Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Developmental Traits and the Yield of Raw Materials
2.2. Essential Oil Content and Composition
2.3. Content and Composition of Phenolic Compounds
2.4. Antioxidant Activity
2.5. Antibacterial Activity
3. Materials and Methods
3.1. Plant Material
3.2. Morphological Observations
3.3. Chemical Analysis
3.3.1. Essential Oil Content
3.3.2. Analysis of Essential Oils by GC-MS and GC-FID
3.3.3. Total Content of Phenolic Compounds
3.3.4. Analysis of Phenolic Acids and Flavonoids by HPLC
3.4. Antioxidant Activity
3.4.1. DPPH
3.4.2. ABTS
3.5. Antibacterial Activity
Minimum Inhibitory Concentration (MIC) and MINIMUM bactericidal Concentration (MBC)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderberg, A.A. Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot. 1991, 104, 1–195. [Google Scholar]
- Galbany-Casals, M.; Garcia-Jacas, N.; Sáez, L.; Benedí, C.; Susanna, A. Phylogeny, biogeography, and character evolution in Mediterranean, Asiatic, and Macaronesian Helichrysum (Asteraceae, Gnaphalieae) inferred from nuclear phylogenetic analyses. Int. J. Plant Sci. 2009, 170, 365–380. [Google Scholar] [CrossRef] [Green Version]
- Akaberi, M.; Sahebkar, A.; Azizi, N.; Emami, S.A. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind. Crop. Prod. 2019, 138, 111471. [Google Scholar] [CrossRef]
- Perrini, R.; Morone-Fortunato, I.; Lorusso, E.; Avato, P. Glands, essential oils and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. microphyllum (Willd.) Nyman. Ind. Crops Prod. 2009, 29, 395–403. [Google Scholar] [CrossRef]
- Appendino, G.; Taglialatela-Scafati, O.; Minassi, A.; Pollastro, F.; Ballero, M.; Andrea Maxia, A.; Sanna, C. Helichrysum italicum: The sleeping giant of Mediterranean herbal medicine. Herb. J. Am. Bot. Counc. 2015, 105, 34–45. [Google Scholar]
- Pljevljakušić, D.; Bigović, D.; Janković, T.; Jelačić, S.; Šavikin, K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front. Plant Sci. 2018, 9, 1123. [Google Scholar] [CrossRef] [Green Version]
- Ninčević, T.; Grdiša, M.; Šatović, Z.; Jug-Dujaković, M. Helichrysum italicum (Roth) G. Don: Taxonomy, biological activity, biochemical and genetic diversity. Ind. Crops Prod. 2019, 138, 111487. [Google Scholar] [CrossRef]
- Viegas, A.D.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef]
- EMA (European Medicines Agency). European Union Herbal Monograph on Helichrysum arenarium (L.) Moench, flos. EMA/HMPC/41108/2015. 2016. Available online: www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-helichrysum-arenarium-l-moench-flos_en.pdf (accessed on 9 June 2022).
