Microbiological Evaluation of Novel Bis-Quaternary Ammonium Compounds: Clinical Strains, Biofilms, and Resistance Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Intensity of Biofilm Formation
2.2. Antibacterial Activity of Tested QACs
2.3. Antiseptic Compositions
2.4. Bacterial Resistance Study
3. Materials and Methods
3.1. Bacterial Strains
3.2. Identification of Microorganisms
3.3. Antibacterials
3.4. Cultivation of Microorganisms
3.5. Determination of the Biofilm Formation Ability
3.6. Antibacterial Assay
3.7. Bacterial Resistance Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’NEILL, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016; p. 84.
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Harriott, M.M. Biofilms and Antibiotics. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Hall, C.W.; Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Artasensi, A.; Mazzotta, S.; Fumagalli, L. Back to Basics: Choosing the Appropriate Surface Disinfectant. Antibiotics 2021, 10, 613. [Google Scholar] [CrossRef]
- Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef]
- Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? ChemMedChem 2012, 7, 22–31. [Google Scholar] [CrossRef]
- Bureš, F. Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. Top. Curr. Chem. 2019, 377, 14. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Frolov, N.A.; Egorova, K.S.; Seitkalieva, M.M.; Ananikov, V.P. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int. J. Mol. Sci. 2021, 22, 6793. [Google Scholar] [CrossRef]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—a critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef]
- Forman, M.E.; Fletcher, M.H.; Jennings, M.C.; Duggan, S.M.; Minbiole, K.P.C.; Wuest, W.M. Structure–Resistance Relationships: Interrogating Antiseptic Resistance in Bacteria with Multicationic Quaternary Ammonium Dyes. ChemMedChem 2016, 11, 958–962. [Google Scholar] [CrossRef]
- Gerba, C.P. Quaternary Ammonium Biocides: Efficacy in Application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Y.; Niu, L.-n.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.-h. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef] [PubMed]
- Vereshchagin, A.N.; Gordeeva, A.M.; Frolov, N.A.; Proshin, P.I.; Hansford, K.A.; Egorov, M.P. Synthesis and Microbiological Properties of Novel Bis-Quaternary Ammonium Compounds Based on Biphenyl Spacer. Eur. J. Org. Chem. 2019, 2019, 4123–4127. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Frolov, N.A.; Konyuhova, V.Y.; Hansford, K.A.; Egorov, M.P. Synthesis and microbiological properties of novel bis-quaternary ammonium compounds based on 4,4′-oxydiphenol spacer. Mendeleev Commun. 2019, 29, 523–525. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Frolov, N.A.; Minaeva, A.P.; Detusheva, E.V.; Derkach, Y.V.; Egorov, M.P. Synthesis and biological evaluation of novel cyanuric acid-tethered tris-pyridinium derivatives. Mendeleev Commun. 2021, 31, 368–369. [Google Scholar] [CrossRef]
