Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies
Abstract
:1. Introduction
2. Cardiotoxicity from Systemic Anticancer Drugs
2.1. Cytotoxic Agents
2.1.1. Anthracyclines (ANT)-Induced Cardiotoxicity
2.1.2. Alkylating Agents
2.1.3. Antimetabolites
2.1.4. Vinca Alkaloids
3. Molecular-Target Agents
3.1. Tyrosine Kinase Inhibitors (TKIs)
3.1.1. Small-Molecule TKIs
3.1.2. Monoclonal Tyrosine Kinase Antibodies
3.2. Proteasome Inhibitors
3.3. Immune Checkpoint Inhibitors (ICPIs)
3.4. Chimeric Antigen Receptor T Therapy (CAR-T)
4. Hematopoietic Stem Cell Transplantation
4.1. Acute Cardiotoxicity
4.2. Late Cardiotoxicity
5. Prevention and Management of LV Dysfunction
5.1. Primordial Prevention
5.2. Primary Prevention-Preclinical Trials
5.3. Primary Prevention-Clinical Trials
5.3.1. Dexrazoxane
5.3.2. Beta-Blockers
5.3.3. ACEis and ARBs
5.3.4. Statins
5.4. Secondary Prevention
First Author/Year | Chemotherapy | Design Medication | Results |
---|---|---|---|
Bosch et al. [75] | Anthracycline | Enalapril + Carvedilol vs. control (no treatment) | Treatment: LV ejection fraction (LVEF) −0.17%, Control: LVEF −3.28%, (p = 0.04) |
Georgakopoulos et al. [83] | Anthracycline | 1:1:1: Metoprolol, Enalapril. Control (no treatment | Metoprolol: HF 2%, enalapril HF: 5%, Control: 8% (p = 0.05) |
Cardinale et al. [89] | Multiple | Enalapril vs. Control | Treatment: LVEF ↓ in 43%, Control: LVEF ↓ in 0%, (p < 0.001) |
Cardinale et al. [91] | Anthracycline | Enalapril alone or Enalapril+ Carvedilol | LVEF recovery: 42% responders, 13% partial, 45% non-responders. No complete LVEF recovery after 6 M. ↓, rate of cumulative cardiac events in responders (p < 0.001) |
Cardinale et al. [92] | Anthracycline | Enalapril alone or Enalapril and b-blockers in case of cardiotoxicity | 11% of patients had full recovery, and (71%) had partial recovery. Early detection and prompt therapy predict substantial recovery of cardiac function. |
Janbadai et al. [79] | Anthracycline | Enalapril vs. Control | TnI and CK-MB levels were significantly higher in the control group. Enalapril preserved systolic and diastolic function. |
Jhorawat et al. [73] | Adriamycin | Carvedilol vs. no treatment | In carvedilol group, EF remained unchanged, vs. control group, p < 0.05. |
Salehi et al. [74] | Anthracycline | Placebo vs. carvedilol 12.5 mg, vs. Carvedilol 25 mg | Carvedilol protects diastolic function at a dose of 12.5, and both systolic and diastolic function at 25 mg. |
Cadeddu et al. [81] | Epirubicin | Telmisartan vs. Placebo | Tissue Doppler strain rate normalized only in Telmisartan group at >300 mg/m2 epirubicin |
Kalay et al. [72] | Anthracycline | Carvedilol vs. Control | Treatment: LVEF 70.5 → 69.7% Control: LVEF 68.9 → 52.3% (p < 0.001) |
Nakamee et al. [80] | Anthracycline | Valsartan vs. Control | Valsartan prevented ↑ in LV end-diastolic dimension, demonstrated in the control group |
Dessi et al. [82] | Epirubicin | Telmisartan vs. Placebo | TEL maintains a normal systolic function up to the 12-month FU. |
El-Shitany et al. [71] | Adriamycin | Adriamycin vs. Adriamycin + Carvedilol pretreatment | Prevention of ↓ of Fractional shortening, Global Peak Systolic Strain; ↑ troponin. |
Cardinale et al. [90] | Epirubicin or Doxorubicin in patients with low cardiovascular risk | Enalapril before chemotherapy or enalapril only in increased troponin | No differences were observed between preventive or troponin-triggered enalapril-based strategy |
