [Google Scholar] [CrossRef]
- Sieper, J.; Poddubnyy, D. New evidence on the management of spondyloarthritis. Nat. Rev. Rheumatol. 2016, 12, 282–295. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Laurence, A.; McInnes, I.B. Back to the future: Oral targeted therapy for RA and other autoimmune diseases. Nat. Rev. Rheumatol. 2013, 9, 173–182. [Google Scholar] [CrossRef]
- Sieper, J.; Poddubnyy, D.; Miossec, P. The IL-23-IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat. Rev. Rheumatol. 2019, 15, 747–757. [Google Scholar] [CrossRef]
- Veale, D.J.; McGonagle, D.; McInnes, I.B.; Krueger, J.G.; Ritchlin, C.T.; Elewaut, D.; Kanik, K.S.; Hendrikx, T.; Berstein, G.; Hodge, J.; et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology 2019, 58, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Perrotta, F.M.; Lories, R.; Lubrano, E. To move or not to move: The paradoxical effect of physical exercise in axial spondyloarthritis. RMD Open 2021, 7, e001480. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.; Lambrecht, S.; Verheugen, E.; Pauwels, E.; Kollias, G.; Armaka, M.; Verhoye, M.; van der Linden, A.; Achten, R.; Lories, R.J.; et al. Proof of concept: Enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 2014, 73, 437–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, M.; Toumi, H.; Suzuki, D.; Redman, S.; Emery, P.; McGonagle, D. Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLA-B27-associated spondylarthritides and allied disorders. Arthritis Rheumatol. 2007, 56, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Reveille, J.D.; Arnett, F.C. Spondyloarthritis: Update on pathogenesis and management. Am. J. Med. 2005, 118, 592–603. [Google Scholar] [CrossRef]
- de Koning, A.; Schoones, J.W.; van der Heijde, D.; van Gaalen, F.A. Pathophysiology of axial spondyloarthritis: Consensus and controversies. Eur. J. Clin. Investig. 2018, 48, e12913. [Google Scholar] [CrossRef]
- Lories, R.J.; Schett, G. Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum. Dis. Clin. N. Am. 2012, 38, 555–567. [Google Scholar] [CrossRef]
- Toussirot, E. Pharmacological management of axial spondyloarthritis in adults. Expert Opin. Pharmacother. 2019, 20, 1483–1491. [Google Scholar] [CrossRef]
- Sherlock, J.P.; Joyce-Shaikh, B.; Turner, S.P.; Chao, C.C.; Sathe, M.; Grein, J.; Gorman, D.M.; Bowman, E.P.; McClanahan, T.K.; Yearley, J.H.; et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+CD3+CD4−CD8− entheseal resident T cells. Nat. Med. 2012, 18, 1069–1076. [Google Scholar] [CrossRef]
- Schett, G.; Coates, L.C.; Ash, Z.R.; Finzel, S.; Conaghan, P.G. Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: Traditional views, novel insights gained from TNF blockade, and concepts for the future. Arthritis Res. Ther. 2011, 13 (Suppl. 1), S4. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, J.J.; Kontzias, A.; Yamaoka, K.; Tanaka, Y.; Laurence, A. Janus kinase inhibitors in autoimmune diseases. Ann. Rheum. Dis. 2013, 72 (Suppl. 2), ii111–ii115. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2017, 16, 843–862. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, S.; Cheema, K.S.; Raychaudhuri, S.K.; Raychaudhuri, S.P. Janus kinase-signal transducers and activators of transcription cell signaling in Spondyloarthritis: Rationale and evidence for JAK inhibition. Curr. Opin. Rheumatol. 2021, 33, 348–355. [Google Scholar] [CrossRef]