- Harke, H.-P. Disinfectants. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim, Germany, 2000. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [Green Version]
- Abuga, K.; Nyamweya, N. Alcohol-Based Hand Sanitizers in COVID-19 Prevention: A Multidimensional Perspective. Pharmacy 2021, 9, 64. [Google Scholar] [CrossRef]
- Art, G. Combination Povidone-Iodine and Alcohol Formulations More Effective, More Convenient Versus Formulations Containing Either Iodine or Alcohol Alone: A Review of the Literature. J. Infus. Nurs. 2005, 28, 314–320. [Google Scholar] [CrossRef]
- Reichel, M.; Heisig, P.; Kohlmann, T.; Kampf, G. Alcohols for Skin Antisepsis at Clinically Relevant Skin Sites. Antimicrob. Agents Chemother. 2009, 53, 4778–4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaddeus, N.I.; Francis, E.C.; Jane, O.O.; Obumneme, A.C.; Okechukwu, E.C. Effects of some common additives on the antimicrobial activities of alcohol-based hand sanitizers. Asian Pac. J. Trop. Med. 2018, 11, 222–226. [Google Scholar] [CrossRef]
- Babalska, Z.Ł.; Korbecka-Paczkowska, M.; Karpiński, T.M. Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals 2021, 14, 1253. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.M.; DeGrazia, C.G.; Hoff, S.J.; Schulenberg, P.L.; O’Connor, J.R.; Paris, D.A.; Slee, A.M. Bispyridinamines: A new class of topical antimicrobial agents as inhibitors of dental plaque. J. Med. Chem. 1984, 27, 1457–1464. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef]
- Rodrigues, L.; Santos, L.; Tagliari, V.; Rizzo, N.; Trenhago, G.; Oliveira, A.; Goetz, F.; Nascimento, V. Quantification of biofilm production on polystyrene by Listeria, Escherichia coli and Staphylococcus aureus isolated from a poultry slaughterhouse. Braz. J. Microbiol. 2010, 41, 1082–1085. [Google Scholar] [CrossRef] [Green Version]
Strains | OD590 | Intensity |
---|---|---|
E. coli ATCC 25922 | 0.272 ± 0.011 | modest |
K. pneumoniae ATCC 700603 | 0.255 ± 0.008 | modest |
S. aureus ATCC 43300 | 0.301 ± 0.008 | modest |
P. aeruginosa ATCC 27853 | 0.383 ± 0.013 | high |
A. baumannii ATCC 15308 | 0.391 ± 0.005 | high |
Strains | OD590 | Intensity |
---|---|---|
E. coli B-3421/19 | 0.287 ± 0.005 | modest |
K. pneumoniae B-2523/18 | 0.399 ± 0.011 | high |
S. aureus B-8648 | 0.343 ± 0.022 | high |
P. aeruginosa B-2099/18 | 0.452 ± 0.018 | high |