- Aćimović, M.; Ljujić, J.; Vulić, J.; Zheljazkov, V.D.; Pezo, L.; Varga, A.; Tumbas Šaponjac, V. Helichrysum italicum (Roth) G. Don essential oil from Serbia: Chemical composition, classification and biological activity—may it be a suitable new crop for Serbia? Agronomy 2021, 11, 1282. [Google Scholar] [CrossRef]
- Herrando Moraira, S.; Blanco Moreno, J.M.; Sáez, L.; Galbany Casals, M. Re-evaluation of Helichrysum italicum complex (Compositae: Gnaphalieae): A new species from Majorca (Balearic Islands). Collect. Bot. 2016, 35, e009. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, M.; Ambryszewska, K.E.; Melai, B.; Flamini, G.; Cioni, P.L.; Parri, F.; Pistelli, L. Essential-oil composition of Helichrysum italicum (Roth) G. Don ssp. italicum from Elba Island (Tuscany, Italy). Chem. Biodivers. 2013, 10, 343–355. [Google Scholar] [CrossRef]
- Kladar, N.V.; Anačkov, G.T.; Rat, M.M.; Srd Strok Signenovic, B.U.; Grujic, N.N.; Šefer, E.I.; Božin, B.N. Biochemical characterization of Helichrysum italicum (Roth) G. Don subsp. italicum (Asteraceae) from Montenegro: Phytochemical screening, chemotaxonomy, and antioxidant properties. Chem. Biodivers. 2015, 12, 419–431. [Google Scholar] [CrossRef]
- Mastelic, J.; Politeo, O.; Jerkovic, I.; Radosevic, N. Composition and antimicrobial activity of Helichrysum italicum essential oil and its terpene and terpenoid fractions. Chem. Nat. Compd. 2005, 41, 35–40. [Google Scholar] [CrossRef]
- Usai, M.; Foddai, M.; Bernardini, A.F.; Muselli, A.; Costa, J.; Marchetti, M. Chemical composition and variation of the essential oil of wild sardinian Helichrysum italicum G. Don subsp. microphyllum (Willd.) from vegetative period to post-blooming. J. Essen. Oils Res. 2010, 225, 373–380. [Google Scholar] [CrossRef]
- Tzanova, M.; Grozeva, N.; Gerdzhikova, M.; Atanasov, V.; Terzieva, S.; Prodanova, R. Biochemical composition of essential oil of Corsican Helichrysum italicum (Roth) G. Don, introduced and cultivated in south Bulgaria. Bulg. J. Agric. Sci. 2018, 24, 1071–1077. [Google Scholar]
- Maksimovic, S.; Tadic, V.; Skala, D.; Zizovic, I. Separation of phytochemicals from Helichrysum italicum: An analysis of different isolation techniques and biological activity of prepared extracts. Phytochemistry 2017, 138, 9–28. [Google Scholar] [CrossRef]
- Mekinic, I.G.; Skroza, D.; Ljubenkov, I.; Krstulovic, L.; Mozina, S.S.; Katalinic, V. Phenolic acids profile, antioxidant and antibacterial activity of chamomile, common yarrow and immortelle (Asteraceae). Nat. Prod. Commun. 2014, 9, 1745–1748. [Google Scholar] [CrossRef] [Green Version]
- Kramberger, K.; Barlič-Maganja, D.; Bandelj, D.; Baruca Arbeiter, A.; Peeters, K.; Miklavčič Višnjevec, A.; Pražnikar, Z.J. HPLC-DAD-ESI-QTOF-MS determination of bioactive compounds and antioxidant activity comparison of the hydroalcoholic and water extracts from two Helichrysum italicum species. Metabolites 2020, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Kramberger, K.; Kenig, S.; Pražnikar, Z.J.; Glavač, N.K.; Barlič-Maganja, D. A review and evaluation of the data supporting internal use of Helichrysum italicum. Plants 2021, 10, 1738. [Google Scholar] [CrossRef] [PubMed]
- Kramberger, K.; Pražnikar, Z.J.; Arbeiter, A.B.; Petelin, A.; Bandelj, D.; Kenig, S. A comparative study of the antioxidative effects of Helichrysum italicum and Helichrysum arenarium infusions. Antioxidants 2021, 10, 380. [Google Scholar] [CrossRef]
