Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole
Abstract
:1. Introduction
1.1. Aminothiazoles in Antimicrobial Agents
1.2. Design of the Compounds
2. Results and Discussion
2.1. Synthesis and Analytical Evaluation
2.2. Investigation of Lipophilicity
2.3. Investigation of the Water Solubility
2.4. Antimicrobial Results
2.4.1. In Vitro Screening of Antimycobacterial Activity
2.4.2. Comparing the Activity of 2-AMO with 2-AMT
2.4.3. Structure–Activity Relationship
2.4.4. Activity against Fast-Growing and Atypical Mycobacteria
2.4.5. Activity against Mtb H37Rv and Multi-Drug-Resistant Clinical Isolates
2.4.6. In Vitro Screening of Antibacterial and Antifungal Activity
2.5. In Silico Studies
2.5.1. Docking
2.5.2. Investigation of Binding Mode Stability
2.6. Cytotoxicity Screening
3. Materials and Methods
3.1. General Chemistry
3.2. Synthesis
3.2.1. Representative Synthetic Procedure
Preparation of 4-Phenyl-Substituted 2-Aminothiazole and 2-Aminooxazole
Coupling
3.2.2. Spectroscopic Identification and Analytical Evaluation
3.3. Log k’w and Solubility Evaluation
3.4. Antimicrobial and Cytotoxicity Screening
3.5. In Silico Studies
3.5.1. Docking
3.5.2. Molecular Dynamics
MD Protocol:
- Restrained minimization—10 ps.
- Unrestrained minimization—10 ps.
- Restrained NVT heating—504 ps—gradual heating 0 to 300 K (force constant reduced to 2).
- Restrained NPT equilibration—500 ps (T = 300 K, P = 1 bar, same constraints as for heating).
- Restrained NPT equilibration—2000 ps constraints gradually turned off (T = 300 K, P = 1 bar).
- NPT equilibration—2000 ps (T = 300 K, P = 1 bar).
- NPT production phase—50,000 ps (50 ns) (T = 300 K, P = 1 bar).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Doorn, H.R. Emerging infectious diseases. Med. Abingdon 2014, 42, 60–63. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Gygli, S.M.; Borrell, S.; Trauner, A.; Gagneux, S. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiol Rev 2017, 41, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Tiberi, S.; du Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F.; Mfinanga, S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; et al. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis. 2018, 18, e183–e198. [Google Scholar] [CrossRef]
- WHO publishes list of bacteria for which new antibiotics are urgently needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 8 April 2022).
- Miller, L.S. Bacterial Infections. In Clinical and Basic Immunodermatology; Springer International Publishing: Berlin, Germany, 2017; pp. 265–288. [Google Scholar]
- Azzali, E.; Girardini, M.; Annunziato, G.; Pavone, M.; Vacondio, F.; Mori, G.; Pasca, M.R.; Costantino, G.; Pieroni, M. 2-Aminooxazole as a Novel Privileged Scaffold in Antitubercular Medicinal Chemistry. ACS Med. Chem. Lett. 2020, 11, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Li, D.D.; Wang, R.R.; Sun, J.; Dong, J.J.; Du, Q.R.; Fang, F.; Zhang, W.M.; Zhu, H.L. Design and synthesis of thiazole derivatives as potent FabH inhibitors with antibacterial activity. Eur. J. Med. Chem. 2014, 75, 438–447. [Google Scholar] [CrossRef]
- Lv, P.C.; Wang, K.R.; Yang, Y.; Mao, W.J.; Chen, J.; Xiong, J.; Zhu, H.L. Design, synthesis and biological evaluation of novel thiazole derivatives as potent FabH inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 6750–6754. [Google Scholar] [CrossRef]
- Zitko, J.; Jand’ourek, O.; Paterova, P.; Navratilova, L.; Kunes, J.; Vinsova, J.; Dolezal, M. Design, synthesis and antimycobacterial activity of hybrid molecules combining pyrazinamide with a 4-phenylthiazol-2-amine scaffold. Medchemcomm 2018, 9, 685–696. [Google Scholar] [CrossRef]
- Jaladanki, C.K.; Khatun, S.; Gohlke, H.; Bharatam, P.V. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chem. Res. Toxicol. 2021, 34, 1503–1517. [Google Scholar] [CrossRef]
