Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Antistaphylococcal Activity
2.3. In Vitro Cell Viability Assay
2.4. Structure–Activity Relationships
3. Materials and Methods
3.1. General Methods
3.2. Synthesis
3.3. Lipophilicity Determination by HPLC
3.4. In Vitro Antibacterial Evaluation
3.5. Determination of Minimum Bactericidal Concentrations
3.6. MTT Assay
3.7. Crystal Violet Uptake
3.8. In Vitro Cytotoxicity Assay (WST-1 Assay)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newsom, S.W. Ogston’s coccus. J. Hosp. Infect. 2008, 70, 369–372. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 23 May 2022).
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.H.; Koirala, J. Methicillin resistant Staphylococcus aureus. In StatPearl; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482221/ (accessed on 17 April 2022).
- Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; de Lencastre, H.; Bentley, S.D.; Kearns, A.M.; Holden, M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017, 18, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, Y.; Ito, T.; Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000, 44, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Hartman, B.J.; Tomasz, A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 1984, 158, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—A review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [Green Version]
- Borg, M.A.; Camilleri, L. What is driving the epidemiology of methicillin-resistant Staphylococcus aureus infections in Europe? Microb. Drug Resist. 2021, 27, 889–894. [Google Scholar] [CrossRef]
- Kratky, M.; Vinsova, J. Salicylanilide N-monosubstituted carbamates: Synthesis and in vitro antimicrobial activity. Bioorg. Med. Chem. 2016, 24, 1322–1330. [Google Scholar] [CrossRef]
- Otevrel, J.; Mandelova, Z.; Pesko, M.; Guo, J.; Kralova, K.; Sersen, F.; Vejsova, M.; Kalinowski, D.; Kovacevic, Z.; Coffey, A.; et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules 2010, 15, 8122–8142. [Google Scholar] [CrossRef]
- Imramovsky, A.; Pesko, M.; Kralova, K.; Vejsova, M.; Stolarikova, J.; Vinsova, J.; Jampilek, J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules 2011, 16, 2414–2430. [Google Scholar] [CrossRef] [Green Version]
- Pauk, K.; Zadrazilova, I.; Imramovsky, A.; Vinsova, J.; Pokorna, M.; Masarikova, M.; Cizek, A.; Jampilek, J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013, 21, 6574–6581. [Google Scholar] [CrossRef]
- Zadrazilova, I.; Pospisilova, S.; Masarikova, M.; Imramovsky, A.; Monreal-Ferriz, J.; Vinsova, J.; Cizek, A.; Jampilek, J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015, 77, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.J.; Cheng, Y.J.; Wang, L.X.; Huang, B.Q.; Zhang, N.N.; Liang, J.; Yan, M. Exploration of (3-benzyl-5-hydroxyphenyl)- carbamates as new antibacterial agents against Gram-positive bacteria. Arch. Pharm. 2020, 353, e1900294. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, D.; Martelli, G.; Picciche, M.; Calaresu, E.; Cocuzza, C.E.; Musumeci, R. Design and synthesis of 4-alkylidene-β-lactams: Benzyl- and phenethyl-carbamates as key fragments to switch on antibacterial activity. ChemMedChem 2017, 12, 1525–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tittal, R.K.; Vikas, G.D.; Rani, P.; Lal, K.; Kumar, A. Synthesis, antimicrobial activity, molecular docking and DFT study: Aryl-carbamic acid 1-benzyl-1H-[1,2,3]triazol-4-ylmethyl esters. ChemistrySelect 2020, 5, 6723–6729. [Google Scholar] [CrossRef]
- Gonec, T.; Kos, J.; Zadrazilova, I.; Pesko, M.; Keltosova, S.; Tengler, J.; Bobal, P.; Kollar, P.; Cizek, A.; Kralova, K.; et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013, 21, 6531–6541. [Google Scholar] [CrossRef]
- Gonec, T.; Zadrazilova, I.; Nevin, E.; Kauerova, T.; Pesko, M.; Kos, J.; Oravec, M.; Kollar, P.; Coffey, A.; O’Mahony, J.; et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules 2015, 20, 9767–9787. [Google Scholar] [CrossRef]
- Gonec, T.; Pospisilova, S.; Kauerova, T.; Kos, J.; Dohanosova, J.; Oravec, M.; Kollar, P.; Coffey, A.; Liptaj, T.; Cizek, A.; et al. N-Alkoxyphenylhydroxynaphthalene-carboxamides and their antimycobacterial activity. Molecules 2016, 21, 1068. [Google Scholar] [CrossRef]
- Michnova, H.; Pospisilova, S.; Gonec, T.; Kapustikova, I.; Kollar, P.; Kozik, V.; Musiol, R.; Jendrzejewska, I.; Vanco, J.; Travnicek, Z.; et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules 2019, 24, 2991. [Google Scholar] [CrossRef] [Green Version]
