Hybrid Nanosystems Based on Nicotinate-Functionalized Mesoporous Silica and Silver Chloride Nanoparticles Loaded with Phenytoin for Preventing Pseudomonas aeruginosa Biofilm Development
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Physicochemical Characterization of Functionalized NPs
2.1.1. Analysis of Size, Morphology, and Textural Properties
2.1.2. Quantification of the Functionalization Degree by Thermogravimetry and Inductively Coupled Plasma Atomic Emission Spectroscopy
2.1.3. Characterization by Powder X-ray Diffraction Studies
2.2. In Vitro Studies of Antibacterial Activity
2.2.1. Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
2.2.2. Effect of Coadministration of Silver Nitrate and Phenytoin Sodium
2.2.3. Minimal Biofilm Inhibitory Concentration (MBIC) and Minimal Biofilm Eradication Concentration (MBEC)
2.2.4. Effect on Biofilm Development
2.2.5. Inhibition in Wound-like Medium
2.2.6. Bactericidal Mechanism of NT-Ag@Ph
2.2.7. Cytotoxicity and Cell Proliferation Studies
2.2.8. Selectivity Index
3. Discussion
4. Materials and Methods
4.1. General Remarks on Characterization of the Materials
4.2. Synthesis of Mesoporous Silica Nanoparticles (MSNs)
4.3. Functionalization of Silica Materials with Amino Ligand: Synthesis of MSN-AP
4.4. Preparation of MSN-AP-NT
4.5. Preparation of NT-Ag and NT-Ag@Ph
4.6. In Vitro Studies
4.6.1. Bacteria
4.6.2. Synergy Evaluation between Silver Nitrate and Phenytoin Sodium
4.6.3. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
4.6.4. Minimal Biofilm Inhibitory Concentration and Minimal Biofilm Eradication Concentration
4.6.5. Effect on Biofilm Development
4.6.6. Inhibition in Wound-Like Medium
4.6.7. Bactericidal Mechanism of the NT-Ag@Ph Material Using TEM
4.6.8. Cytotoxicity and Cell Proliferation
4.6.9. Statistical Analysis and IC50 Assay
4.6.10. Ph Release Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maslova, E.; Eisaiankhongi, L.; Sjöberg, F.; McCarthy, R.R. Burns and Biofilms: Priority Pathogens and In Vivo Models. npj Biofilms Microbiomes 2021, 7, 73. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas Aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Kamali, E.; Jamali, A.; Ardebili, A.; Ezadi, F.; Mohebbi, A. Evaluation of Antimicrobial Resistance, Biofilm Forming Potential, and the Presence of Biofilm-Related Genes among Clinical Isolates of Pseudomonas Aeruginosa. BMC Res. Notes 2020, 13, 27. [Google Scholar] [CrossRef]
- Manzano, M.; Vallet-Regí, M. Mesoporous Silica Nanoparticles in Nanomedicine Applications. J. Mater. Sci. Mater. Med. 2018, 29, 65. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; et al. Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Castillo, R.R.; Vallet-Regí, M. Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int. J. Nanomed. 2021, 16, 4409–4430. [Google Scholar] [CrossRef]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef]
- Fox, C.L. Silver Sulfadiazine—A New Topical Therapy for Pseudomonas in Burns. Arch. Surg. 1968, 96, 184. [Google Scholar] [CrossRef]