- Voinchet, V.; Giraud-Robert, A.M. Utilisation de l’huile essentielle d’hélichryse italienne et de l’huile végétale de rose musquée après intervention de chirurgie plastique réparatrice et esthétique. Phytothérapie 2007, 5, 67–72. [Google Scholar] [CrossRef]
- Han, X.; Beaumont, C.; Stevens, N. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochim. Open 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Nostro, A.; Bisignano, J.; Cannatelli, M.A.; Crisafi, G.; Germano, M.P.; Alonzo, V. Effects of Helichrysum italicum extract on growth enzymatic activity of Staphylococcus aureus. Int. J. Antimicrob. Agents 2001, 17, 517–520. [Google Scholar] [CrossRef]
- Oliva, A.; Garzoli, S.; Sabatino, M.; Tadić, V.; Costantini, S.; Ragno, R.; Božović, M. Chemical composition and antimicrobial activity of essential oil of Helichrysum italicum (Roth) G. Don fil. (Asteraceae) from Montenegro. Nat. Prod. Res. 2020, 34, 445–448. [Google Scholar] [CrossRef]
- Sala, A.; Recio, M.; Giner, R.M.; Máñez, S.; Tournier, H.; Schinella, G.; Ríos, J.-L. Anti-inflammatory and antioxidant properties of Helichrysum italicum. J. Pharm. Pharmacol. 2002, 54, 365–371. [Google Scholar] [CrossRef]
- Nostro, A.; Cannatelli, M.A.; Marino, A.; Picerno, I.; Pizzimenti, F.C.; Scoglio, M.E.; Spataro, P. Evaluation of antiherpesvirus-1 and genotoxic activity of Helichrysum italicum extract. Microbiologica 2003, 26, 125–128. [Google Scholar]
- Tundis, R.; Statti, G.A.; Conforti, F.; Bianchi, A.; Agrimonti, C.; Sacchetti, G.; Muzzoli, M.; Ballero, M.; Menichini, F.; Poli, F. Influence of environmental factors on composition of volatile constituents and biological activity of Helichrysum italicum (Roth) Don (Asteraceae). Nat. Prod. Res. 2005, 19, 379–387. [Google Scholar] [CrossRef]
- Cui, H.Y.; Zhao, C.T.; Lin, L. Antibacterial activity of Helichrysum italicum oil on vegetables and its mechanism of action. J. Food Process. Preserv. 2015, 39, 2663–2672. [Google Scholar] [CrossRef]
- Djihane, B.; Wafa, N.; Elkhamssa, S.; Pedro, D.H.J.; Maria, A.E.; Mohamed Mihoub, Z. Chemical constituents of Helichrysum italicum (Roth) G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans. Saudi Pharm. J. 2017, 25, 780–787. [Google Scholar] [CrossRef]
- Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In Vitro Activity of Twenty Commercially Available, Plant-Derived Essential Oils against Selected Dermatophyte Species. Nat. Prod. Commun. 2015, 10, 1473–1478, PMID: 26434145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreani, S.; Uehara, A.; Blagojević, P.; Radulović, N.; Muselli, A.; Baldovini, N. Key odorants of industrially-produced Helichrysum italicum subsp. italicum essential oil. Ind. Crop. Prod. 2019, 132, 275–282. [Google Scholar] [CrossRef]
- Mollova, S.; Fidan, H.; Antonova, D.; Bozhilov, D.; Stanev, S.; Kostova, I.; Stoyanova, A. Chemical composition and antimicrobial and antioxidant activity of Helichrysum italicum (Roth) G. Don subspecies essential oils. Turk. J. Agric. For. 2020, 44, 371–378. [Google Scholar] [CrossRef]
- European Commission. Interpretation Manual of European Union Habitats (Version EUR27); European Commission DG Environment: Brussels, Belgium, 2007. [Google Scholar]
- Perrino, E.V.; Tomaselli, V.; Costa, R.; Pavone, P. Conservation status of habitats (Directive 92/43 EEC) of coastal and low hill belts in a Mediterranean biodiversity hot spot (Gargano—Italy). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2013, 147, 1006–1028. [Google Scholar] [CrossRef]