A. baumannii B-2996/18 | 0.415 ± 0.012 | high |
Compounds | MIC/MBC (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference Strains | Clinical Strains | |||||||||
Sa | Ec | Kp | Ab | Pa | Sa | Ec | Kp | Ab | Pa | |
Planktonic cells | ||||||||||
1: n = 9, Br | 0.5 | 4 | 8 | 16 | 16 | 0.5 | 4 | 4 | 16 | 16 |
4 | 8 | 8 | 16 | 63 | 4 | 16 | 8 | 16 | 16 | |
2: n = 10, Br | 1 | 8 | 16 | 16 | 16 | 1 | 8 | 16 | 32 | 250 |
8 | 8 | 63 | 16 | 16 | 4 | 8 | 63 | 63 | 500 | |
3: n = 10, Br | 1 | 16 | 16 | 16 | 16 | 1 | 16 | 16 | 16 | 8 |
8 | 32 | 16 | 16 | 16 | 4 | 63 | 16 | 16 | 63 | |
BAC | 125 | 4 | 500 | >500 | >500 | 125 | 500 | 500 | >500 | >500 |
250 | 8 | 500 | >500 | >500 | 500 | >500 | 500 | >500 | >500 | |
CPC | 4 | 8 | 63 | 32 | 500 | 2 | 8 | 8 | 16 | 32 |
16 | 8 | 250 | 125 | >500 | 16 | 63 | 16 | 32 | 125 | |
OCT | 0.5 | 0.5 | 4 | 32 | 8 | 0.5 | 2 | 2 | 32 | 32 |
2 | 0.5 | 8 | 125 | 16 | 2 | 4 | 4 | 125 | 63 | |
Biofilms | ||||||||||
1: n = 9, Br | 8 | 16 | 16 | 32 | 125 | 8 | 16 | 16 | 32 | 125 |
16 | 16 | 32 | 125 | 500 | 8 | 32 | 125 | 125 | 500 | |
2: n = 10, Br | 4 | 16 | 16 | 250 | 125 | 8 | 32 | 16 | 32 | 250 |
16 | 16 | 250 | 250 | >500 | 16 | 32 | 250 | 500 | 500 | |
3: n = 10, Br | 8 | 16 | 32 | 63 | 125 | 8 | 16 | 32 | 32 | 250 |
16 | 16 | 125 | 500 | >500 | 16 | 63 | 250 | 500 | >500 | |
BAC | >500 | 250 | >500 | >500 | >500 | >500 | >500 | >500 | >500 | >500 |
>500 | 250 | >500 | >500 | >500 | >500 | >500 | >500 | >500 | >500 | |
CPC | 16 | 16 | 63 | 250 | >500 | 8 | 125 | 63 | 250 | >500 |
63 | 63 | 250 | 500 | >500 | 32 | 250 | 500 | 500 | >500 | |
OCT | 4 | 8 | 16 | 250 | 125 | 4 | 16 | 16 | 32 | 250 |
8 | 16 | 63 | 250 | 500 | 8 | 125 | 125 | 250 | 250 |
Compositions | MIC/MBC (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference Strains | Clinical Strains | |||||||||
Sa | Ec | Kp | Ab | Pa | Sa | Ec | Kp | Ab | Pa | |
PhE 1: n = 9, Br | 2 | 2 | 4 | 8 | 16 | 2 | 2 | 2 | 16 | 16 |
4 | 2 | 8 | 8 | 16 | 4 | 2 | 4 | 16 | 16 | |
PhE 2: n = 10, Br | 2 | 2 | 2 | 8 | 16 | 2 | 4 | 4 | 16 | 16 |
4 | 2 | 4 | 16 | 32 | 4 | 4 | 4 | 16 | 63 | |
PhE 3: n = 10, Br | 2 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 16 |
4 | 4 | 4 | 16 | 16 | 4 | 4 | 16 | 16 | 16 | |
PhE BAC | 4 | 16 | 16 | 16 | 32 | 1 | 16 | 32 | 16 | 16 |
16 | 16 | 16 | 16 | 63 | 16 | 32 | 32 | 32 | 125 | |
PhE OCT | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 4 | 2 |
8 | 2 | 1 | 2 | 2 | 8 | 4 | 4 | 8 | 8 | |
PhE/H2O (control) | 125 | 32 | 63 | 16 | 16 | 250 | 63 | 125 | 16 | 32 |
500 | 32 | 125 | 125 | 125 | 500 | 63 | 250 | 125 | 125 | |
IPA 1: n = 9, Br | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
1 | 2 | 2 | 2 | 4 | 1 | 2 | 2 | 2 | 2 | |