- Kauerova, T.; Kos, J.; Gonec, T.; Jampilek, J.; Kollar, P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. Int. J. Mol. Sci. 2016, 17, 1219. [Google Scholar] [CrossRef]
- Trabocchi, A. Principles and applications of small molecule peptidomimetics. In Small Molecule Drug Discovery; Trabocchi, A., Lenci, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 163–195. [Google Scholar]
- Ghosh, A.K.; Brindisi, M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015, 58, 2895–2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matosevic, A.; Bosak, A. Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. Arh. Hig. Rada Toksikol. 2020, 71, 285–299. [Google Scholar] [PubMed]
- Makhoba, X.H.; Viegas, C.; Mosa, R.A.; Viegas, F.P.D.; Pooe, O.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des. Devel. Ther. 2020, 14, 3235–3249. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.A.; Wenzel, M. Multitarget approaches against multiresistant superbugs. ACS Infect. Dis. 2020, 6, 1346–1365. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, K.A.; Bholay, A.D.; Rai, P.K.; Qureshi, K.A.; Bholay, A.D.; Rai, P.K.; Mohammed, H.A.; Khan, R.A.; Azam, F.; Jaremko, M.; et al. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci. Rep. 2021, 11, 14539. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef]
- Verma, T.; Aggarwal, A.; Singh, S.; Sharma, S.; Sarma, S.J. Current challenges and advancements towards discovery and resistance of antibiotics. J. Mol. Struct. 2022, 1248, 131380. [Google Scholar] [CrossRef]
- Gonec, T.; Kos, J.; Pesko, M.; Dohanosova, J.; Oravec, M.; Liptaj, T.; Kralova, K.; Jampilek, J. Halogenated 1-hydroxynaphthalene-2-carboxanilides affecting photosynthetic electron transport in photosystem II. Molecules 2017, 22, 1709. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Pliska, V.; Testa, B.; van der Waterbeemd, H. Lipophilicity in Drug Action and Toxicology; Wiley-VCH: Weinheim, Germany, 1996. [Google Scholar]
- Wermuth, C.; Aldous, D.; Raboisson, P.; Rognan, D. The Practice of Medicinal Chemistry, 4th ed.; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- Balgavy, P.; Devinsky, F. Cut-off effects in biological activities of surfactants. Adv. Colloid. Interface Sci. 1996, 66, 23–63. [Google Scholar] [CrossRef]
- Sarapuk, J.; Kubica, K. Cut-off phenomenon. Cell Mol. Biol. Lett. 1998, 3, 261–269. [Google Scholar]
- Kralova, K.; Sersen, F. Effects of bioactive natural and synthetic compounds with different alkyl chain length on photosynthetic apparatus. In Applied Photosynthesis; Najafpour, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 165–190. [Google Scholar]
- Lukac, M.; Lacko, I.; Bukovsky, M.; Kyselova, Z.; Karlovska, J.; Horvath, B.; Devinsky, F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine. Cent. Eur. J. Chem. 2010, 8, 194–201. [Google Scholar]
- Devinsky, F.; Kopecka-Leitmanova, A.; Sersen, F.; Balgavy, P. Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N-dimethylalkylamine oxides. J. Pharm. Pharmacol. 1990, 42, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Grandic, M.; Frangez, R. Pathophysiological effects of synthetic derivatives of polymeric alkylpyridinium salts from the marine sponge, Reniera sarai. Mar. Drugs 2014, 12, 2408–2421. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.A.; Cheng, C.H.; Hsieh, K.T.; Lin, J.C. Effect of alkyl chain length and fluorine content on the surface characteristics and antibacterial activity of surfaces grafted with brushes containing quaternized ammonium and fluoro-containing monomers. Colloids Surf. B 2021, 202, 111674. [Google Scholar] [CrossRef]
- Brycki, B.E.; Szulc, A.; Kowalczyk, I.; Kozirog, A.; Sobolewska, E. Antimicrobial activity of gemini surfactants with ether group in the spacer part. Molecules 2021, 26, 5759. [Google Scholar] [CrossRef]
- Terekhova, N.V.; Khailova, L.S.; Rokitskaya, T.I.; Nazarov, P.A.; Islamov, D.R.; Usachev, K.S.; Tatarinov, D.A.; Mironov, V.F.; Kotova, E.A.; Antonenko, Y.N. Trialkyl(vinyl)phosphonium chlorophenol derivatives as potent mitochondrial uncouplers and antibacterial agents. ACS Omega 2021, 6, 20676–20685. [Google Scholar] [CrossRef]
- Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Nubel, U.; Dordel, J.; Kurt, K.; Strommenger, B.; Westh, H.; Shukla, S.K.; Zemlickova, H.; Leblois, R.; Wirth, T.; Jombart, T.; et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010, 6, e1000855. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, M.S.; Clewell, D.B.; Ike, Y.; Shankar, N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190432/ (accessed on 2 May 2022).