- Gavarić, A.; Jokić, S.; Molnar, M.; Vidović, S.; Vladić, J.; Aćimović, M. Helichrysum: The current state of cultivation, production and uses. In Medicinal Plants—Production, Cultivation and Uses; Matthias, A., Laisne, N., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2017; pp. 85–105. [Google Scholar]
- Čagalj, M.; Grgić, I.; Zrakić Sušac, M.; Ivanković, M. Economic evaluation (efficiency) of investment in organically grown immortelle (Helichrysum italicum ssp. italicum) in Bosnia and Herzegovina. The first report from Mediterranean. J. Cent. Eur. Agric. 2019, 20, 524–541. [Google Scholar] [CrossRef]
- European Pharmacopoeia. European Directorate for the Quality of Medicines and Health Care (EDQM), 9th ed.; Council of Europe: Strasbourg, France, 2017. [Google Scholar]
- Miloradović, Z.; Glamočlija, D.; Popović, V.; Jovanović, L.; Popović, S.; Ugrenović, V.; Filipović, V. Fresh yield biomass immortelle and essential oils contents depending on the growing locality. In Proceeding of the Eco-Conference: Ecological Movement of Novi Sad, Novi Sad, Serbia, 26–28 September 2018; pp. 241–251. [Google Scholar]
- Blažević, N.; Petričić, J.; Stanić, G.; Maleš, Ž. Variations in yields and composition of immortelle (Helichrysum italicum, Roth Guss.) essential oil from different locations and vegetation periods along Adriatic coast. Acta Pharm. 1995, 45, 517–522. [Google Scholar]
- Angioni, A.; Barra, A.; Arlorio, M.; Coisson, J.D.; Russo, M.T.; Pirisi, F.M.; Satta, M.; Cabras, P. Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym. J. Agric. Food Chem. 2003, 12, 1030–1034. [Google Scholar] [CrossRef]
- Matin, A.; Pavkov, I.; Grubor, M.; Jurišić, V.; Kontek, M.; Jukić, F.; Krička, T. Influence of harvest time, method of preparation and method of distillation on the qualitative properties of organically grown and wild Helichrysum italicum immortelle essential oil. Separations 2021, 8, 167. [Google Scholar] [CrossRef]
- Morone-Fortunato, I.; Montemurro, C.; Ruta, C.; Perrini, R.; Sabetta, W.; Blanco, A.; Lorusso, E.; Avato, P. Essential oils, genetic relationships and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. italicum from wild Mediterranean germplasm. Ind. Crop Prod. 2010, 32, 639–649. [Google Scholar] [CrossRef]
- Pellizeri, V.; Costa, R.; Grasso, E.; Dugo, G. Valuable products from the flowers of lemon (Citrus limon (L.) Osbeck) and grapefruit (Citrus paradisi Macfad.) Italian Trees. Food Bioprod. Process. 2020, 123, 123–133. [Google Scholar] [CrossRef]
- Fraternale, D.; Flamini, G.; Ascrizzi, R. In vitro anticollagenase and antielastase activities of essential oil of Helichrysum italicum subsp. italicum (Roth) G. Don. J. Med. Food 2019, 22, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Wollenweber, E.; Christ, M.; Dunstan, R.H.; Roitman, J.N.; Stevens, J.F. Exudate flavonoids in some Gnaphalieae and Inuleae (Asteraceae). Z. Für Nat. 2005, 60, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, S.; Aksoy, A.; Saǧdiç, O.; Budak, Ü. Türkiye, dogu anadolu’dan toplanan helichrysum türlerinin fenolik bilesik, antioksidan ve antimikrobiyal özellikleri. Turk. J. Biol. 2010, 34, 463–473. [Google Scholar] [CrossRef]