Martín-Garcia et al. [93] | 70% anthracyclines 30% radiotherapy | Sacubitril/valsartan | ↑ LVEF, ↓ LV diameters, ↓ NYHA class vs. placebo |
Acar et al. [86] | Anthracycline | Atorvastatin vs. Control | Treatment: LVEF +1.3%; Control: LVEF −7.9%. (p < 0.001) |
Chotenimitkhun et al. [87] | Anthracycline | Statin vs. Control | Treatment: LVEF –1.1%; Control: LVEF −6.5%. (p = 0.03) |
Treatment | Mechanism |
---|---|
Dexrazoxane [64] | Reactive oxygen species reduction, prevention of cardiac Top2β anthracyclines interaction, reduction in DNA damage |
ACEIs, ARBs [64] | Reduction of oxidative stress, antifibrotic and inti-inflammatory effects, improvement of intracellular calcium handling, mitochondrial function, and cardiomyocyte metabolism |
Beta-blockers [64,69,70] | Reduction of oxidative stress and cardiomyocyte apoptosis, enhanced lusitropy, prevention of endothelial dysfunction |
Statins [85] | Inhibition of Top2β-mediated DNA damage, anti-inflammatory, and antioxidant effects, reduction in myocardial fibrosis |
Valsartan/sacubitril [93] | Reduction in myocardial fibrosis |
6. Prevention of Other Types of Cardiotoxicities
7. Cardiotoxicity and Arrhythmia
7.1. Atrial Fibrillation (AF)
7.2. QTc Interval Prolongation and Ventricular Tachycardia (VT)
8. Prevention of Vein Thromboembolism (VTE)
9. ICPIs Myocarditis
10. Cardiotoxicity from Radiotherapy
10.1. Statins
10.2. ACEIs
10.3. Anti-Inflammatory and Antioxidants Agents
10.4. New Compounds
11. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fitzmaurice, C.; Akinyemiju, T.F.; Hasan, F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar] [CrossRef] [PubMed]
- Sant, M.; Allemani, C.; Tereanu, C.; De Angelis, R.; Capocaccia, R.; Visser, O.; Marcos-Gragera, R.; Maynadié, M.; Simonetti, A.; Lutz, J.-M.; et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood 2010, 116, 3724–3734. [Google Scholar] [CrossRef] [PubMed]
- Sant, M.; Minicozzi, D.; Mounier, M.; Anderson, L.A.; Brenner, H.; Holleczek, B.; Marcos-Gragera, R.M.; Maynadié, M.; Monnereau, A.; Osca-Gelis, G.; et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: Results of EUROCARE-5, a population-based study. Lancet Oncol. 2014, 15, 931–942. [Google Scholar] [CrossRef]
- López-Fernández, T.; Martín-García, A.; Beltrán, A.S.; Luis, A.M.; Sanz, R.G.; Ramos, P.M.; del Castillo, S.V.; de Sá Areses, E.L.; Barreiro-Perez, M.; Baydes, R.H.; et al. Cardio-Onco-Hematology in Clinical Practice. Position Paper and Recommendations. Rev. Esp. Cardiol. 2017, 70, 474–486. [Google Scholar] [CrossRef]
- Skitch, A.; Mital, S.; Mertens, L.; Liu, P.; Kantor, P.; Grosse-Wortmann, L.; Manlhiot, C.; Greenberg, M.; Nathan, P.C. Novel approaches to the prediction, diagnosis and treatment of cardiac late effects in survivors of childhood cancer: A multi-centre observational study. BMC Cancer 2017, 17, 519. [Google Scholar] [CrossRef]
- Farmakis, D.; Mantzourani, M.; Filippatos, G. Anthracycline-induced cardiomyopathy: Secrets and lies. Eur. J. Heart Fail. 2018, 20, 907–909. [Google Scholar] [CrossRef]
- Jain, D.; Russell, R.R.; Schwartz, R.G.; Panjrath, G.S.; Aronow, W. Cardiac Complications of Cancer Therapy: Pathophysiology, Identification, Prevention, Treatment, and Future Directions. Curr. Cardiol. Rep. 2017, 19, 36. [Google Scholar] [CrossRef]
- Herrmann, J.; Lerman, A.; Sandhu, N.P.; Villarraga, H.R.; Mulvagh, S.L.; Kohli, M. Evaluation and Management of Patients with Heart Disease and Cancer: Cardio-Oncology. Mayo Clin. Proc. 2014, 89, 1287–1306. [Google Scholar] [CrossRef]