- Joardar, S.; Adams, M.L.; Biswas, R.; Deodhar, G.V.; Metzger, K.E.; Deweese, K.; Davidson, M.; Richards, R.M.; Trewyn, B.G.; Biswas, P. Direct Synthesis of Silver Nanoparticles Modified Spherical Mesoporous Silica as Efficient Antibacterial Materials. Microporous Mesoporous Mater. 2021, 313, 110824. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Fang, Y.; Zhu, Z. Boosting Antibacterial Activity with Mesoporous Silica Nanoparticles Supported Silver Nanoclusters. J. Colloid Interface Sci. 2019, 555, 470–479. [Google Scholar] [CrossRef]
- Wang, X.; Sun, W.; Yang, W.; Gao, S.; Sun, C.; Li, Q. Mesoporous Silica-Protected Silver Nanoparticle Disinfectant with Controlled Ag+ Ion Release, Efficient Magnetic Separation, and Effective Antibacterial Activity. Nanoscale Adv. 2019, 1, 840. [Google Scholar] [CrossRef] [Green Version]
- Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of Silver on Burn Wound Infection Control and Healing: Review of the Literature. Burns 2007, 33, 139–148. [Google Scholar] [CrossRef]
- Min, S.H.; Yang, J.H.; Kim, J.Y.; Kwon, Y.U. Development of White Antibacterial Pigment Based on Silver Chloride Nanoparticles and Mesoporous Silica and Its Polymer Composite. Microporous Mesoporous Mater. 2010, 128, 19–25. [Google Scholar] [CrossRef]
- Lu, M.-M.; Wang, Q.-J.; Chang, Z.-M.; Wang, Z.; Zheng, X.; Shao, D.; Dong, W.-F.; Zhou, Y.-M. Synergistic Bactericidal Activity of Chlorhexidine-Loaded, Silver-Decorated Mesoporous Silica Nanoparticles. Int. J. Nanomed. 2017, 12, 3577–3589. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xu, J.; Wang, Y.; Chen, C.; Gu, H.; Chai, Y.; Wang, Y. Silver Nanoparticles-Decorated and Mesoporous Silica Coated Single-Walled Carbon Nanotubes with an Enhanced Antibacterial Activity for Killing Drug-Resistant Bacteria. Nano Res. 2020, 13, 389–400. [Google Scholar] [CrossRef]
- Nawaz, M.; Abbasi, M.W.; Hisaindee, S.; Zaki, M.J.; Abbas, H.F.; Mengting, H.; Ahmed, M.A. Synthesis, Spectral Studies and Biological Evaluation of 2-Aminonicotinic Acid Metal Complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 161, 39–43. [Google Scholar] [CrossRef]
- Venkatasubramanian, H.; Sha, S.; Hemalatha, S.; Easwaramoorthy, D. Synthesis, Characterisation and Antimicrobial Activity of New Nicotinamide-Thiazole Derivatives. Rasayan J. Chem. 2019, 12, 2005–2010. [Google Scholar] [CrossRef]
- Abu-Youssef, M.A.M.; Dey, R.; Gohar, Y.; Massoud, A.A.; Öhrström, L.; Langer, V. Synthesis and Structure of Silver Complexes with Nicotinate-Type Ligands Having Antibacterial Activities against Clinically Isolated Antibiotic Resistant Pathogens. Inorg. Chem. 2007, 46, 5893–5903. [Google Scholar] [CrossRef]
- Hasamnis, A.A.; Mohanty, B.K.; Muralikrishna; Patil, S. Evaluation of Wound Healing Effect of Topical Phenytoin on Excisional Wound in Albino Rats. J. Young Pharm. 2010, 2, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Keppel Hesselink, J.M. Phenytoin Repositioned in Wound Healing: Clinical Experience Spanning 60 Years. Drug Discov. Today 2018, 23, 402–408. [Google Scholar] [CrossRef]
- Ai, X.; Liu, H.; Lu, C.; Liang, C.; Sun, Y.; Chen, S.; Sun, B.; Li, Y.; Liu, Y.; Zhang, Q.; et al. Phenytoin Silver: A New Nanocompound for Promoting Dermal Wound Healing via Comprehensive Pharmacological Action. Theranostics 2017, 7, 425–435. [Google Scholar] [CrossRef] [Green Version]