- Miceli-Richard, C.; Dougados, M. Tracking JAKs in spondyloarthritis: Rationale and expectations. Ann. Rheum. Dis. 2017, 76, 1325–1326. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Szekanecz, Z.; McGonagle, D.; Maksymowych, W.P.; Pfeil, A.; Lippe, R.; Song, I.H.; Lertratanakul, A.; Sornasse, T.; Biljan, A.; et al. A review of JAK-STAT signalling in the pathogenesis of spondyloarthritis and the role of JAK inhibition. Rheumatology 2021, keab740. [Google Scholar] [CrossRef] [PubMed]
- Hammitzsch, A.; Lorenz, G.; Moog, P. Impact of Janus Kinase Inhibition on the Treatment of Axial Spondyloarthropathies. Front. Immunol. 2020, 11, 591176. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Wang, Y. Analysis of JAK2 and STAT3 polymorphisms in patients with ankylosing spondylitis in Chinese Han population. Clin. Immunol. 2010, 136, 442–446. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Cortes, A.; Shipman, L.; Evans, H.G.; Attfield, K.E.; Jostins, L.; Barber, T.; Kaur, G.; Kuttikkatte, S.B.; Leach, O.A.; et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 2016, 8, 363ra149. [Google Scholar] [CrossRef] [Green Version]
- Ellinghaus, D.; Ellinghaus, E.; Nair, R.P.; Stuart, P.E.; Esko, T.; Metspalu, A.; Debrus, S.; Raelson, J.V.; Tejasvi, T.; Belouchi, M.; et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 2012, 90, 636–647. [Google Scholar] [CrossRef] [Green Version]
- Maeda, Y.; Stavre, Z.; Huang, T.; Manning, C.; Shaughn, B.; Macoritto, M.; Hyland, D.; Waegell, W.; Gravallese, E.M. Blockade of the JAK/STAT Pathway Inhibits Inflammation and Bone Formation inTwo Murine Models of Spondyloarthritis. Arthritis Rheumatol. 2018, 10 (Suppl. 10), 2065. Available online: https://acrabstracts.org/abstract/blockade-of-the-jak-stat-pathway-inhibits-inflammation-and-bone-formation-in-two-murine-models-of-spondyloarthritis/ (accessed on 20 January 2022).
- Hammitzsch, A.; Chen, L.; de Wit, J.; Al-Mossawi, M.H.; Ridley, A.; Sekine, T.; Simone, D.; Doig, K.; Skapenko, A.; Bowness, P. Inhibiting ex-vivo Th17 responses in Ankylosing Spondylitis by targeting Janus kinases. Sci. Rep. 2018, 8, 15645. [Google Scholar] [CrossRef] [Green Version]
- Gracey, E.; Hromadová, D.; Lim, M.; Qaiyum, Z.; Zeng, M.; Yao, Y.; Srinath, A.; Baglaenko, Y.; Yeremenko, N.; Westlin, W.; et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J. Clin. Investig. 2020, 130, 1863–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Wilde, K.; Martens, A.; Lambrecht, S.; Jacques, P.; Drennan, M.B.; Debusschere, K.; Govindarajan, S.; Coudenys, J.; Verheugen, E.; Windels, F.; et al. A20 inhibition of STAT1 expression in myeloid cells: A novel endogenous regulatory mechanism preventing development of enthesitis. Ann. Rheum. Dis. 2017, 76, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Tofacitinib: A review of its use in adult patients with rheumatoid arthritis. Drugs 2013, 73, 857–874. [Google Scholar] [CrossRef] [PubMed]