- Curigliano, G.; Cardinale, D.; Dent, S.; Criscitiello, C.; Aseyev, O.; Lenihan, D.; Cipolla, C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. Cancer J. Clin. 2016, 66, 309–325. [Google Scholar] [CrossRef]
- Adhikari, A.; Asdaq, S.M.B.; Al Hawaj, M.A.; Chakraborty, M.; Thapa, G.; Bhuyan, N.R.; Imran, M.; Alshammari, M.K.; Alshehri, M.M.; Harshan, A.A.; et al. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals 2021, 14, 970. [Google Scholar] [CrossRef]
- Murabito, A.; Hirsch, E.; Ghigo, A. Mechanisms of Anthracycline-Induced Cardiotoxicity: Is Mitochondrial Dysfunction the Answer? Front. Cardiovasc. Med. 2020, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Moudgil, R.; Yeh, E.T. Mechanisms of Cardiotoxicity of Cancer Chemotherapeutic Agents: Cardiomyopathy and Beyond. Can. J. Cardiol. 2016, 32, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Della Sala, A.; Tocchetti, C.G.; Porporato, P.E.; Ghigo, A. Metabolic Aspects of Anthracycline Cardiotoxicity. Curr. Treat. Options Oncol. 2021, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, L.; Kulle, B.; Schirmer, M.; Schluter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M.R.; Suk, E.-K.; et al. NAD(P)H Oxidase and Multidrug Resistance Protein Genetic Polymorphisms Are Associated with Doxorubicin-Induced Cardiotoxicity. Circulation 2005, 112, 3754–3762. [Google Scholar] [CrossRef] [PubMed]
- Eschenhagen, T.; Force, T.; Ewer, M.S.; De Keulenaer, G.; Suter, T.M.; Anker, S.D.; Avkiran, M.; de Azambuja, E.; Balligand, J.-L.; Brutsaert, D.L.; et al. Cardiovascular side effects of cancer therapies: A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2011, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Federico, M.; Oliva, S.; Pinto, A.; Rigacci, L.; Specchia, G.; Tucci, A.; Vitolo, U. The more patients you treat, the more you cure: Managing cardiotoxicity in the treatment of aggressive non-Hodgkin lymphoma. Leuk. Lymphoma 2015, 56, 12–25. [Google Scholar] [CrossRef]
- Hamo, C.E.; Bloom, M.W. Getting to the Heart of the Matter: An Overview of Cardiac Toxicity Related to Cancer Therapy. Clin. Med. Insights Cardiol. 2015, 9 (Suppl. S2), 47–51. [Google Scholar] [CrossRef]
- Oliveira, G.H.; Al-Kindi, S.G.; Caimi, P.F.; Lazarus, H.M. Maximizing anthracycline tolerability in hematologic malignancies: Treat to each heart’s content. Blood Rev. 2016, 30, 169–178. [Google Scholar] [CrossRef]
- Spetz, J.; Moslehi, J.; Sarosiek, K. Radiation-Induced Cardiovascular Toxicity: Mechanisms, Prevention, and Treatment. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 31. [Google Scholar] [CrossRef]
- Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.; Syed, M.A.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclo-phosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019, 218, 112–131. [Google Scholar] [CrossRef]
- Perez, I.E.; Alam, S.T.; Hernandez, G.A.; Sancassani, R. Cancer Therapy-Related Cardiac Dysfunction: An Overview for the Clinician. Clin. Med. Insights Cardiol. 2019, 13, 1179546819866445. [Google Scholar] [CrossRef]
- Mudd, T.W.; Khalid, M.; Guddati, A.K. Cardiotoxicity of chemotherapy and targeted agents. Am. J. Cancer Res. 2021, 11, 1132–1147. [Google Scholar]
- Kamphuis, J.A.; Linschoten, M.; Cramer, M.J.; Gort, E.H.; van Rhenen, A.; Asselbergs, F.W.; Doevendans, P.A.; Teske, A.J. Cancer Therapy-Related Cardiac Dysfunction of Nonanthracycline Chemotherapeutics. What Is the Evidence? J. Am. Coll Cardiol. CardioOncol. 2019, 1, 280–290. [Google Scholar] [CrossRef]