- Mari, A.; Napolitano, A.; Masullo, M.; Pizza, C.; Piacente, S. Identification and quantitative determination of the polar constituents in Helichrysum italicum flowers and derived food supplements. J. Pharm. Biomed. Anal. 2014, 96, 249–255. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Piacente, S. Metabolite Profiling of Helichrysum italicum Derived Food Supplements by 1H-NMR-Based Metabolomics. Molecules 2021, 26, 6619. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Kuźma, P.; Ejdys, M.; Obiedziński, M.; Węglarz, Z. Intraspecific variability of yarrow (Achillea millefolium L. s.l.) in respect of developmental and chemical traits. Herba Pol. 2015, 61, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138. [Google Scholar] [CrossRef]
- Ben Bakri, W.; Aghraz, A.; Hriouch, F.; Larhsini, M.; Markouk, M.; Bekkouche, K.; Costa, R.; Arrigo, S.; Cicero, N.; Dugo, G. Phytochemical study and antioxidant activity of the most used medicinal and aromatic plants in Morocco. J. Essent. Oil Res. 2022, 34, 131–142. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Guinoiseau, E.; Lorenzi, V.; Luciani, A.; Muselli, A.; Costa, J.; Casanova, J.; Berti, L. Biological properties and resistance reversal effect of Helichrysum italicum (Roth) G. Don. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp. 1073–1080. [Google Scholar]
- Andjić, M.; Božin, B.; Draginić, N.; Kočović, A.; Jeremić, J.N.; Tomović, M.; Šamanović, A.M.; Kladar, N.; Čapo, I.; Jakovljević, V.; et al. Formulation and evaluation of Helichrysum italicum essential oil-based topical formulations for wound healing in diabetic rats. Pharmaceuticals 2021, 14, 813. [Google Scholar] [CrossRef] [PubMed]
- Chiller, K.; Selkin, B.A.; Murakawa, G.J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc. 2001, 6, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, H.W.; Corey, G.R. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 2008, 46 (Suppl. S5), 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djojodimedjo, T.; Soebadi, D.M.; Soetjipto. Escherichia coli infection induces mucosal damage and expression of proteins promoting urinary stone formation. Urolithiasis 2013, 41, 295–301. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
- Rossi, P.G.; Berti, L.; Panighi, J.; Luciani, A.; Maury, J.; Muselli, A.; Serra, D.D.; Gonny, M.; Bolla, J.M. Antibacterial action of essential oils from Corsica. J. Essent. Oil Res. 2007, 19, 176–182. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membran permeability and surface characteristics of food-borne pathogens. Food Cont. 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Tzakou, O.; Verykokidou, E.; Roussis, V.; Chinou, I. Chemical composition and antibacterial properties of Thymus longicaulis subsp. chaubardii oils: Three chemotypes in the same population. J. Essen. Oils Res. 1998, 10, 97–99. [Google Scholar]
- Tekaya-Karoui, A.; Boughalleb, N.; Hammam, S.; Ben Jannet, H.; Mighri, Z. Chemical composition and antifungal activity of volatile components from woody terminal branches and roots of Tetraclinis articulate (Vahl). Masters growing in Tunisia. Afr. J. Plant Sci. 2011, 5, 115–122. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Ouhaddou, S.; Aghraz, A.; Ben Bakrim, W.; Sissi, S.; Larhsini, M.; Markouk, M.; Bekkouche, K.; Arrigo, S.; Cicero, N.; Costa, R.; et al. Analysis of volatiles in Senecio anteuphorbium essential oil with a focus on its allelopathic effect by means of gas chromatography. Separations 2022, 9, 36. [Google Scholar] [CrossRef]
- Polish Pharmacopoeia. Office of Registration of Medicinal Products, Medical Devices and Biocidal Products, 6th ed.; Polish Pharmaceutical Society: Warsaw, Poland, 2002. [Google Scholar]
- Available online: www.chromadex.com/media/2126/techtip0003recoverydilutionprocedures_nl_pw.pdf (accessed on 10 May 2022).