- Smith, G.F. Designing Drugs to Avoid Toxicity. In Prog. Med. Chem., 2nd ed.; Lawton, G., Witty, D.R., Eds.; Elsevier: Amsterdam, Netherlands, 2011; Volume 50, pp. 1–47. [Google Scholar]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef]
- Devine, S.M.; Mulcair, M.D.; Debono, C.O.; Leung, E.W.; Nissink, J.W.; Lim, S.S.; Chandrashekaran, I.R.; Vazirani, M.; Mohanty, B.; Simpson, J.S.; et al. Promiscuous 2-aminothiazoles (PrATs): A frequent hitting scaffold. J. Med. Chem. 2015, 58, 1205–1214. [Google Scholar] [CrossRef]
- Patani, G.A.; LaVoie, E.J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev. 1996, 96, 3147–3176. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Huang, Y.; Zhao, Y.; He, G.; Xie, Y.; Liu, J.; He, J.; Liu, B.; Wei, Y. Preparation, antibacterial evaluation and preliminary structure-activity relationship (SAR) study of benzothiazol- and benzoxazol-2-amine derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3044–3049. [Google Scholar] [CrossRef] [PubMed]
- Sankar, P.S.; Babu, K.N.; Rekha, T.; Padmaja, A.; Padmavathi, V. Molecular properties prediction, synthesis, and antimicrobial activity of bis(azolyl)sulfonamidoacetamides. Arch. Pharm. Weinh. 2021, 354, e2000483. [Google Scholar] [CrossRef]
- Mochalkin, I.; Miller, J.R.; Narasimhan, L.; Thanabal, V.; Erdman, P.; Cox, P.B.; Prasad, J.V.; Lightle, S.; Huband, M.D.; Stover, C.K. Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem. Biol. 2009, 4, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Sriram, D.; Yogeeswari, P.; Thirumurugan, R.; Pavana, R.K. Discovery of new antitubercular oxazolyl thiosemicarbazones. J. Med. Chem. 2006, 49, 3448–3450. [Google Scholar] [CrossRef]
- Meissner, A.; Boshoff, H.I.; Vasan, M.; Duckworth, B.P.; Barry, C.E., 3rd; Aldrich, C.C. Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2013, 21, 6385–6397. [Google Scholar] [CrossRef]
- Nofiani, R.; Philmus, B.; Nindita, Y.; Mahmud, T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. Medchemcomm 2019, 10, 1517–1530. [Google Scholar] [CrossRef]
- Nawrot, D.; Suchankova, E.; Jandourek, O.; Konecna, K.; Barta, P.; Dolezal, M.; Zitko, J. N-pyridinylbenzamides: An isosteric approach towards new antimycobacterial compounds. Chem. Biol. Drug Des. 2021, 97, 686–700. [Google Scholar] [CrossRef]
- Juhas, M.; Pallabothula, V.S.K.; Grabrijan, K.; Simovicova, M.; Jandourek, O.; Konecna, K.; Barta, P.; Paterova, P.; Gobec, S.; Sosic, I.; et al. Design, synthesis and biological evaluation of substituted 3-amino-N-(thiazol-2-yl)pyrazine-2-carboxamides as inhibitors of mycobacterial methionine aminopeptidase 1. Bioorg. Chem. 2022, 118, 105489. [Google Scholar] [CrossRef]
- Abraham, D.J.; Myers, M.R.; Stewart, K.D. Burger’s Medicinal Chemistry and Drug Discovery–Volume 2–Discovering Lead Molecules; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Montanari, M.L.C.; Montanari, C.A.; Piló-Veloso, D.; Cass, Q.B. Estimation of the RP-HPLC Lipophilicity Parameters Log K’, and Log KW, A Comparison with the Hydrophobicity Index ϕ0. J. Liq. Chromatogr. Relat. Technol. 2006, 20, 1703–1715. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012, 52, 420–428. [Google Scholar] [CrossRef]
- Franzblau, S.G.; Witzig, R.S.; McLaughlin, J.C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M.T.; Cook, M.B.; Quenzer, V.K.; Ferguson, R.M.; et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998, 36, 362–366. [Google Scholar] [CrossRef]
- Sundarsingh, J.A.T.; Ranjitha, J.; Rajan, A.; Shankar, V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health 2020, 13, 1255–1264. [Google Scholar] [CrossRef]
- Gupta, R.S.; Lo, B.; Son, J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018, 9, 67. [Google Scholar] [CrossRef]