- Barreca, M.; Stathis, A.; Barraja, P.; Bertoni, F. An overview on anti-tubulin agents for the treatment of lymphoma patients. Pharmacol. Ther. 2020, 211, 107552. [Google Scholar] [CrossRef]
- Jabbour, E.; Kantarjian, H.M.; Saglio, G.; Steegmann, J.L.; Shah, N.P.; Boqué, C.; Chuah, C.; Pavlovsky, C.; Mayer, J.; Cortes, J.; et al. Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood 2014, 123, 494–500. [Google Scholar] [CrossRef]
- Shah, C.P.; Moreb, J.S. Cardiotoxicity due to targeted anticancer agents: A growing challenge. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Kim, D.-W.; Pinilla-Ibarz, J.; Le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; et al. A Phase 2 Trial of Ponatinib in Philadelphia Chromosome–Positive Leukemias. N. Engl. J. Med. 2013, 369, 1783–1796. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.C.; Touyz, R.M.; Lang, N.N. Vascular Complications of Cancer Chemotherapy. Can. J. Cardiol. 2016, 32, 852–862. [Google Scholar] [CrossRef]
- Montani, D.; Bergot, E.; Günther, S.; Savale, L.; Bergeron, A.; Bourdin, A.; Bouvaist, H.; Canuet, M.; Pison, C.; Macro, M.; et al. Pulmonary Arterial Hypertension in Patients Treated by Dasatinib. Circulation 2012, 125, 2128–2137. [Google Scholar] [CrossRef]
- Yurttaş, N.Ö.; Eşkazan, A.E. Dasatinib-induced pulmonary arterial hypertension. Br. J. Clin. Pharmacol. 2018, 84, 835–845. [Google Scholar] [CrossRef]
- Suter, T.M.; Ewer, M.S. Cancer drugs and the heart: Importance and management. Eur. Heart J. 2012, 34, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J. Adverse cardiac effects of cancer therapies: Cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 2020, 17, 474–502. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.; Molsehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J.E. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol. Ther. 2018, 189, 89–103. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Kopecky, S.L.; Specks, U.; Bharucha, K.; Fervenza, F.C. Non-ischemic cardiomyopathy after rituximab treatment for membranous nephropathy. J. Ren. Inj. Prev. 2016, 6, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.H.; Dearden, C.; Gruber, P. Rituximab-induced Takotsubo syndrome: More cardiotoxic than it appears? BMJ Case Rep. 2015, 2015, bcr2014208203. [Google Scholar] [CrossRef]
- Armenian, S.H.; Armstrong, G.T.; Aune, G.; Chow, E.J.; Ehrhardt, M.; Ky, B.; Moslehi, J.; Mulrooney, D.A.; Nathan, P.C.; Ryan, T.D.; et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights Into Epidemiology, Pathophysiology, and Prevention. J. Clin. Oncol. 2018, 36, 2135–2144. [Google Scholar] [CrossRef]
- Bringhen, A.; Milan, C.; Ferric, C.; Wäsch, R.; Gay, F.; Larocca, A.; Salvini, M.; Terpos, E.; Goldschmidt, H.; Cavo, M.; et al. Cardiovascular adverse events in modern myeloma therapy- incidence and risks. A review from the European Myeloma Network (EMN) and Italian Society of American Hy-pertension (SHA). Haematologica 2018, 103, 1422–1432. [Google Scholar] [CrossRef]
- Bojan, A.; Torok-Vistai, T.; Parvu, A. Assessment and Management of Cardiotoxicity in Hematologic Malignancies. Dis. Markers 2021, 2021, 6616265. [Google Scholar] [CrossRef]
- Waxman, A.J.; Clasen, S.; Hwang, W.-T.; Garfall, A.; Vogl, D.T.; Carver, J.; O’Quinn, R.; Cohen, A.; Stadtmauer, E.A.; Ky, B.; et al. Carfilzomib-Associated Cardiovascular Adverse Events: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, e174519. [Google Scholar] [CrossRef]
