Morphine Accumulates in the Retina Following Chronic Systemic Administration
Abstract
:1. Introduction
2. Results
2.1. Morphine Deposits in Mouse Retina Following Systemic Exposure
2.2. Morphine Accumulates in Mouse Retina Following Repeated Systemic Exposure
2.3. Morphine Concentration in Mouse Retina Exceeds the Hypothalamic Morphine Concentration Following Systemic Exposure
2.4. Morphine Accumulates in Mouse Retina but Not in the Hypothalamus
2.5. Reduced P-gp Expression in the Retina May Underlie Retinal Morphine Accumulation
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Morphine Treatment
4.3. Tissue Sample Collection: Retina, Hypothalamus, and Serum
4.4. Morphine Analysis by LC-MS/MS
4.4.1. Retina Batch Preparation
4.4.2. Hypothalamus Batch Preparation
4.4.3. Serum Batch Preparation
4.4.4. Data Acquisition and Analysis
4.4.5. Method Validation
4.5. qRT-PCR
4.5.1. RNA Preparation
4.5.2. Reverse Transcription
4.5.3. qRT-PCR Primer Design
4.5.4. qRT-PCR Protocol
4.5.5. Data Analysis
4.6. Data Collection and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, J.T.; Ingram, S.L.; Henderson, G.; Chavkin, C.; von Zastrow, M.; Schulz, S.; Koch, T.; Evans, C.J.; Christie, M.J. Regulation of μ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacol. Rev. 2013, 65, 223–254. [Google Scholar] [CrossRef] [Green Version]
- McQuay, H. Opioids in Pain Management. Lancet 1999, 353, 2229–2232. [Google Scholar] [CrossRef]
- Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid Complications and Side Effects. Pain Physician 2008, 11, 105–120. [Google Scholar] [CrossRef]
- Struys, M.M.R.F.; Sahinovic, M.; Lichtenbelt, B.J.; Vereecke, H.E.M.; Absalom, A.R. Optimizing Intravenous Drug Administration by Applying Pharmacokinetic/ Pharmacodynamic Concepts. Br. J. Anaesth. 2011, 107, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Sheth, S.; Holtsman, M.; Mahakan, G. Major Opioids in Pain Management. In Essentials of Pain Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 373–384.e2. [Google Scholar]
- Gharavi, R.; Hedrich, W.; Wang, H.; Hassan, H.E. Transporter-Mediated Disposition of Opioids: Implications for Clinical Drug Interactions. Pharm. Res. 2015, 32, 2477–2502. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.; Christrup, L.; Sjøgren, P. Relationships Among Morphine Metabolism, Pain and Side Effects during Long-Term Treatment: An Update. J. Pain Symptom Manag. 2003, 25, 74–91. [Google Scholar] [CrossRef]
- Lötsch, J. Opioid Metabolites. In Proceedings of the Updates of the Clinical Pharmacology of Opioids with Special Attention to Long-Acting Drugs. J. Pain Symptom Manag. 2005, 29, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Maskell, P.D.; Wilson, N.E.; Seetohul, L.N.; Crichton, M.L.; Beer, L.J.; Drummond, G.; de Paoli, G. Postmortem Tissue Distribution of Morphine and Its Metabolites in a Series of Heroin-Related Deaths. Drug Test. Anal. 2019, 11, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Karinen, R.; Andersen, J.M.; Ripel, A.; Hasvold, I.; Hopen, A.B.; Morland, J.; Christophersen, A.S. Determination of Heroin and Its Main Metabolites in Small Sample Volumes of Whole Blood and Brain Tissue by Reversed-Phase Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2009, 33, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maskell, P.D.; Albeishy, M.; de Paoli, G.; Wilson, N.E.; Seetohul, L.N. Postmortem Redistribution of the Heroin Metabolites Morphine and Morphine-3-Glucuronide in