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Porteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Arts, M.J.T.J.; Haenen, G.R.M.M.; Voss, H.P.; Basat, A. Antioxidant capacity of reaction products limits the applicability of the Trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol. 2002, 42, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Minogue, T.D.; Daligault, H.A.; Davenport, K.W.; Bishop-Lilly, K.A.; Broomall, S.M.; Bruce, D.C.; Chain, P.S.; Chertkov, O.; Coyne, S.R.; Freita, S.T.; et al. Complete genome assembly of Escherichia coli ATCC 25922, a serotype O6 reference strain. Genome Announc. 2014, 2, e00969-14. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.; Gregson, D.B.; Poirel, L.; McClure, J.A.; Le, P.; Church, D.L. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J. Clin. Microbiol. 2005, 43, 3129–3135. [Google Scholar] [CrossRef] [Green Version]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial a Susceptibility Tests for Bacteria That Grow Aerobically, 8th ed.; Approved Standard; CLSI: Wayne, PA, USA, 2009; (CLSI document M0-A8). [Google Scholar]
Investigated Traits | |
---|---|
Plant height (cm) | 47.5 ± 3.9 |
Number of flowering shoots per plant | 236.1 ± 31.2 |
Plant diameter (cm) | 92.4 ± 8.1 |
Fresh weight of herb (g × plant−1) | 438.5 ± 32.3 |
Dry weight of herb (g × plant−1) | 167.5 ± 30.4 |
Fresh weight of inflorescences (g × plant−1) | 141.3 ± 28.4 |
Dry weight of inflorescences (g × plant−1) | 54.8 ± 6.4 |
No | Compound | RI a | RI b Range | Herb | Inflorescences |
---|---|---|---|---|---|
Essential oil content | 0.25 | 0.31 | |||
1 | α-pinene | 1029 | 1008–1039 | 10.42 | 4.05 |
2 | camphene | 1074 | 1043–1086 | 0.28 | 0.06 |
3 | β-pinene | 1112 | 1085–1130 | 0.10 | 0.08 |
4 | δ-3-carene | 1150 | 1122–1169 | 0.18 | 0.25 |
5 | α-terpinene | 1185 | 1154–1195 | 0.06 | 0.12 |
6 | limonene | 1204 | 1178–1219 | 2.17 | 0.82 |
7 | eucalyptol | 1214 | 1186–1231 | 0.30 | 0.82 |
8 | p-cymene | 1275 | 1246–1291 | 0.40 | 0.44 |
9 | terpinolene | 1284 | 1361–1300 | 0.19 | 0.15 |
10 | 3-methyl-2-butenoic acid | - | - | 0.16 | 0.55 |
11 | α-copaene | 1495 | 1462–1522 | 0.16 | 1.01 |
12 | β-cubebene | 1538 | 1518–1560 | 1.87 | 1.12 |
13 | linalool | 1542 | 1507–1564 | 0.49 | 2.25 |
14 | cis-α-bergamotene | 1559 | 1534–1580 | 0.38 | 1.03 |
15 | (E)-caryophyllene | 1594 | 1570–1685 | 4.06 | 4.50 |
16 | α-humulene | 1659 | 1637–1689 | 0.00 | 0.09 |
17 | italicene | - | - | 6.89 | 7.25 |
18 | neral | 1678 | 1641–1706 | 2.42 | 1.91 |
19 | β-selinene | 1711 | 1686–1743 | 8.20 | 4.63 |
20 | neryl acetate | 1721 | 1693–1740 | 20.27 | 16.38 |
21 | α-selinene | 1726 | 1696–1748 | 9.05 | 5.27 |
22 | ar curcumene | 1775 | 1743–1788 | 3.43 | 3.82 |