- Sharalaya, Z.; Collier, P. Prevention of Cardiotoxicities with Traditional and Novel Chemotherapeutic Agents. Curr. Heart Fail. Rep. 2018, 15, 260–269. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Fradley, M.G.; Cohen, J.V.; Nohria, A.; Reynolds, K.L.; Heinzerling, L.M.; Sullivan, R.J.; Damrongwatanasuk, R.; Chen, C.L.; Gupta, D.; et al. Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J. Am. Coll. Cardiol. 2018, 71, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-R.; Florido, R.; Lipson, E.J.; Naidoo, J.; Ardehali, R.; Tocchetti, C.G.; Lyon, A.R.; Padera, R.F.; Johnson, D.B.; Moslehi, J. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc. Res. 2019, 115, 854–868. [Google Scholar] [CrossRef]
- Dal’Bo, N.; Patel, R.; Parikh, R.; Shah, S.P.; Guha, A.; Dani, S.S.; Ganatra, S. Cardiotoxicity of Contemporary Anticancer Immunotherapy. Curr. Treat. Options Cardiovasc. Med. 2020, 22, 62. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Maker, A.; Jain, S. The Evolution of Cancer Immunotherapy. Vaccines 2021, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Maldini, C.R.; Ellis, G.I.; Riley, J.L. CAR T cells for infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 2018, 18, 605–616. [Google Scholar] [CrossRef]
- Ganatra, S.; Redd, R.; Hayek, S.S.; Parikh, R.; Azam, T.; Yanik, G.A.; Spendley, L.; Nikiforow, S.; Jacobson, C.; Nohria, A. Chimeric Antigen Receptor T-Cell Therapy–Associated Cardiomyopathy in Patients With Refractory or Relapsed Non-Hodgkin Lymphoma. Circulation 2020, 142, 1687–1690. [Google Scholar] [CrossRef]
- Tuzovic, M.; Mead, M.; Young, P.A.; Schiller, G.; Yang, E.H. Cardiac Complications in the Adult Bone Marrow Transplant Patient. Curr. Oncol. Rep. 2019, 21, 28. [Google Scholar] [CrossRef]
- Blaes, A.; Konety, S.; Hurley, P. Cardiovascular Complications of Hematopoietic Stem Cell Transplantation. Curr. Treat. Options Cardiovasc. Med. 2016, 18, 25. [Google Scholar] [CrossRef]
- Gyurkocza, B.; Sandmaier, B.M. Conditioning regimens for hematopoietic cell transplantation: One size does not fit all. Blood 2014, 124, 344–353. [Google Scholar] [CrossRef]
- Rotz, S.J.; Ryan, T.D.; Hayek, S.S. Cardiovascular disease and its management in children and adults undergoing hematopoietic stem cell transplantation Thrombosis and Thrombolysis. J. Thromb. Thrombolysis 2021, 51, 854–869. [Google Scholar] [CrossRef]
- Isidori, A.; Loscocco, F.; Visani, G.; Chiarucci, M.; Musto, P.; Kubasch, A.-S.; Platzbecker, U.; Vinchi, F. Iron Toxicity and Chelation Therapy in Hematopoietic Stem Cell Transplant. Transplant. Cell. Ther. 2020, 27, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Tonorezos, E.S.; Stillwell, E.E.; Calloway, J.J.; Glew, T.; Wessler, J.D.; Rebolledo, B.J.; Pham, A.; Steingart, R.M.; Lazarus, H.; Gale, R.P.; et al. Arrhythmias in the setting of hematopoietic cell transplants. Bone Marrow Transplant. 2015, 50, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Alblooshi, R.; Kanfar, S.; Lord, B.; Atenafu, E.G.; Michelis, F.V.; Pasic, I.; Gerbitz, A.; Al-Shaibani, Z.; Viswabandya, A.; Kim, D.H.; et al. Clinical prevalence and outcome of cardiovascular events in the first 100 days post allogeneic HSCT. Eur. J. Haematol. 2020, 106, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Sun, C.-L.; Shannon, T.; Mills, G.; Francisco, L.; Venkataraman, K.; Wong, F.L.; Forman, S.J.; Bhatia, S. Incidence and predictors of congestive heart failure after autologous hematopoietic cell transplantation. Blood 2011, 118, 6023–6029. [Google Scholar] [CrossRef]