Rabbits over 24 h. Int. J. Leg. Med. 2016, 130, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.M.; Ripel, Å.; Boix, F.; Normann, P.T.; Mørland, J. Increased Locomotor Activity Induced by Heroin in Mice: Pharmacokinetic Demonstration of Heroin Acting as a Prodrug for the Mediator 6-Monoacetylmorphine in vivo. J. Pharmacol. Exp. Ther. 2009, 331, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, C.P.; Tome, M.E.; Davis, T.P. The Opioid Epidemic: A Central Role for the Blood Brain Barrier in Opioid Analgesia and Abuse. Fluids Barriers CNS 2017, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Chaves, C.; Remiao, F.; Cisternino, S.; Decleves, X. Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Curr. Neuropharmacol. 2017, 15, 1156–1173. [Google Scholar] [CrossRef]
- Oldendorf, W.H.; Hyman, S.; Braun, L.; Oldendorf, S.Z. Blood-Brain Barrier: Penetration of Morphine, Codeine, Heroin, and Methadone after Carotid Injection. Science 1972, 178, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, E.R.; Viscusi, A.R. Blood-Brain Barrier: Mechanisms Governing Permeability and Interaction with Peripherally Acting μ-Opioid Receptor Antagonists. Reg. Anesth. Pain Med. 2020, 45, 688–695. [Google Scholar] [CrossRef]
- Boström, E.; Hammarlund-Udenaes, M.; Simonsson, U.S.H. Blood-Brain Barrier Transport Helps to Explain Discrepancies in In Vivo Potency between Oxycodone and Morphine. Anesthesiology 2008, 108, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenendaal, D.; Freijer, J.; de Mik, D.; Bouw, M.R.; Danhof, M.; de Lange, E.C.M. Population Pharmacokinetic Modelling of Non-Linear Brain Distribution of Morphine: Influence of Active Saturable Influx and P-Glycoprotein Mediated Efflux. Br. J. Pharmacol. 2007, 151, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Reilly, B.G.; Davis, T.P.; Ronaldson, P.T. Modulation of Opioid Transport at the Blood-Brain Barrier by Altered Atp-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018, 10, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letrent, S.P.; Polli, J.W.; Humphreys, J.E.; Pollack, G.M.; Brouwer, K.R.; Brouwer, K.L.R. P-Glycoprotein-Mediated Transport of Morphine in Brain Capillary Endothelial Cells. Biochem. Pharmacol. 1999, 58, 951–957. [Google Scholar] [CrossRef]
- Mercer, S.L.; Coop, A. Opioid Analgesics and P-Glycoprotein Efflux Transporters: A Potential Systems-Level Contribution to Analgesic Tolerance. Curr. Top. Med. Chem. 2011, 11, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Hamabe, W.; Maeda, T.; Kiguchi, N.; Yamamoto, C.; Tokuyama, S.; Kishioka, S. Negative Relationship between Morphine Analgesia and P-Glycoprotein Expression Levels in the Brain. J. Pharmacol. Sci. 2007, 105, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Dagenais, C.; Graff, C.L.; Pollack, G.M. Variable Modulation of Opioid Brain Uptake by P-Glycoprotein in Mice. Biochem. Pharmacol. 2004, 67, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Coránguez, M.; Ramos, C.; Antonetti, D.A. The Inner Blood-Retinal Barrier: Cellular Basis and Development. Vis. Res. 2017, 139, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X. Roles of Drug Transporters in Blood-Retinal Barrier. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2019; Volume 1141, pp. 467–504. [Google Scholar]