- Namouchi, A.; Cimino, M.; Favre-Rochex, S.; Charles, P.; Gicquel, B. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: Implications for drug discovery. BMC Genom. 2017, 18, 530. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Dwivedi, N.; Tripathi, R.P.; Sinha, S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J. Gen. Appl. Microbiol. 2007, 53, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, M.T.; May, R.J.; Heider, F.; Reimers, T.; SK, B.S.; Peloquin, C.A.; Derendorf, H. Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. Mycobacteriol. 2018, 7, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, M.; Palek, L.; Vinsova, J.; Buchta, V.; Jampilek, J.; Kralova, K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules 2006, 11, 242–256. [Google Scholar] [CrossRef]
- Ran, K.; Gao, C.; Deng, H.; Lei, Q.; You, X.; Wang, N.; Shi, Y.; Liu, Z.; Wei, W.; Peng, C.; et al. Identification of novel 2-aminothiazole conjugated nitrofuran as antitubercular and antibacterial agents. Bioorg. Med. Chem. Lett. 2016, 26, 3669–3674. [Google Scholar] [CrossRef] [PubMed]
- Zimichev, A.V.; Zemtsova, M.N.; Kashaev, A.G.; Klimochkin, Y.N. Synthesis and Antituberculous Activity of Quinoline Isosteres of Isoniazid. Pharm. Chem. J. 2011, 45, 217–219. [Google Scholar] [CrossRef]
- Subcommittee Of The Joint Tuberculosis Committee Of The British Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999. Thorax 2000, 55, 210–218. [Google Scholar] [CrossRef]
- Karakousis, P.C.; Moore, R.D.; Chaisson, R.E. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect. Dis. 2004, 4, 557–565. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar] [CrossRef]
- Eucast Definitive Document E.Def 7.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/ (accessed on 8 April 2022).
- Eucast Definitive Document E.Def 9.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds/ (accessed on 8 April 2022).
- Ottiger, P.; Pfaffen, C.; Leist, R.; Leutwyler, S.; Bachorz, R.A.; Klopper, W. Strong N-H…pi hydrogen bonding in amide-benzene interactions. J. Phys. Chem B 2009, 113, 2937–2943. [Google Scholar] [CrossRef]
- Liu, K.; Watanabe, E.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput. Aided Mol. Des. 2017, 31, 201–211. [Google Scholar] [CrossRef]
- Ramappa, V.; Aithal, G.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J. Clin. Exp. Hepatol. 2013, 3, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.L.; Li, J.Y.; Liu, Z.Y.; Chen, L.L.; Li, J.; Ye, Q.Z.; Nan, F.J. Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 1: SAR studies on the determination of the key scaffold. Bioorg. Med. Chem. Lett. 2005, 15, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Chuang, S.H.; Huang, L.Y.; Lai, C.L.; Lin, Y.H.; Yang, J.Y.; Liu, C.W.; Yang, S.C.; Lin, H.S.; Chang, C.C.; et al. Discovery of 4-aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 inhibitors. Part I: Optimization of in vitro potencies and pharmacokinetic properties. J. Med. Chem. 2014, 57, 4098–4110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.T.; Ruan, J.L.; Wu, P.F.; Jiang, F.C.; Zhang, L.N.; Fang, W.; Chen, X.L.; Wang, Y.; Cao, B.S.; Chen, G.Y.; et al. Design, synthesis, and cytoprotective effect of 2-aminothiazole analogues as potent poly(ADP-ribose) polymerase-1 inhibitors. J. Med. Chem. 2009, 52, 718–725. [Google Scholar] [CrossRef]
- Thatha, S.; Ummadi, N.; Venkatapuram, P.; Adivireddy, P. Synthesis, Characterization, and Antioxidant Activity of a New Class of Amido linked Azolyl Thiophenes. J. Heterocycl. Chem. 2018, 55, 1410–1418. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Juhas, M.; Kucerova, L.; Horacek, O.; Jandourek, O.; Kubicek, V.; Konecna, K.; Kucera, R.; Barta, P.; Janousek, J.; Paterova, P.; et al. N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers. Molecules 2020, 25, 1518. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE); 2020.0901; Chemical Computing Group ULC: Montreal, QC, Canada, 2019.