- Tichelli, A.; Gratwohl, A. Vascular endothelium as “novel” target of graft versus- host disease. Best Pract. Res. Clin. Haematol. 2008, 21, 139–148. [Google Scholar] [CrossRef]
- Hamo, C.E.; Bloom, M.W.; Cardinale, D.; Ky, B.; Nohria, A.; Baer, L.; Skopicki, H.; Lenihan, D.J.; Gheorghiade, M.; Lyon, A.R.; et al. Cancer Therapy-Related Cardiac Dysfunction and Heart Failure: Part 2: Prevention, Treatment, Guidelines, and Future Directions. Circ. Heart Fail. 2016, 9, e002843. [Google Scholar] [CrossRef]
- Bouleftour, W.; Mery, B.; Rowinski, E.; Rivier, C.; Daguenet, E.; Magne, N. Cardio-Oncology Preclinical Models: A Comprehensive Review. Anticancer Res. 2021, 41, 5355–5364. [Google Scholar] [CrossRef]
- Asnani, A.; Moslehi, J.J.; Adhikari, B.B.; Balik, A.H.; Beyer, A.M.; de Boer, R.A.; Ghigo, A.; Grumbach, I.M.; Jain, S.; Zhu, H.; et al. Preclinical models of Cancer Therapy-Associated Car-diovascular Toxocity. A Scientific Statement From The American Heart Association. Circ. Res. 2021, 129, e21–e34. [Google Scholar] [CrossRef]
- Singh, A.P.; Umbarkar, P.; Tousif, S.; Lal, H. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int. J. Cardiol. 2020, 316, 214–221. [Google Scholar] [CrossRef]
- Moslehi, J.J.; Deininger, M.W.N. Tyrosine Kinase Inhibitor—Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia. J. Clin. Oncol. 2015, 33, 4210–4218. [Google Scholar] [CrossRef]
- Finet, J.E.; Tang, W.H.W. Protecting the heart in cancer therapy. F1000Research 2018, 7, 1566. [Google Scholar] [CrossRef] [PubMed]
- Menna, P.; Salvatorelli, E. Primary Prevention Strategies for Anthracycline Cardiotoxicity: A Brief Overview. Chemotherapy 2017, 62, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, S.; Nohria, A.; Shah, S.; Groarke, J.D.; Sharma, A.; Venesy, D.; Patten, R.; Gunturu, K.; Zarwan, C.; Neilan, T.G.; et al. Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: A consecutive case series. Cardio-Oncology 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.B.; Bongiovanni, C.; Da Pra, S.; Miano, C.; Sacchi, F.; Lauriola, M.; D’Uva, G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front. Cardiovasc. Med. 2022, 9, 847012. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, P.; Tabone, M.-D.; Mora, J.; Morland, B.; Jones, R. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: Re-evaluating the European labeling. Futur. Oncol. 2018, 14, 2663–2676. [Google Scholar] [CrossRef]
- Getz, K.D.; Sung, L.; Alonzo, T.A.; Leger, K.J.; Gerbing, R.B.; Pollard, J.A.; Cooper, T.; Kolb, A.; Gamis, A.S.; Ky, B.; et al. Effect of Dexrazoxane on Left Ventricular Systolic Function and Treatment Outcomes in Patients with Acute Myeloid Leukemia: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2020, 38, 2398–2406. [Google Scholar] [CrossRef]
- Vachhani, P.; Shin, S.; Baron, J.; Thompson, J.E.; Wetzler, M.; Griffiths, E.A.; Ontiveros, E.P.; Spangenthal, E.J.; Wang, E.S. Dexrazoxane for cardioprotection in older adults with acute myeloid leukemia. Leuk. Res. Rep. 2017, 7, 36–39. [Google Scholar] [CrossRef]
- Varricchi, G.; Ameri, P.; Cadeddu, C.; Ghigo, A.; Madonna, R.; Marone, G.; Mercurio, V.; Monte, I.; Novo, G.; Parrella, P.; et al. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front. Physiol. 2018, 9, 167. [Google Scholar] [CrossRef]
- Tocchetti, C.G.; Cadeddu, C.; Di Lisi, D.; Femminò, S.; Madonna, R.; Mele, D.; Monte, I.; Novo, G.; Penna, C.; Pepe, A.; et al. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid. Redox Signal. 2019, 30, 2110–2153. [Google Scholar] [CrossRef]