- Ramos, S.; Silva, V.; Dapkevicius, M.d.L.E.; Igrejas, G.; Poeta, P. Enterococci, from harmless bacteria to a pathogen. Microorganisms 2020, 8, 1118. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Salamzade, R.; Selleck, E.; Bryan, N.; Mello, S.S.; Manson, A.L.; Earl, A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio 2020, 11, e02962-20. [Google Scholar] [CrossRef] [PubMed]
- Loghmani, S.B.; Zitzow, E.; Koh, G.C.C.; Ulmer, A.; Veith, N.; Großeholz, R.; Rossnagel, M.; Loesch, M.; Aebersold, R.; Kreikemeyer, B.; et al. All driven by energy demand? Integrative comparison of metabolism of Enterococcus faecalis wildtype and a glutamine synthase mutant. Microbiol. Spectr. 2022, 10, e0240021. [Google Scholar] [CrossRef] [PubMed]
- Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf (accessed on 18 April 2022).
- Grela, E.; Kozłowska, J.; Grabowiecka, A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018, 120, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef]
- Vaara, M.; Vaara, T. Outer membrane permeability barrier disruption by polymyxinin polymyxin-susceptible and-resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 1981, 19, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, M.; Walker, S. Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 2017, 404, 1–44. [Google Scholar]
- Mishra, N.; Yang, S.J.; Sawa, A.; Rubio, A.; Nast, C.C.; Yeaman, M.R.; Bayer, A.S. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2312–2318. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.B.; Vinuela-Prieto, J.M.; Lopez-Gonzalez, L.; Candel, F.J. Correlation between resistance mechanisms in Staphylococcus aureus and cell wall and septum thickening. Infect. Drug Resist. 2017, 10, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Watkins, R.R.; Holubar, M.; David, M.Z. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob. Agents Chemother. 2019, 63, e01216-19. [Google Scholar] [CrossRef]
- Birnie, C.R.; Malamud, D.; Schnaare, R.L. Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length. Antimicrob. Agents Chemother. 2000, 44, 2514–2517. [Google Scholar] [CrossRef] [Green Version]
- Fagnani, L.; Nazzicone, L.; Brisdelli, F.; Giansanti, L.; Battista, S.; Iorio, R.; Petricca, S.; Amicosante, G.; Perilli, M.; Celenza, G.; et al. Cyclic and acyclic amine oxide alkyl derivatives as potential adjuvants in antimicrobial chemotherapy against methicillin-resistant Staphylococcus aureus with an MDR profile. Antibiotics 2021, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- Bosgelmez-Tinaz, G.; Ulusoy, S.; Aridogan, B.; Coskun-Ari, F. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Martineau, F.; Picard, F.J.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J. Clin. Microbiol. 1998, 36, 618–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadrazilova, I.; Pospisilova, S.; Pauk, K.; Imramovsky, A.; Vinsova, J.; Cizek, A.; Jampilek, J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015, 2015, 349534. [Google Scholar] [CrossRef] [Green Version]
- National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; M07; NCCLS: Wayne, PA, USA, 2018. [Google Scholar]
- Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial Susceptibility Testing Protocols; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Scandorieiro, S.; de Camargo, L.C.; Lancheros, C.A.; Yamada-Ogatta, S.F.; Nakamura, C.V.; de Oliveira, A.G.; Andrade, C.G.; Duran, N.; Nakazato, G.; Kobayashi, R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016, 7, 760. [Google Scholar] [CrossRef]
- Guimaraes, A.C.; Meireles, L.M.; Lemos, M.F.; Guimaraes, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Bueno, J. Antitubercular in vitro drug discovery: Tools for begin the search. In Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance; IntechOpen: Rijeka, Croatia, 2012; pp. 147–168. [Google Scholar]
- Abate, G.; Mshana, R.N.; Miorner, H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998, 2, 1011–1016. [Google Scholar]
- Protocol Guide: WST-1 Assay for Cell Proliferation and Viability; Merck KGaA: Darmstadt, Germany, 2022; Available online: https://www.sigmaaldrich.com/CZ/en/technical-documents/protocol/cell-culture-and-cell-culture-analysis/cell-counting-and-health-analysis/cell-proliferation-reagent-wst-1 (accessed on 28 April 2022).