- López, T.; Ortiz, E.; Quintana, P.; González, R.D. A Nanostructured Titania Bioceramic Implantable Device Capable of Drug Delivery to the Temporal Lobe of the Brain. Colloids Surf. A Physicochem. Eng. Asp. 2007, 300, 3–10. [Google Scholar] [CrossRef]
- Ishii, Y.; Nishiwaki, Y.; Al-Zubaidi, A.; Kawasaki, S. Pore Size Determination in Ordered Mesoporous Materials Using Powder X-ray Diffraction. J. Phys. Chem. C 2013, 117, 18120–18130. [Google Scholar] [CrossRef]
- Goetze, J.; Yarulina, I.; Gascon, J.; Kapteijn, F.; Weckhuysen, B.M. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–Vis Spectroscopy. ACS Catal. 2018, 8, 2060–2070. [Google Scholar] [CrossRef] [Green Version]
- Kirik, S.D.; Parfenov, V.A.; Zharkov, S.M. Monitoring MCM-41 Synthesis by X-ray Mesostructure Analysis. Microporous Mesoporous Mater. 2014, 195, 21–30. [Google Scholar] [CrossRef]
- Okoliegbe, I.N.; Hijazi, K.; Cooper, K.; Ironside, C.; Gould, I.M. Antimicrobial Synergy Testing: Comparing the Tobramycin and Ceftazidime Gradient Diffusion Methodology Used in Assessing Synergy in Cystic Fibrosis-Derived Multidrug-Resistant Pseudomonas Aeruginosa. Antibiotics 2021, 10, 967. [Google Scholar] [CrossRef]
- Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical Microbiology. Clin. Microbiol. Infect. 2000, 6, 503–508. [CrossRef] [Green Version]
- Aguilera-Correa, J.J.; Gisbert-Garzarán, M.; Mediero, A.; Carias-Cálix, R.A.; Jiménez-Jiménez, C.; Esteban, J.; Vallet-Regí, M. Arabic Gum plus Colistin Coated Moxifloxacin-Loaded Nanoparticles for the Treatment of Bone Infection Caused by Escherichia Coli. Acta Biomater. 2022, 137, 218–237. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. In Vitro Activity of Ceftazidime, Ciprofloxacin, Meropenem, Minocycline, Tobramycin and Trimethoprim/Sulfamethoxazole against Planktonic and Sessile Burkholderia Cepacia Complex Bacteria. J. Antimicrob. Chemother. 2009, 64, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Gounani, Z.; Asadollahi, M.A.; Pedersen, J.N.; Lyngsø, J.; Skov Pedersen, J.; Arpanaei, A.; Meyer, R.L. Mesoporous Silica Nanoparticles Carrying Multiple Antibiotics Provide Enhanced Synergistic Effect and Improved Biocompatibility. Colloids Surf. B Biointerfaces 2019, 175, 498–508. [Google Scholar] [CrossRef]
- Orme, I. Search for New Drugs for Treatment of Tuberculosis. Antimicrob. Agents Chemother. 2001, 45, 1943–1946. [Google Scholar] [CrossRef] [Green Version]
- de Juan Mora, B.; Filipe, L.; Forte, A.; Santos, M.M.; Alves, C.; Teodoro, F.; Pedrosa, R.; Ribeiro Carrott, M.; Branco, L.C.; Gago, S. Boosting Antimicrobial Activity of Ciprofloxacin by Functionalization of Mesoporous Silica Nanoparticles. Pharmaceutics 2021, 13, 218. [Google Scholar] [CrossRef]
- Zheng, K.; Balasubramanian, P.; Paterson, T.E.; Stein, R.; MacNeil, S.; Fiorilli, S.; Vitale-Brovarone, C.; Shepherd, J.; Boccaccini, A.R. Ag Modified Mesoporous Bioactive Glass Nanoparticles for Enhanced Antibacterial Activity in 3D Infected Skin Model. Mater. Sci. Eng. C 2019, 103, 109764. [Google Scholar] [CrossRef]
- Pandey, S.; Ramontja, J. Sodium Alginate Stabilized Silver Nanoparticles–Silica Nanohybrid and Their Antibacterial Characteristics. Int. J. Biol. Macromol. 2016, 93, 712–723. [Google Scholar] [CrossRef]