- van der Heijde, D.; Deodhar, A.; Wei, J.C.; Drescher, E.; Fleishaker, D.; Hendrikx, T.; Li, D.; Menon, S.; Kanik, K.S. Tofacitinib in patients with ankylosing spondylitis: A phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 2017, 76, 1340–1347. [Google Scholar] [CrossRef]
- Deodhar, A.; Sliwinska-Stanczyk, P.; Xu, H.; Baraliakos, X.; Gensler, L.S.; Fleishaker, D.; Wang, L.; Wu, J.; Menon, S.; Wang, C.; et al. Tofacitinib for the treatment of ankylosing spondylitis: A phase III, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 2021, 80, 1004–1013. [Google Scholar] [CrossRef]
- Maksymowych, W.P.; van der Heijde, D.; Baraliakos, X.; Deodhar, A.; Sherlock, S.P.; Li, D.; Fleishaker, D.; Hendrikx, T.; Kanik, K.S. Tofacitinib is associated with attainment of the minimally important reduction in axial magnetic resonance imaging inflammation in ankylosing spondylitis patients. Rheumatology 2018, 57, 1390–1399. [Google Scholar] [CrossRef] [Green Version]
- Duggan, S.; Keam, S.J. Upadacitinib: First Approval. Drugs 2019, 79, 1819–1828. [Google Scholar] [CrossRef]
- van der Heijde, D.; Song, I.H.; Pangan, A.L.; Deodhar, A.; van den Bosch, F.; Maksymowych, W.P.; Kim, T.H.; Kishimoto, M.; Everding, A.; Sui, Y.; et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): A multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet 2019, 394, 2108–2117. [Google Scholar] [CrossRef]
- Deodhar, A.; van der Heijde, D.; Sieper, J.; van den Bosch, F.; Maksymowych, W.P.; Kim, T.H.; Kishimoto, M.; Ostor, A.; Combe, B.; Sui, Y.; et al. Safety and Efficacy of Upadacitinib in Patients With Active Ankylosing Spondylitis and an Inadequate Response to Nonsteroidal Antiinflammatory Drug Therapy: One-Year Results of a Double-Blind, Placebo-Controlled Study and Open-Label Extension. Arthritis Rheumatol. 2022, 74, 70–80. [Google Scholar] [CrossRef]
- Dhillon, S.; Keam, S.J. Filgotinib: First Approval. Drugs 2020, 80, 1987–1997. [Google Scholar] [CrossRef]
- van der Heijde, D.; Baraliakos, X.; Gensler, L.S.; Maksymowych, W.P.; Tseluyko, V.; Nadashkevich, O.; Abi-Saab, W.; Tasset, C.; Meuleners, L.; Besuyen, R.; et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): Results from a randomised, placebo-controlled, phase 2 trial. Lancet 2018, 392, 2378–2387. [Google Scholar] [CrossRef] [Green Version]
- Maksymowych, W.P.; Østergaard, M.; Landewé, R.; Barchuk, W.; Liu, K.; Gilles, L.; Hendrikx, T.; Besuyen, R.; Baraliakos, X. Filgotinib decreases both vertebral body and posterolateral spine inflammation in ankylosing spondylitis: Results from the TORTUGA trial. Rheumatology 2021, keab758. [Google Scholar] [CrossRef] [PubMed]
- Maksymowych, W.P.; Østergaard, M.; Landewé, R.; Barchuk, W.; Liu, K.; Tasset, C.; Gilles, L.; Hendrikx, T.; Besuyen, R.; Baraliakos, X. Impact of filgotinib on sacroiliac joint MRI structural lesions at 12 weeks in patients with active ankylosing spondylitis (TORTUGA trial). Rheumatology 2021, keab543. [Google Scholar] [CrossRef] [PubMed]
- A Study to Evaluate Efficacy and Safety of Upadacitinib in Adult Participants with Axial Spondyloarthritis (SELECT AXIS 2). Available online: https://clinicaltrials.gov/ct2/show/NCT04169373 (accessed on 20 January 2022).
- Abbvie Press Release. 7 October 2021. Available online: https://news.abbvie.com (accessed on 20 January 2022).