- Bévalot, F.; Cartiser, N.; Bottinelli, C.; Fanton, L.; Guitton, J. Vitreous Humor Analysis for the Detection of Xenobiotics in Forensic Toxicology: A Review. Forensic Toxicol. 2016, 34, 12–40. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Faiz, A.; Moshage, H.; Schubert, R.; Schilling, L.; Kamps, J.A. Comparative Transcriptome Analysis of Inner Blood-Retinal Barrier and Blood–Brain Barrier in Rats. Sci. Rep. 2021, 11, 12151. [Google Scholar] [CrossRef]
- Scott, K.S.; Oliver, J.S. Vitreous Humor as an Alternative Sample to Blood for the Supercritical Fluid Extraction of Morphine and 6-Monoacetylmorphine. Med. Sci. Law 1999, 39, 77–81. [Google Scholar] [CrossRef]
- Wyman, J.; Bultman, S. Postmortem Distribution of Heroin Metabolites in Femoral Blood, Liver, Cerebrospinal Fluid, and Vitreous Humor. J. Anal. Toxicol. 2004, 28, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.A.; Pounder, D.J.; Osselton, M.D. Distribution of Opiates in Femoral Blood and Vitreous Humour in Heroin/Morphine-Related Deaths. Forensic Sci. Int. 2013, 226, 152–159. [Google Scholar] [CrossRef]
- Gottås, A.; Arnestad, M.; Halvorsen, P.S.; Bachs, L.C.; Høiseth, G. Pharmacokinetics of Heroin and Its Metabolites in Vitreous Humor and Blood in a Living Pig Model. Forensic Toxicol. 2016, 34, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanches, L.R.; Seulin, S.C.; Leyton, V.; Bismara Paranhos, B.A.P.; Pasqualucci, C.A.; Muñaoz, D.R.; Osselton, M.D.; Yonamine, M. Determination of Opiates in Whole Blood and Vitreous Humor: A Study of the Matrix Effect and an Experimental Design to Optimize Conditions for the Enzymatic Hydrolysis of Glucuronides. J. Anal. Toxicol. 2012, 36, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Dahlström, B.E.; Paalzow, L.K. Pharmacokinetics of Morphine in Plasma and Discrete Areas of the Rat Brain. J. Pharmacokinet. Biopharm. 1975, 3, 293–302. [Google Scholar] [CrossRef]
- Kalvass, J.C.; Olson, E.R.; Cassidy, M.P.; Selley, D.E.; Pollack, G.M. Pharmacokinetics and Pharmacodynamics of Seven Opioids in P-Glycoprotein-Competent Mice: Asssessment of Unbound Brain EC50,u and Correlation of in vitro, Preclinical, and Clinical Data. J. Pharmacol. Exp. Ther. 2007, 323, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, K.I.; Tachikawa, M. Inner Blood-Retinal Barrier Transporters: Role of Retinal Drug Delivery. Pharm. Res. 2009, 26, 2055–2065. [Google Scholar] [CrossRef]
- Koek, W. Effects of Repeated Exposure to Morphine in Adolescent and Adult Male C57BL/6J Mice: Age-Dependent Differences in Locomotor Stimulation, Sensitization, and Body Weight Loss. Psychopharmacology 2014, 231, 1517–1529. [Google Scholar] [CrossRef] [Green Version]
- Handal, M.; Grung, M.; Skurtveit, S.; Ripel, Å.; Mørland, J. Pharmacokinetic Differences of Morphine and Morphine-Glucuronides Are Reflected in Locomotor Activity. Pharmacol. Biochem. Behav. 2002, 73, 883–892. [Google Scholar] [CrossRef]
- Koek, W.; France, C.P.; Javors, M.A. Morphine-Induced Motor Stimulation, Motor Incoordination, and Hypothermia in Adolescent and Adult Mice. Psychopharmacology 2012, 219, 1027–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, S.; Potter, D.E.; Crosson, C.E. Opioid Receptor-Activation: Retina Protected from Ischemic Injury. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3853–3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleymaet, A.M.; Gallagher, S.K.; Tooker, R.E.; Lipin, M.Y.; Renna, J.M.; Sodhi, P.; Berg, D.; Hartwick, A.T.E.; Berson, D.M.; Vigh, J. μ-Opioid Receptor Activation Directly Modulates Intrinsically Photosensitive Retinal Ganglion Cells. Neuroscience 2019, 408, 400–417. [Google Scholar] [CrossRef] [PubMed]