- Gehring, J.; Schleheck, D.; Trepka, B.; Polarz, S. Mesoporous Organosilica Nanoparticles Containing Superacid and Click Functionalities Leading to Cooperativity in Biocidal Coatings. ACS Appl. Mater. Interfaces 2015, 7, 1021–1029. [Google Scholar] [CrossRef]
- Masadeh, M.; Alzoubi, K.; Ahmed, W.; Magaji, A. In Vitro Comparison of Antibacterial and Antibiofilm Activities of Selected Fluoroquinolones against Pseudomonas Aeruginosa and Methicillin-Resistant Staphylococcus Aureus. Pathogens 2019, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [Green Version]
- Nam, G.; Rangasamy, S.; Purushothaman, B.; Song, J.M. The Application of Bactericidal Silver Nanoparticles in Wound Treatment. Nanomater. Nanotechnol. 2015, 5, 23. [Google Scholar] [CrossRef]
- Esiobu, N.; Hoosein, N. An Assessment of the in Vitro Antimicrobial Effects of Two Antiepileptic Drugs--Sodium Valproate and Phenytoin. Antonie Van Leeuwenhoek 2003, 83, 63–68. [Google Scholar] [CrossRef]
- Korzekwa, K.; Kędziora, A.; Stańczykiewicz, B.; Bugla-Płoskońska, G.; Wojnicz, D. Benefits of Usage of Immobilized Silver Nanoparticles as Pseudomonas Aeruginosa Antibiofilm Factors. Int. J. Mol. Sci. 2021, 23, 284. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Ma, J.; Chen, N.; Cai, Y.; He, Y.; Li, X.; Gao, F. MSNs-Based Nanocomposite for Biofilm Imaging and NIR-Activated Chem/Photothermal/Photodynamic Combination Therapy. ACS Appl. Bio Mater. 2021, 4, 2810–2820. [Google Scholar] [CrossRef]
- Parasuraman, P.; Antony, A.P.; Lal, S.B.S.; Sharan, A.; Siddhardha, B.; Kasinathan, K.; Bahkali, N.A.; Dawoud, T.M.S.; Syed, A. Antimicrobial Photodynamic Activity of Toluidine Blue Encapsulated in Mesoporous Silica Nanoparticles against Pseudomonas Aeruginosa and Staphylococcus Aureus. Biofouling 2019, 35, 89–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, B.; Zhu, Y.; Tao, J.; Zhu, F.; Chen, J.; Li, L.; Zhao, J.; Wang, L.; Sun, S.; Yang, Y.; et al. Alginate Lyase Guided Silver Nanocomposites for Eradicating Pseudomonas Aeruginosa from Lungs. ACS Appl. Mater. Interfaces 2020, 12, 9050–9061. [Google Scholar] [CrossRef]
- Sun, Y.; Dowd, S.E.; Smith, E.; Rhoads, D.D.; Wolcott, R.D. In Vitro Multispecies Lubbock Chronic Wound Biofilm Model. Wound Repair Regen. 2008, 16, 805–813. [Google Scholar] [CrossRef]
- Zhao, Y.; Trewyn, B.G.; Slowing, I.I.; Lin, V.S.Y. Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. J. Am. Chem. Soc. 2009, 131, 8398–8400. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Hernandes, C.; da Silva Coppede, J.; Bertoni, B.W.; de Castro França, S.; Pereira, A.M.S. Flash microbiocide: A Rapid and Economic Method for Determination of MBC and MFC. Am. J. Plant Sci. 2013, 04, 850–852. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- DeLeon, S.; Clinton, A.; Fowler, H.; Everett, J.; Horswill, A.R.; Rumbaugh, K.P. Synergistic Interactions of Pseudomonas Aeruginosa and Staphylococcus Aureus in an In Vitro Wound Model. Infect. Immun. 2014, 82, 4718–4728. [Google Scholar] [CrossRef] [Green Version]
- Limpens, E.; Lvanov, S.; Van Esse, W.; Voets, G.; Fedorova, E.; Bisseling, T. Medicago N2-Fixing Symbiosomes Acquire the Endocytic Identity Marker Rab7 but Delay the Acquisition of Vacuolar Identity. Plant Cell 2009, 21, 2811–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | BET Surface (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