- Labute, P. Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 2009, 75, 187–205. [Google Scholar] [CrossRef]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef]
- Gowers, R.; Linke, M.; Barnoud, J.; Reddy, T.; Melo, M.; Seyler, S.; Domański, J.; Dotson, D.; Buchoux, S.; Kenney, I.; et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Proceedings of the 15th Python in Science Conference (SciPy), Austin, TX, USA, 11–17 July 2016. [Google Scholar]
Structure | Code | Ar | X | log k’w | HepG2 IC50 (µM) | Mtb H37Ra MIC (µg/mL) |
---|---|---|---|---|---|---|
1a | pyridin-2-yl | S | 1.857 | >1000 * | 31.25 | |
1b | pyridin-2-yl | O | 0.854 | >1000 * | 62.5 | |
2a | pyridin-3-yl | S | 1.251 | >1000 * | 250 | |
2b | pyridin-3-yl | O | 0.436 | >1000 * | 31.25 | |
3a | pyridin-4-yl | S | 1.306 | >1000 * | 250 | |
3b | pyridin-4-yl | O | 0.396 | >1000 * | 15.625 | |
4b | 5-Me-pyridin-3-yl | O | 0.888 | >1000 * | 7.81 | |
5b | 2-Me-pyridin-4-yl | O | 0.714 | >1000 * | 3.91 | |
6a | 2-Cl-pyridin-4-yl | S | 2.013 | >250 ** | ≥500 | |
6b | 2-Cl-pyridin-4-yl | O | 1.136 | 664.1 | 3.125 | |
7a | 2-Cl-6-Me-pyridin-4-yl | S | 2.319 | >250 ** | ≥500 | |
7b | 2-Cl-6-Me-pyridin-4-yl | O | 1.430 | 959.4 | <3.91 | |
8a | pyrazin-2-yl | S | 1.222 | n.d. | 62.5 | |
8b | pyrazin-2-yl | O | 0.154 | n.d. | 31.25 | |
9a | 5-Cl-pyrazin-2-yl | S | 1.941 | n.d. | 31.25 | |
9b | 5-Cl-pyrazin-2-yl | O | 0.958 | n.d. | 31.25 | |
10a | quinoxalin-2-yl | S | 2.530 | >50 ** | ≥250 | |
10b | quinoxalin-2-yl | O | 1.493 | >1000 * | 15.625 | |
11a | pyridin-2-yl | S | 3.102 | >100 ** | 3.91 | |
11b | pyridin-2-yl | O | 2.038 | 883.4 | 3.91 | |
12a | pyridin-3-yl | S | 2.131 | >25 ** | ≥500 | |
12b | pyridin-3-yl | O | 1.118 | 610.3 | 125 | |
13a | pyridin-4-yl | S | 2.190 | >100 ** | 7.81 | |
13b | pyridin-4-yl | O | 1.163 | 879.3 | 31.25 | |
14b | 5-Me-pyridin-3-yl | O | 1.478 | >100 ** | ≥250 | |
15a | 2-Cl-pyridin-4-yl | S | 3.036 | 102.6 | 3.91 | |
15b | 2-Cl-pyridin-4-yl | O | 1.992 | 136.1 | 7.81 | |
16a | 2-Cl-6-Me-pyridin-4-yl | S | 3.314 | n.d. | 7.81 | |
16b | 2-Cl-6-Me-pyridin-4-yl | O | 2.251 | n.d. | 15.625 | |
17a | pyrazin-2-yl | S | 2.365 | n.d. | >50 [11] | |
17b | pyrazin-2-yl | O | 1.306 | >1000 * | 15.625 | |
18a | 5-Cl-pyrazin-2-yl | S | 3.173 | n.d. | >100 [11] | |
18b | 5-Cl-pyrazin-2-yl | O | 2.073 | >100 ** | 15.625 | |
19a | quinoxalin-2-yl | S | 3.583 | n.d. | ≥500 | |
19b | quinoxalin-2-yl | O | 2.465 | n.d. | ≥500 | |
20b | phenyl | O | 2.090 | 330.3 | 62.5 | |
CIP | - | - | - | - | 0.25 | |
INH | - | - | - | - | 0.25 | |
RIF | - | - | - | - | 0.003–0.0015 |
Compound | Solubility (μg/mL) | Relative Solubility 1 | Exp. log S * | Calc. log S ** |
---|---|---|---|---|