- Kuo, C.M.; Tung, T.H.; Wang, S.H.; Chi, C.C. Efficacy and safety of tofacitinib for moderate-to-severe plaque psoriasis: A systematic review and meta-analysis of randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 355–362. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Loftus, E.V., Jr.; Peyrin-Biroulet, L.; Van Assche, G.; D’Haens, G.; Schreiber, S.; Colombel, J.F.; Lewis, J.D.; Ghosh, S.; et al. Efficacy and Safety of Upadacitinib in a Randomized Trial of Patients with Crohn’s Disease. Gastroenterology 2020, 158, 2123–2138.e8. [Google Scholar] [CrossRef]
- Hromadová, D.; Elewaut, D.; Inman, R.D.; Strobl, B.; Gracey, E. From Science to Success? Targeting Tyrosine Kinase 2 in Spondyloarthritis and Related Chronic Inflammatory Diseases. Front. Genet. 2021, 12, 685280. [Google Scholar] [CrossRef]
- Papp, K.; Gordon, K.; Thaçi, D.; Morita, A.; Gooderham, M.; Foley, P.; Girgis, I.G.; Kundu, S.; Banerjee, S. Phase 2 Trial of Selective Tyrosine Kinase 2 Inhibition in Psoriasis. N. Engl. J. Med. 2018, 379, 1313–1321. [Google Scholar] [CrossRef]
- Mease, P.; Deodhar, A.; van der Heijde, D.; Behrens, F.; Kivitz, A.; Lehman, T.; Wei, L.; Nys, M.; Banerjee, S.; Nowak, M. Efficacy of Deucravacitinib, an Oral, Selective Tyrosine Kinase 2 Inhibitor, inMusculoskeletal Manifestations of Active PsA in a Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol. 2021, 73 (Suppl. 10), 1820. Available online: https://acrabstracts.org/abstract/efficacy-of-deucravacitinib-an-oral-selective-tyrosine-kinase-1822-inhibitor-in-musculoskeletal-manifestations-of-active-psa-in-a-phase-1822-randomized-double-blind-placebo-controlled-trial/ (accessed on 18 January 2022).
- Ytterberg, S.; Bhatt, D.; Mikuls, T.; Koch, G.; Fleischmann, R.; Rivas, J.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Food and Drug Administration. FDA Requires Warnings about Increased Risk of Serious Heart-Related Events, Cancer, Blood Clots, and Death for JAK Inhibitors That Treat Certain Chronic Inflammatory Conditions. Approved Uses Also Being Limited to Certain Patients. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-requires-warnings-about-increased-risk-serious-heart-related-events-cancer-blood-clots-and-death (accessed on 22 January 2022).
- Toussirot, E. The Risk of Cardiovascular Diseases in Axial Spondyloarthritis. Current Insights. Front. Med. 2021, 8, 782150. [Google Scholar] [CrossRef]
Author [Reference] | JAKi | Target | Treatment Arms | Number of Patients | Population | Primary Endpoint | Results |
---|---|---|---|---|---|---|---|
Deodhar [35] | Tofacitinib | JAK1, JAK3 (JAK2) | Placebo Tofacitinib 5 mg × 2/day | 269: 136 placebo 133 tofacitinib | AS patients IR ≥2 NSAIDs 80% bDMARD naive 20% IR to ≤2 TNFi | ASAS20 response at week 16 | Tofacitinib: 56.4% Placebo: 29.4% p < 0.0001 |
Van der Heijde [38] | Upadacitinib | JAK1 | Placebo Upadacitinib 15 mg/day | 187: 94 placebo 93 upadacitinib | AS patients IR ≥2 NSAIDs 100% bDMARD naive | ASAS40 response at week 14 | Upadacitinib: 52% Placebo: 26% p = 0.0003 |
Van der Heijde [41] | Filgotinib | JAK1 | Placebo Filgotinib 200 mg/day | 116: 58 filgotinib 58 placebo | AS patients IR ≥2 NSAIDs 93% bDMARD naive upadacitinib group 88% bDMARD naive placebo group | Change from baseline to week 12 in ASDAS score | Filgotinib: −1.47 ± 1.04 Placebo: −0.57 ± 0.82 p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toussirot, E. The Use of Janus Kinase Inhibitors in Axial Spondyloarthritis: Current Insights. Pharmaceuticals 2022, 15, 270. https://doi.org/10.3390/ph15030270
Toussirot E. The Use of Janus Kinase Inhibitors in Axial Spondyloarthritis: Current Insights. Pharmaceuticals. 2022; 15(3):270. https://doi.org/10.3390/ph15030270
Chicago/Turabian StyleToussirot, Eric. 2022. "The Use of Janus Kinase Inhibitors in Axial Spondyloarthritis: Current Insights" Pharmaceuticals 15, no. 3: 270. https://doi.org/10.3390/ph15030270
APA StyleToussirot, E. (2022). The Use of Janus Kinase Inhibitors in Axial Spondyloarthritis: Current Insights. Pharmaceuticals, 15(3), 270. https://doi.org/10.3390/ph15030270