MSN | 1102 | 0.75 | 2.84 |
NT-Ag | 115 | 0.18 | <2.00 |
NT-Ag@Ph | 48 | 0.07 | <2.00 |
Material | %AP | %NT | %Ph | % Experimental Ag | mmol of NT, Ph or Ag per g of Material |
---|---|---|---|---|---|
MSN | 8.68 | - | - | - | - |
MSN-AP-NT | 8.68 | 2.52 | - | - | 0.14 (NT) |
NT-Ag | 8.68 | 2.52 | - | 0.35 | 0.03 (Ag) |
NT-Ag@Ph | 8.68 | 2.52 | 9.30 | 0.32 | 0.37 (Ph); 0.03 (Ag) |
Material | ATCC27853 | PA8 | PA13 | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
NT-Ag | 250 (0.88) | 500 (1.76) | 62.50 (0.22) | 125 (0.44) | 31.25 (0.11) | 250 (0.88) |
NT-Ag @Ph | 31.25 (0.10) | 500 (1.60) | 31.25 (0.10) | 125 (0.40) | 31.25 (0.10) | 250 (0.80) |
Material | ATCC27853 | PA8 | PA13 | |||
---|---|---|---|---|---|---|
MBIC | MBEC | MBIC | MBEC | MBIC | MBE | |
NT-Ag | 250 (0.88) | >1000 (3.51) | 125 (0.44) | >1000 (3.51) | 500 (1.76) | >1000 (3.51) |
NT-Ag@Ph | 125 (0.40) | >1000 (3.20) | 125 (0.40) | 1000 (3.20) | 500 (1.60) | >1000 (3.20) |
Antibiotic | ATCC27853 | PA8 | PA13 |
---|---|---|---|
Amikacin | S (2) | S (2) | S (2) |
Aztreonam | S (2) | S (4) | S (2) |
Cefepime | S (2) | S (1) | R (16) |
Ceftazidime | S (2) | S (2) | S (8) |
Ceftolozane/tazobactam | S (0.5) | S (0.5) | S (1) |
Ciprofloxacin | S (<0.25) | S (0.25) | R (4) |
Colistin | S (<0.5) | S (0.5) | S (0.5) |
Gentamycin | S (<1) | S (1) | S (1) |
Imipenem | S (2) | S (1) | S (1) |
Meropenem | S (<0.25) | S (0.25) | S (1) |
Piperacillin/tazobactam | S (<4) | S (4) | R (128) |
Tobramycin | S (<1) | S (1) | S (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugalde-Arbizu, M.; Aguilera-Correa, J.J.; Mediero, A.; Esteban, J.; Páez, P.L.; San Sebastian, E.; Gómez-Ruiz, S. Hybrid Nanosystems Based on Nicotinate-Functionalized Mesoporous Silica and Silver Chloride Nanoparticles Loaded with Phenytoin for Preventing Pseudomonas aeruginosa Biofilm Development. Pharmaceuticals 2022, 15, 884. https://doi.org/10.3390/ph15070884
Ugalde-Arbizu M, Aguilera-Correa JJ, Mediero A, Esteban J, Páez PL, San Sebastian E, Gómez-Ruiz S. Hybrid Nanosystems Based on Nicotinate-Functionalized Mesoporous Silica and Silver Chloride Nanoparticles Loaded with Phenytoin for Preventing Pseudomonas aeruginosa Biofilm Development. Pharmaceuticals. 2022; 15(7):884. https://doi.org/10.3390/ph15070884
Chicago/Turabian StyleUgalde-Arbizu, Maider, John Jairo Aguilera-Correa, Aranzazu Mediero, Jaime Esteban, Paulina L. Páez, Eider San Sebastian, and Santiago Gómez-Ruiz. 2022. "Hybrid Nanosystems Based on Nicotinate-Functionalized Mesoporous Silica and Silver Chloride Nanoparticles Loaded with Phenytoin for Preventing Pseudomonas aeruginosa Biofilm Development" Pharmaceuticals 15, no. 7: 884. https://doi.org/10.3390/ph15070884
APA StyleUgalde-Arbizu, M., Aguilera-Correa, J. J., Mediero, A., Esteban, J., Páez, P. L., San Sebastian, E., & Gómez-Ruiz, S. (2022). Hybrid Nanosystems Based on Nicotinate-Functionalized Mesoporous Silica and Silver Chloride Nanoparticles Loaded with Phenytoin for Preventing Pseudomonas aeruginosa Biofilm Development. Pharmaceuticals, 15(7), 884. https://doi.org/10.3390/ph15070884