23 | α-cadinene | 1794 | 1734–1803 | 0.00 | 0.84 |
24 | nerol | 1797 | 1752–1832 | 4.49 | 15.73 |
25 | geraniol | 1814 | 1795–1865 | 6.80 | 6.32 |
26 | guaiol | 2088 | 2061–2104 | 1.07 | 1.40 |
27 | rosifoliol | - | - | 3.82 | 6.40 |
28 | humulane-1.6-dien-3-ol | - | - | 0.70 | 0.52 |
29 | α-eudesmol | 2221 | 2186–2250 | 1.13 | 1.08 |
30 | cubenol | 2063 | 2026–2090 | 0.00 | 1.62 |
31 | β-eudesmol | 2235 | 2196–2272 | 0.37 | 0.50 |
32 | carvacrol | 2210 | 2140–2246 | 2.41 | 1.88 |
33 | selinen-4-α-ol | 2251 | 2207–2274 | 2.44 | 1.86 |
Total: | 94.71 | 94.75 | |||
Monoterpene hydrocarbons | 13.40 | 5.53 | |||
Oxygenated monoterpenes | 34.77 | 43.41 | |||
Sesquiterpene hydrocarbons | 34.04 | 29.56 | |||
Oxygenated sesquiterpenes | 9.53 | 13.38 | |||
Others | 2.97 | 2.87 |
No | Group of Compounds | Herb | Inflorescences |
---|---|---|---|
1 | Flavonoids | 0.19 ± 0.02 * | 0.15 ± 0.01 |
2 | Phenolic acids | 1.40 ± 0.11 * | 0.88 ± 0.05 |
3 | Tannins | 0.18 ± 0.01 | 0.28 ± 0.02 * |
No | Compound | Herb | Inflorescences |
---|---|---|---|
Flavonoids | |||
1 | Rutoside | 191.23 ± 6.50 * | 24.30 ± 12.99 |
Phenolic acids | |||
2 | Caffeic acid | 41.71 ± 1.17 * | 27.26 ± 1.15 |
3 | Rosmarinic acid | 53.39 ± 7.76 | 64.48 ± 7.87 |
4 | Chlorogenic acid | 338.81 ± 7.32 * | 142.94 ± 6.56 |
5 | Neochlorogenic acid | 85.83 ± 3.38 | 59.41 ± 1.22 |
6 | Isochlorogenic acid b | 435.10 ± 7.49 * | 162.61 ± 6.58 |
7 | Cichoric acid | 2647.90 ± 62.20 * | 1381.06 ± 31.77 |
Sum | 3793.96 * | 1862.04 |
Method | Essential Oils | Methanolic Extracts | ||
---|---|---|---|---|
Herb | Inflorescences | Herb | Inflorescences | |
DPPH | 61.38 ± 0.54 | 58.59 ± 0.73 | 74.72 ± 0.77 | 63.81 ± 0.30 |
ABTS | 67.78 ± 0.31 | 60.53 ± 0.65 | 81.96 ± 0.38 | 72.48 ± 0.41 |
Bacteria Strains | Herb | Inflorescences | ||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
E. coli ATCC 25922 | 32 | ˃64 | 64 | ˃64 |
P. aeruginosa ATCC 27853 | 32 | ˃64 | 64 | ˃64 |
S. aureus ATCC 25923 | 4 | 16 | 1 | 16 |
S. aureus MRSA ATCC 43300 | 8 | 32 | 4 | 32 |
Month | Year | Min. Temperature (°C) | Max. Temperature (°C) | Rainfall (mm) | Air Humidity (%) | Sun Days | Sun Hours |
---|---|---|---|---|---|---|---|
January | 2018 | −1 | 2 | 35.5 | 80 | 11 | 191 |
2019 | −4 | 0 | 65.1 | 85 | 7 | 137 | |
February | 2018 | −4 | −1 | 18.5 | 74 | 13 | 156 |
2019 | 0 | 5 | 27.3 | 80 | 14 | 218 | |
March | 2018 | −2 | 4 | 29.8 | 74 | 10 | 173 |
2019 | 3 | 10 | 42.1 | 68 | 8 | 239 | |
April | 2018 | 8 | 19 | 26.9 | 67 | 14 | 315 |
2019 | 6 | 16 | 26.3 | 59 | 19 | 318 | |
May | 2018 | 12 | 23 | 110.7 | 68 | 11 | 350 |
2019 | 9 | 18 | 14.6 | 74 | 4 | 275 | |
June | 2018 | 13 | 24 | 72.2 | 65 | 5 | 327 |
2019 | 16 | 27 | 73.0 | 70 | 9 | 357 | |