IPA 2: n = 10, Br | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 4 | 2 | 2 |
1 | 2 | 4 | 2 | 2 | 2 | 2 | 8 | 2 | 8 | |
IPA 3: n = 10, Br | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
1 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | |
IPA BAC | 4 | 8 | 4 | 8 | 32 | 1 | 16 | 32 | 16 | 16 |
16 | 8 | 16 | 32 | 63 | 16 | 125 | 32 | 32 | 63 | |
IPA OCT | 1 | 4 | 1 | 2 | 1 | 0.5 | 4 | 2 | 2 | 4 |
2 | 4 | 1 | 2 | 1 | 2 | 4 | 4 | 4 | 4 | |
IPA/H2O (control) | 63 | 32 | 32 | 16 | 16 | 63 | 32 | 32 | 16 | 16 |
250 | 32 | 63 | 63 | 63 | 250 | 32 | 125 | 32 | 63 | |
IPAP 1: n = 9, Br | 2 | 2 | 2 | 0,5 | 8 | 2 | 2 | 4 | 4 | 8 |
4 | 2 | 2 | 1 | 8 | 4 | 2 | 4 | 4 | 8 | |
IPAP 2: n = 10, Br | 2 | 2 | 2 | 2 | 8 | 2 | 4 | 2 | 4 | 8 |
4 | 2 | 2 | 2 | 8 | 4 | 4 | 2 | 4 | 8 | |
IPAP 3: n = 10, Br | 2 | 2 | 1 | 2 | 8 | 2 | 2 | 2 | 4 | 8 |
2 | 2 | 1 | 8 | 16 | 4 | 2 | 2 | 4 | 8 | |
IPAP BAC | 4 | 16 | 16 | 16 | 16 | 1 | 16 | 16 | 16 | 16 |
16 | 16 | 16 | 16 | 63 | 16 | 16 | 32 | 32 | 63 | |
IPAP OCT | 1 | 1 | 1 | 2 | 2 | 0,5 | 2 | 2 | 2 | 2 |
4 | 1 | 1 | 2 | 2 | 4 | 2 | 8 | 4 | 4 | |
IPAP/H2O (control) | 16 | 32 | 63 | 16 | 16 | 63 | 63 | 125 | 16 | 16 |
250 | 32 | 125 | 63 | 63 | 250 | 63 | 125 | 63 | 63 |
Compositions | MIC/MBC (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference Strains | Clinical Strains | |||||||||
Sa | Ec | Kp | Ab | Pa | Sa | Ec | Kp | Ab | Pa | |
PhE 1: n = 9, Br | 2 | 8 | 16 | 250 | 63 | 4 | 4 | 63 | 125 | 63 |
2 | 16 | 32 | 250 | 63 | 4 | 4 | 63 | 125 | 125 | |
PhE 2: n = 10, Br | 1 | 4 | 32 | 63 | 32 | 4 | 8 | 63 | 32 | 32 |
2 | 16 | 63 | 250 | 63 | 4 | 16 | 63 | 125 | 250 | |
PhE 3: n = 10, Br | 2 | 16 | 16 | 125 | 63 | 4 | 1 | 63 | 32 | 32 |
2 | 32 | 63 | 500 | 250 | 8 | 16 | 125 | 125 | 125 | |
PhE BAC | 16 | 16 | 32 | 32 | 125 | 8 | 16 | 32 | 32 | 63 |
16 | 16 | 32 | 32 | 125 | 32 | 16 | 32 | 32 | 125 | |
PhE OCT | 1 | 4 | 8 | 16 | 16 | 2 | 4 | 16 | 16 | 16 |
4 | 8 | 16 | 32 | 63 | 4 | 16 | 32 | 32 | 32 | |
PhE/H2O (control) | 32 | 16 | 63 | 63 | 125 | 63 | 32 | 63 | 63 | 32 |
63 | 32 | 125 | 250 | 125 | 125 | 63 | 125 | 125 | 125 | |
IPA 1: n = 9, Br | 2 | 4 | 8 | 32 | 16 | 2 | 4 | 8 | 32 | 16 |
8 | 4 | 8 | 63 | 32 | 8 | 4 | 8 | 63 | 32 | |
IPA 2: n = 10, Br | 4 | 4 | 16 | 32 | 16 | 4 | 4 | 16 | 16 | 32 |
8 | 4 | 32 | 32 | 32 | 8 | 4 | 63 | 32 | 32 | |
IPA 3: n = 10, Br | 2 | 4 | 8 | 32 | 16 | 1 | 4 | 16 | 16 | 16 |
4 | 4 | 16 | 32 | 32 | 2 | 4 | 32 | 16 | 63 | |
IPA BAC | 16 | 16 | 32 | 32 | 125 | 16 | 16 | 32 | 32 | 63 |
16 | 16 | 32 | 32 | 125 | 32 | 16 | 32 | 32 | 125 | |
IPA OCT | 2 | 4 | 4 | 16 | 8 | 2 | 4 | 16 | 16 | 16 |
2 | 8 | 8 | 32 | 32 | 4 | 4 | 32 | 32 | 32 | |