- Grace, P.M.; Stanford, T.; Gentgall, M.; Rolan, P.E. Utility of Saccadic Eye Movement Analysis as an Objective Biomarker to Detect the Sedative Interaction between Opioids and Sleep Deprivation in Opioid-Naive and Opioid-Tolerant Populations. J. Psychopharmacol. 2010, 24, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Cleymaet, A.M.; Berezin, C.T.; Vigh, J. Endogenous Opioid Signaling in the Mouse Retina Modulates Pupillary Light Reflex. Int. J. Mol. Sci. 2021, 22, 554. [Google Scholar] [CrossRef]
- McLane, V.D.; Bergquist, I.; Cormier, J.; Barlow, D.J.; Houseknecht, K.L.; Bilsky, E.J.; Cao, L. Long-Term Morphine Delivery via Slow Release Morphine Pellets or Osmotic Pumps: Plasma Concentration, Analgesia, and Naloxone-Precipitated Withdrawal. Life Sci. 2017, 185, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, H.N.; Villar, V.M.; Rahmani, N.H.; Larsen, A.K. Distribution of Morphine in Brain Regions, Spinal Cord and Serum Following Intravenous Injection to Morphine Tolerant Rats. Brain Res. 1995, 595, 228–235. [Google Scholar] [CrossRef]
- Chapy, H.; Saubaméa, B.; Tournier, N.; Bourasset, F.; Behar-Cohen, F.; Declèves, X.; Scherrmann, J.M.; Cisternino, S. Blood-Brain and Retinal Barriers Show Dissimilar ABC Transporter Impacts and Concealed Effect of P-Glycoprotein on a Novel Verapamil Influx Carrier. Br. J. Pharmacol. 2016, 173, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacfici, R.; di Carlo, S.; Bacosi, A.; Pichini, S.; Zuccaro, P. Pharmacokinetics and Cytokine Production in Heroin and Morphine-Treated Mice. Int. J. Immunopharmacol. 2000, 22, 603–614. [Google Scholar] [CrossRef]
- Husain, S.; Abdul, Y.; Crosson, C.E. Preservation of Retina Ganglion Cell Function by Morphine in a Chronic Ocular-Hypertensive Rat Model. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4289–4298. [Google Scholar] [CrossRef]
- Sawe, J.; Kager, L.; Svensson Eng, J.; Rane, A. Oral Morphine in Cancer Patients: In Vivo Kinetics and In Vitro Hepatic Glucuronidation. Br. J. Clin. Pharmacol. 1985, 19, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Rook, E.J.; Huitema, A.D.R.; van den Brink, W.; van Ree, J.M.; Beijnen, J.H. Pharmacokinetics and Pharmacokinetic Variability of Heroin and Its Metabolites: Review of the Literature. Curr. Clin. Pharmacol. 2006, 1, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.-L.; Hedner, J.; Björkman, R.; Hedner, T. Morphine-3-Glucuronide May Functionally Antagonize Morphine-6-Glucuronide Induced Antinociception and Ventilatory Depression in the Rat. Pain 1992, 48, 249–255. [Google Scholar]
- Penson, R.T.; Joel, S.P.; Bakhshi, K.; Clark, S.J.; Langford, R.M.; Slevin, M.L. Randomized Placebo-Controlled Trial of the Activity of the Morphine Glucuronides. Clin. Pharmacol. Ther. 2000, 68, 667–676. [Google Scholar] [CrossRef] [PubMed]
- van Dorp, E.L.A.; Romberg, R.; Sarton, E.; Bovill, J.G.; Dahan, A. Morphine-6-Glucuronide Morphine’s Successor for Postoperative Pain Relief van Dorp 2006. Anesth. Analg. 2006, 102, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Zuccaro, P.; Ricciarello, R.; Pichini, S.; Pacifici, R.; Altieri, I.; Pellegrini, M.; D’ascenzo, G. Simultaneous Determination of Heroin, 6-Monoacetylmorphine, Morphine, and Its Glucuronides by Liquid Chromatography-Atmospheric Pressure Ionspray-Mass Spectrometry. J. Anal. Toxicol. 