July | 2018 | 16 | 26 | 165.5 | 70 | 3 | 344 |
2019 | 13 | 22 | 102.9 | 74 | 3 | 314 | |
August | 2018 | 16 | 27 | 56.1 | 63 | 14 | 349 |
2019 | 15 | 25 | 66.2 | 66 | 8 | 352 | |
September | 2018 | 12 | 22 | 67.4 | 68 | 17 | 323 |
2019 | 11 | 19 | 78.5 | 71 | 12 | 274 | |
October | 2018 | 8 | 16 | 50.1 | 68 | 20 | 292 |
2019 | 9 | 16 | 31.4 | 73 | 18 | 316 | |
November | 2018 | 3 | 8 | 19.3 | 77 | 21 | 280 |
2019 | 4 | 9 | 34.8 | 78 | 16 | 269 | |
December | 2018 | −1 | 3 | 73.5 | 86 | 5 | 131 |
2019 | 2 | 5 | 48.3 | 80 | 10 | 188 |
pH | NO3− (mg × L−1) | NH4+ (mg × L−1) | P2O5 (mg × 100 g−1) | K2O (mg × 100 g−1) | Mg (mg × 100 g−1) | Organic Matter (%) |
---|---|---|---|---|---|---|
6.05 | 75 | 23 | 21.9 | 95.0 | 21.9 | 2.71 |
No. | Compound | Precision Intra-Day (CV %) | Precision Inter-Day (CV %) | Calibration Equation | R2 (n = 6) | Linear Range (mg × mL−1) | LOD (µg × L−1) | LOQ (µg × L−1) |
---|---|---|---|---|---|---|---|---|
1 | Rutoside | 0.37 | 0.86 | y = 1434.0x − 5093.0 | 0.9999 | 0.90–90.67 | 74.6 | 248.8 |
2 | Caffeic acid | 1.00 | 1.72 | y = 2592.9x + 379.6 | 0.9996 | 1.00–998.40 | 2.50 | 8.32 |
3 | Rosmarinic acid | 1.24 | 2.12 | y = 2017.9x + 1100.4 | 0.9999 | 0.43–434.02 | 3.20 | 9.82 |
4 | Chlorogenic acid | 1.32 | 1.63 | y = 6517.4x − 12016.6 | 0.9997 | 0.40–39.47 | 20.97 | 69.90 |
5 | Neochlorogenic acid | 0.27 | 0.78 | y = 1809.0x − 1539.8 | 0.9999 | 0.39–392.0 | 18.39 | 61.31 |
6 | Isochlorogenic acid b | 0.81 | 1.23 | y = 3782.2x − 4613.2 | 0.9994 | 0.19–190.00 | 9.56 | 31.87 |
7 | Cichoric acid | 0.18 | 0.49 | y = 3230.70x + 6882.20 | 0.9998 | 0.46–456.96 | 11.47 | 38.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węglarz, Z.; Kosakowska, O.; Pióro-Jabrucka, E.; Przybył, J.L.; Gniewosz, M.; Kraśniewska, K.; Szyndel, M.S.; Costa, R.; Bączek, K.B. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals 2022, 15, 735. https://doi.org/10.3390/ph15060735
Węglarz Z, Kosakowska O, Pióro-Jabrucka E, Przybył JL, Gniewosz M, Kraśniewska K, Szyndel MS, Costa R, Bączek KB. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals. 2022; 15(6):735. https://doi.org/10.3390/ph15060735
Chicago/Turabian StyleWęglarz, Zenon, Olga Kosakowska, Ewelina Pióro-Jabrucka, Jarosław L. Przybył, Małgorzata Gniewosz, Karolina Kraśniewska, Marek S. Szyndel, Rosaria Costa, and Katarzyna Barbara Bączek. 2022. "Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe" Pharmaceuticals 15, no. 6: 735. https://doi.org/10.3390/ph15060735
APA StyleWęglarz, Z., Kosakowska, O., Pióro-Jabrucka, E., Przybył, J. L., Gniewosz, M., Kraśniewska, K., Szyndel, M. S., Costa, R., & Bączek, K. B. (2022). Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals, 15(6), 735. https://doi.org/10.3390/ph15060735