No. | R | log P 1 | log P 2 | Clog P 2 | log k | log D6.5 | log D7.4 | MW 1 | HBD 1 | HBA 1 | RB 1 | MV 1 [cm3] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | – | 6.31 | 5.12 | 5.9945 | 0.6600 | 0.5782 | 0.5384 | 366.62 | 2 | 3 | 2 | – |
2 | Et | 5.63 | 5.34 | 5.1356 | 0.8249 | 0.8294 | 0.8339 | 437.70 | 2 | 5 | 5 | 76.10 |
3 | Pr | 5.80 | 5.83 | 5.6646 | 0.9689 | 0.9734 | 0.9793 | 451.73 | 2 | 5 | 6 | 92.61 |
4 | Bu | 6.15 | 6.25 | 6.1936 | 1.0756 | 0.9980 | 1.1401 | 465.76 | 2 | 5 | 7 | 109.11 |
5 | Pen | 7.45 | 6.66 | 6.7226 | 1.3051 | 1.3072 | 1.3168 | 479.78 | 2 | 5 | 8 | 125.62 |
6 | Hex | 7.83 | 7.08 | 7.2516 | 1.4883 | 1.4899 | 1.4990 | 493.81 | 2 | 5 | 9 | 142.13 |
7 | Hep | 8.46 | 7.50 | 7.7806 | 1.6741 | 1.6765 | 1.6863 | 507.84 | 2 | 5 | 10 | 158.63 |
8 | Oct | 8.84 | 7.92 | 8.3096 | 1.8654 | 1.8687 | 1.8785 | 521.86 | 2 | 5 | 11 | 175.14 |
9 | iPr | 5.73 | 5.66 | 5.4446 | 0.9526 | 0.9579 | 1.0468 | 451.73 | 2 | 5 | 5 | 92.98 |
10 | cPent | 6.40 | 6.14 | 6.0786 | 1.1481 | 1.1521 | 1.1515 | 477.77 | 2 | 5 | 5 | 112.65 |
11 | cHex | 6.71 | 6.55 | 6.6376 | 1.2911 | 1.2952 | 1.2955 | 491.79 | 2 | 5 | 5 | 129.17 |
12 | cHep | 6.77 | 6.97 | 7.1966 | 1.4469 | 1.4492 | 1.4527 | 505.82 | 2 | 5 | 5 | 145.64 |
13 | PhEt | 6.69 | 7.02 | 6.7036 | 1.2450 | 1.2473 | 1.2470 | 513.80 | 2 | 5 | 7 | 136.80 |
14 | PhBu | 7.66 | 7.85 | 7.6116 | 1.5167 | 1.5193 | 1.5191 | 541.85 | 2 | 5 | 9 | 169.81 |
Ro5 | <5 | <5 | – | – | – | – | <500 | <5 | <10 | – | – |
No. | µM | SI (IC50/ MIC *) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SA | MRSA1 | MRSA2 | MRSA3 | EF | THP-1 | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | IC50 | ||
1 | 698 | – | 698 | – | 698 | – | 698 | – | 477 | >30 | – |
2 | 0.018 * | 0.018 | 0.144 | 0.286 | 0.018 | 0.144 | 0.018 | 0.073 | 36.6 | 2.85 ± 0.17 | 156 |
3 | 0.035 * | 0.035 | 0.139 | 0.277 | 0.553 | 0.553 | 0.071 | 0.071 | 283 | 3.12 ± 0.07 | 88.1 |
4 | 0.034 * | 0.034 | 0.135 | 0.268 | 0.017 | 0.537 | 0.069 | 0.069 | 275 | 3.42 ± 0.10 | 99.6 |
5 | 0.067 * | 0.067 | 0.261 | 0.261 | 0.261 | 0.521 | 0.131 | 0.131 | 267 | 3.44 ± 0.04 | 51.3 |
6 | 0.128 * | 0.128 | 0.253 | 0.253 | 0.253 | 0.506 | 0.253 | 0.253 | 259 | 3.20 ± 0.19 | 25.1 |
7 | 0.124 * | 0.124 | 0.246 | 0.246 | 0.246 | 0.492 | 0.246 | 0.246 | 63.0 | 3.19 ± 0.44 | 25.7 |