1997, 21, 268–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochiai, W.; Kaneta, M.; Nagae, M.; Yuzuhara, A.; Li, X.; Suzuki, H.; Hanagata, M.; Kitaoka, S.; Suto, W.; Kusunoki, Y.; et al. Mice with Neuropathic Pain Exhibit Morphine Tolerance Due to a Decrease in the Morphine Concentration in the Brain. Eur. J. Pharm. Sci. 2016, 92, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Ollikainen, E.; Aitta-aho, T.; Koburg, M.; Kostiainen, R.; Sikanen, T. Rapid Analysis of Intraperitoneally Administered Morphine in Mouse Plasma and Brain by Microchip Electrophoresis-Electrochemical Detection. Sci. Rep. 2019, 9, 3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boix, F.; Andersen, J.M.; Mørland, J. Pharmacokinetic Modeling of Subcutaneous Heroin and Its Metabolites in Blood and Brain of Mice. Addict. Biol. 2013, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Guillot, E.; de Mazancourt, P.; Durigon, M.; Alvarez, J.C. Morphine and 6-Acetylmorphine Concentrations in Blood, Brain, Spinal Cord, Bone Marrow and Bone after Lethal Acute or Chronic Diacetylmorphine Administration to Mice. Forensic Sci. Int. 2007, 166, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Zong, J.; Pollack, G.M. Morphine Antinociception Is Enhanced in mdr1a Gene-Deficient Mice. Pharm. Res. 2000, 17, 749–753. [Google Scholar] [CrossRef]
- Haddad-Tóvolli, R.; Dragano, N.R.V.; Ramalho, A.F.S.; Velloso, L.A. Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Front. Neurosci. 2017, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Yousif, S.; Saubaméa, B.; Cisternino, S.; Marie-Claire, C.; Dauchy, S.; Scherrmann, J.M.; Declèves, X. Effect of Chronic Exposure to Morphine on the Rat Blood-Brain Barrier: Focus on the P-Glycoprotein. J. Neurochem. 2008, 107, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Aquilante, C.L.; Letrent, S.P.; Pollack, G.M.; Brouwer, K.L.R. Increased Brain P-Glycoprotein in Morphine Tolerant Rats. Life Sci. 1999, 66, 47–51. [Google Scholar] [CrossRef]
- Chaves, C.; Gómez-Zepeda, D.; Auvity, S.; Menet, M.C.; Crété, D.; Labat, L.; Remião, F.; Cisternino, S.; Declèves, X. Effect of Subchronic Intravenous Morphine Infusion and Naloxone-Precipitated Morphine Withdrawal on P-Gp and Bcrp at the Rat Blood-Brain Barrier. J. Pharm. Sci. 2016, 105, 350–358. [Google Scholar] [CrossRef]
- Gupta, K.; Chen, C.; Lutty, G.A.; Hebbel, R.P. Morphine Promotes Neovascularizing Retinopathy in Sickle Transgeneic Mice. Blood Adv. 2019, 3, 1073–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riazi-Esfahani, M.; Kiumehr, S.; Asadi-Amoli, F.; Dehpour, A.R. Effects of Intravitreal Morphine Administered at Different Time Points after Reperfusion in a Rabbit Model of Ischemic Retinopathy. Retina 2009, 29, 262–268. [Google Scholar] [CrossRef]
- Riazi-Esfahani, M.; Kiumehr, S.; Asadi-Amoli, F.; Lashay, A.R.; Dehpour, A.R. Morphine Pretreatment Provides Histologic Protection against Ischemia-Reperfusion Injury in Rabbit Retina. Retina 2008, 28, 511–517. [Google Scholar] [CrossRef] [PubMed]
- LeGates, T.A.; Fernandez, D.C.; Hattar, S. Light as a Central Modulator of Circadian Rhythms, Sleep and Affect. Nat. Rev. Neurosci. 2014, 15, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Byku, M.; Gannon, R.L. Opioid Induced Non-Photic Phase Shifts of Hamster Circadian Activity Rhythms. Brain Res. 2000, 873, 189–196. [Google Scholar] [CrossRef]
- Meijer, J.H.; Ruijs, A.C.J.; Albus, H.; van de Geest, B.; Duindam, H.; Zwinderman, A.H.; Dahan, A. Fentanyl, a µ-Opioid Receptor Agonist, Phase Shifts the Hamster Pacemaker. Brain Res. 2000, 868, 135–140. [Google Scholar] [CrossRef]