6a | 29.93 | 1 | −3.90 | −3.38 |
6b | no precipitate | n.d. | n.d. | −2.43 |
12a | 0.28 | 1 | −6.00 | −4.11 |
12b | 115.65 | 413 | −3.36 | −3.16 |
15a | 2.10 | 1 | −5.18 | −5.11 |
15b | 123.99 | 59 | −3.38 | −4.15 |
Compound | MIC Mtb H37Rv | MIC Mtb IZAK | MIC Mtb MATI |
---|---|---|---|
6b | 6.25 | 3.13 | 3.13 |
7b | 6.25 | 3.13 | 3.13 |
CIP | 0.2 | 0.2 | 0.2 |
EMB | 0.39 | 1.56 | 1.56 |
INH | 0.39 | 12.5 | 12.5 (>12.5) |
Compound | Score | Ligand Atom/ Fragment | Receptor Atoms | Interaction Type | Distance (Å) | Energy (kcal/mol) |
---|---|---|---|---|---|---|
6b | −6.4 | O (carbonyl) | NHBB Cys112 | HBA | 3.20 | −0.7 |
O (carbonyl) | NHBB Ala306 | HBA | 3.00 | −1.9 | ||
Pyridine | NHSC Asn274 | NH-π | 3.73 | −0.8 | ||
15b | −8.1 | O (carbonyl) | NHBB Cys112 | HBA | 3.21 | −0.5 |
O (carbonyl) | NHBB Ala306 | HBA | 3.06 | −1.8 | ||
Pyridine | NHSC Asn274 | NH-π | 3.75 | −0.8 |
Ligand | Replica | Result | |||||
1 | 2 | 3 | 4 | 5 | 6 | ||
6b | 0.86 | 1.56 | 1.32 | 1.69 | 4.19 | 0.79 | Stable |
15b | 2.25 | 1.49 | 2.24 | 1.83 | 1.30 | 1.98 | Stable |
Compound | HepG2 IC50 (µM) | MICH37Ra (µg/mL) | MICH37Ra (µM) | SI |
---|---|---|---|---|
4b | >1000 | 7.81 | 38.4 | >26.0 |
5b | >1000 | 3.91 | 19.2 | >52.0 |
6b | 664.1 | 3.125 | 14.0 | 47.5 |
7b | 959.4 | <3.91 | <16.5 | >58.3 |
11a | >100 | 3.91 | 13.9 | >7.2 |
11b | >1000 | 3.91 | 14.7 | >67.8 |
13a | >100 | 7.81 | 27.8 | >3.6 |
15a | 102.6 | 3.91 | 12.4 | 8.3 |
15b | 136.1 | 7.81 | 26.1 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhás, M.; Bachtíková, A.; Nawrot, D.E.; Hatoková, P.; Pallabothula, V.S.K.; Diepoltová, A.; Janďourek, O.; Bárta, P.; Konečná, K.; Paterová, P.; et al. Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole. Pharmaceuticals 2022, 15, 580. https://doi.org/10.3390/ph15050580
Juhás M, Bachtíková A, Nawrot DE, Hatoková P, Pallabothula VSK, Diepoltová A, Janďourek O, Bárta P, Konečná K, Paterová P, et al. Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole. Pharmaceuticals. 2022; 15(5):580. https://doi.org/10.3390/ph15050580
Chicago/Turabian StyleJuhás, Martin, Andrea Bachtíková, Daria Elżbieta Nawrot, Paulína Hatoková, Vinod Sukanth Kumar Pallabothula, Adéla Diepoltová, Ondřej Janďourek, Pavel Bárta, Klára Konečná, Pavla Paterová, and et al. 2022. "Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole" Pharmaceuticals 15, no. 5: 580. https://doi.org/10.3390/ph15050580
APA StyleJuhás, M., Bachtíková, A., Nawrot, D. E., Hatoková, P., Pallabothula, V. S. K., Diepoltová, A., Janďourek, O., Bárta, P., Konečná, K., Paterová, P., Šesták, V., & Zitko, J. (2022). Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole. Pharmaceuticals, 15(5), 580. https://doi.org/10.3390/ph15050580