8 | 0.479 * | 0.958 | 0.958 | 1.916 | 0.479 | 1.916 | 1.921 | 1.921 | 123 | 2.61 ± 0.32 | 5.5 |
9 | 0.018 * | 0.018 | 0.139 | 0.139 | 0.035 | 0.277 | 0.277 | 0.277 | 142 | 3.26 ± 0.08 | 184 |
10 | 0.262 * | 0.262 | 0.262 | 0.262 | 0.262 | 1.047 | 2.090 | 2.090 | 268 | 3.23 ± 0.29 | 12.3 |
11 | 0.128 * | 0.508 | 0.254 | 0.508 | 0.508 | 1.017 | 0.508 | 0.508 | 65.1 | 2.76 ± 0.24 | 21.5 |
12 | 0.494 * | 0.494 | 0.247 | 0.247 | 0.494 | 0.494 | 0.494 | 0.494 | 127 | 3.24 ± 0.12 | 6.6 |
13 | 0.062 * | 0.062 | 0.123 | 0.123 | 0.062 | 0.973 | 0.123 | 0.243 | 125 | 2.79 ± 0.28 | 44.8 |
14 | 0.116 * | 0.116 | 0.231 | 0.231 | 0.116 | 0.461 | 0.231 | 0.461 | 118 | 2.73 ± 0.37 | 23.5 |
APM | 5.72 | >5.72 | 45.8 | >45.8 | 45.8 | >45.8 | 45.8 | >45.8 | 11.5 | – | – |
CPX | 0.75 | 0.75 | 12.1 | 12.1 | 386 | 386 | 28.1 | 24.1 | 1.51 | – | – |
CMT | – | – | – | – | – | – | – | – | – | 0.16 ± 0.07 | – |
No. | Conc. | S. aureus Viability Inhibition (%) |
---|---|---|
2 | 4× MIC (4× MBC) | 82.3 |
3 | 4× MIC (4× MBC) | 94.3 |
4 | 8× MIC (8× MBC) | 92.9 |
7 | 4× MIC (4× MBC) | 95.2 |
8 | 2× MIC (1× MBC) | 75.0 |
9 | 2× MIC (2× MBC) | 95.7 |
13 | 4× MIC (4× MBC) | 95.7 |
14 | 2× MIC (2× MBC) | 95.7 |
APM | 8× MIC (>8× MBC) | 90.0 |
CPX | 32× MIC (32× MBC) | 92.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonec, T.; Pindjakova, D.; Vrablova, L.; Strharsky, T.; Michnova, H.; Kauerova, T.; Kollar, P.; Oravec, M.; Jendrzejewska, I.; Cizek, A.; et al. Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals 2022, 15, 715. https://doi.org/10.3390/ph15060715
Gonec T, Pindjakova D, Vrablova L, Strharsky T, Michnova H, Kauerova T, Kollar P, Oravec M, Jendrzejewska I, Cizek A, et al. Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals. 2022; 15(6):715. https://doi.org/10.3390/ph15060715
Chicago/Turabian StyleGonec, Tomas, Dominika Pindjakova, Lucia Vrablova, Tomas Strharsky, Hana Michnova, Tereza Kauerova, Peter Kollar, Michal Oravec, Izabela Jendrzejewska, Alois Cizek, and et al. 2022. "Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates" Pharmaceuticals 15, no. 6: 715. https://doi.org/10.3390/ph15060715
APA StyleGonec, T., Pindjakova, D., Vrablova, L., Strharsky, T., Michnova, H., Kauerova, T., Kollar, P., Oravec, M., Jendrzejewska, I., Cizek, A., & Jampilek, J. (2022). Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals, 15(6), 715. https://doi.org/10.3390/ph15060715