IPA/H2O (control) | 32 | 16 | 63 | 63 | 125 | 63 | 32 | 63 | 63 | 32 |
63 | 32 | 63 | 250 | 125 | 125 | 63 | 125 | 250 | 125 | |
IPAP 1: n = 9, Br | 1 | 4 | 8 | 32 | 16 | 2 | 1 | 16 | 32 | 16 |
2 | 4 | 16 | 63 | 63 | 4 | 4 | 32 | 32 | 63 | |
IPAP 2: n = 10, Br | 1 | 8 | 16 | 32 | 32 | 2 | 8 | 32 | 32 | 32 |
2 | 32 | 63 | 125 | 63 | 4 | 8 | 63 | 63 | 125 | |
IPAP 3: n = 10, Br | 4 | 16 | 16 | 32 | 16 | 2 | 2 | 32 | 32 | 16 |
4 | 16 | 16 | 63 | 63 | 4 | 4 | 32 | 63 | 63 | |
IPAP BAC | 16 | 1 | 32 | 32 | 125 | 16 | 1 | 32 | 32 | 63 |
16 | 2 | 32 | 63 | 250 | 32 | 8 | 32 | 32 | 500 | |
IPAP OCT | 1 | 2 | 8 | 8 | 16 | 2 | 2 | 16 | 16 | 16 |
4 | 4 | 8 | 16 | 63 | 4 | 8 | 16 | 32 | 125 | |
IPAP/H2O (control) | 32 | 16 | 63 | 63 | 125 | 32 | 32 | 63 | 63 | 32 |
63 | 32 | 63 | 125 | 125 | 125 | 63 | 125 | 125 | 125 |
Compositions | Effectivity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reference Strains | Clinical Strains | Σ | |||||||||
Sa | Ec | Kp | Ab | Pa | Sa | Ec | Kp | Ab | Pa | ||
Planktonic cells | |||||||||||
PhE | 40% | 80% | 90% | 70% | 40% | 20% | 80% | 70% | 40% | 70% | 60% |
IPA | 50% | 80% | 100% | 100% | 80% | 60% | 80% | 70% | 80% | 80% | 78% |
IPAP | 50% | 80% | 100% | 90% | 80% | 30% | 90% | 70% | 90% | 80% | 76% |
Biofilms | |||||||||||
PhE | 100% | 50% | 70% | 40% | 90% | 100% | 100% | 60% | 60% | 20% | 69% |
IPA | 90% | 90% | 90% | 90% | 80% | 100% | 100% | 90% | 100% | 80% | 91% |
IPAP | 100% | 70% | 90% | 80% | 80% | 100% | 100% | 60% | 70% | 50% | 80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolov, N.; Detusheva, E.; Fursova, N.; Ostashevskaya, I.; Vereshchagin, A. Microbiological Evaluation of Novel Bis-Quaternary Ammonium Compounds: Clinical Strains, Biofilms, and Resistance Study. Pharmaceuticals 2022, 15, 514. https://doi.org/10.3390/ph15050514
Frolov N, Detusheva E, Fursova N, Ostashevskaya I, Vereshchagin A. Microbiological Evaluation of Novel Bis-Quaternary Ammonium Compounds: Clinical Strains, Biofilms, and Resistance Study. Pharmaceuticals. 2022; 15(5):514. https://doi.org/10.3390/ph15050514
Chicago/Turabian StyleFrolov, Nikita, Elena Detusheva, Nadezhda Fursova, Irina Ostashevskaya, and Anatoly Vereshchagin. 2022. "Microbiological Evaluation of Novel Bis-Quaternary Ammonium Compounds: Clinical Strains, Biofilms, and Resistance Study" Pharmaceuticals 15, no. 5: 514. https://doi.org/10.3390/ph15050514
APA StyleFrolov, N., Detusheva, E., Fursova, N., Ostashevskaya, I., & Vereshchagin, A. (2022). Microbiological Evaluation of Novel Bis-Quaternary Ammonium Compounds: Clinical Strains, Biofilms, and Resistance Study. Pharmaceuticals, 15(5), 514. https://doi.org/10.3390/ph15050514