- Vansteensel, M.J.; Magnone, M.C.; van Oosterhout, F.; Baeriswyl, S.; Albrecht, U.; Albus, H.; Dahan, A.; Meijer, J.H. The Opioid Fentanyl Affects Light Input, Electrical Activity and Per Gene Expression in the Hamster Suprachiasmatic Nuclei. Eur. J. Neurosci. 2005, 21, 2958–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, M.A.; Fuller, P.M.; Jhou, T.C.; Martin-Schild, S.; Zadina, J.E.; Hu, Z.; Shiromani, P.; Lu, J. Opioidergic Projections to Sleep-Active Neurons in the Ventrolateral Preoptic Nucleus. Brain Res. 2008, 1245, 96–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Yue, X.F.; Qu, W.M.; Tan, R.; Zheng, P.; Urade, Y.; Huang, Z.L. Morphine Inhibits Sleep-Promoting Neurons in the Ventrolateral Preoptic Area via Mu Receptors and Induces Wakefulness in Rats. Neuropsychopharmacology 2013, 38, 791–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eacret, D.; Veasey, S.C.; Blendy, J.A. Bidirectional Relationship between Opioids and Disrupted Sleep: Putative Mechanisms. Mol. Pharmacol. 2020, 98, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathi, H.R.; Yoonessi, A.; Khatibi, A.; Rezaeitalab, F.; Rezaei-Ardani, A. Crosstalk between Sleep Disturbance and Opioid Use Disorder: A Narrative Review. Addict. Health 2020, 12, 140–158. [Google Scholar] [CrossRef]
- Connor, M.; Borgland, S.L.; Christie, M.J. Continued Morphine Modulation of Calcium Channel Currents in Acutely Isolated Locus Coeruleus Neurons from Morphine-Dependent Rats. Br. J. Pharmacol. 1999, 128, 1561–1569. [Google Scholar] [CrossRef] [Green Version]
- Peart, J.N.; Gross, G.J. Morphine-Tolerant Mice Exhibit a Profound and Persistent Cardioprotective Phenotype. Circulation 2004, 109, 1219–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawant, O.B.; Horton, A.M.; Zucaro, O.F.; Chan, R.; Bonilha, V.L.; Samuels, I.S.; Rao, S. The Circadian Clock Gene Bmal1 Controls Thyroid Hormone-Mediated Spectral Identity and Cone Photoreceptor Function. Cell Rep. 2017, 21, 692–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, H.; Tominaga, H.; Maruyama, Y.; Yoneda, K.; Maruyama, K.; Yoshii, K.; Kinoshita, S.; Nakano, M.; Tashiro, K. Stage-Specific Reference Genes Significant for Quantitative PCR during Mouse Retinal Development. Genes Cells 2015, 20, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Hellemans, J.; Mortier, G.; de Paepe, A.; Speleman, F.; Vandesompele, J. QBase Relative Quantification Framework and Software for Management and Automated Analysis of Real-Time Quantitative PCR Data. Genome Biol. 2008, 8, R19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergum, N.; Berezin, C.-T.; Dooley, G.; Vigh, J. Morphine Accumulates in the Retina Following Chronic Systemic Administration. Pharmaceuticals 2022, 15, 527. https://doi.org/10.3390/ph15050527
Bergum N, Berezin C-T, Dooley G, Vigh J. Morphine Accumulates in the Retina Following Chronic Systemic Administration. Pharmaceuticals. 2022; 15(5):527. https://doi.org/10.3390/ph15050527
Chicago/Turabian StyleBergum, Nikolas, Casey-Tyler Berezin, Gregory Dooley, and Jozsef Vigh. 2022. "Morphine Accumulates in the Retina Following Chronic Systemic Administration" Pharmaceuticals 15, no. 5: 527. https://doi.org/10.3390/ph15050527
APA StyleBergum, N., Berezin, C. -T., Dooley, G., & Vigh, J. (2022). Morphine Accumulates in the Retina Following Chronic Systemic Administration. Pharmaceuticals, 15(5), 527. https://doi.org/10.3390/ph15050527