- Morbidelli, L.; Donnini, S.; Ziche, M. Targeting endothelial cell metabolism for cardio-protection from the toxicity of antitumor agents. Cardio-Oncology 2016, 2, 3. [Google Scholar] [CrossRef]
- El-Shitany, N.A.; Tolba, O.A.; El-Shanshory, M.R.; El-Hawary, E.E. Protective Effect of Carvedilol on Adriamycin-Induced Left Ventricular Dysfunction in Children With Acute Lymphoblastic Leukemia. J. Card. Fail. 2012, 18, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Kalay, N.; Basar, E.; Ozdogru, I.; Er, O.; Cetinkaya, Y.; Dogan, A.; Oguzhan, A.; Eryol, N.K.; Topsakal, R.; Ergin, A.; et al. Protective Effects of Carvedilol Against Anthracycline-Induced Cardiomyopathy. J. Am. Coll. Cardiol. 2006, 48, 2258–2262. [Google Scholar] [CrossRef] [PubMed]
- Jhorawat, R.; Kumari, S.; Varma, S.C.; Rohit, M.K.; Narula, N.; Suri, V.; Malhotra, P.; Jain, S.K. Preventive role of carvedilol in adriamycin-induced cardiomyopathy. Indian J. Med. Res. 2016, 144, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Salehi, R.; Zamani, B.; Esfehani, A.; Ghafari, S.; Abasnezhad, M.; Goldust, M. Protective Effect of Carvedilol in Cardiomyopathy Caused by Anthracyclines in Patients Suffering from Breast Cancer and Lymphoma. Am. Heart Hosp. J. Winter 2011, 9, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Bosch, X.; Rovira, M.; Sitges, M.; Domènech, A.; Ortiz-Pérez, J.T.; de Caralt, T.M.; Morales-Ruiz, M.; Perea, R.J.; Monzó, M.; Esteve, J. Cardiac Imaging in Heart Failure Enalapril and Carvedilol for Preventing Chemotherapy-Induced Left Ventricular Systolic Dysfunction in Patients with Malignant Hemopathies. The OVERCOME Trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J. Am. Coll. Cardiol. 2013, 61, 2355–2362. [Google Scholar] [CrossRef]
- Kheiri, B.; Abdalla, A.; Osman, M.; Haykal, T.; Chahine, A.; Ahmed, S.; Osman, K.; Hassan, M.; Bachuwa, G.; Bhatt, D.L. Meta-Analysis of Carvedilol for the Prevention of Anthracycline-Induced Cardiotoxicity. Am. J. Cardiol. 2018, 122, 1959–1964. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, Q.; Yang, Z.-G.; Diao, K.-Y.; He, Y.; Shi, K.; Shen, M.-T.; Fu, H.; Guo, Y.-K. Protective role of beta-blockers in chemotherapy-induced cardiotoxicity—a systematic review and meta-analysis of carvedilol. Heart Fail. Rev. 2019, 24, 325–333. [Google Scholar] [CrossRef]
- Sobczuk, P.; Czerwińska, M.; Kleibert, M.; Cudnoch-Jędrzejewska, A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system—from molecular mechanisms to therapeutic applications. Heart Fail. Rev. 2022, 27, 295–319. [Google Scholar] [CrossRef]
- Janbabai, G.; Nabati, M.; Faghihinia, M.; Azizi, S.; Borhani, S.; Yazdani-Charati, J. Effect of Enalapril on Preventing Anthracycline-Induced Cardiomyopathy. Cardiovasc. Toxicol. 2016, 17, 130–139. [Google Scholar] [CrossRef]
- Nakamae, H.; Tsumura, K.; Terada, Y.; Nakane, T.; Nakamae, M.; Ohta, K.; Yamane, T.; Hino, M. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 2005, 104, 2492–2498. [Google Scholar] [CrossRef]
- Cadeddu, C.; Piras, A.; Mantovani, G.; Deidda, M.; Dessì, M.; Madeddu, C.; Massa, E.; Mercuro, G. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am. Heart J. 2010, 160, 487.e1–487.e7. [Google Scholar] [CrossRef]
- Dessì, M.; Piras, A.; Madeddu, C.; Cadeddu, C.; Deidda, M.; Massa, E.; Antoni, G.; Mantovani, G.; Mercuro, G. Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress and myocardial dysfunction. Exp. Ther. Med. 2011, 2, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulos, P.; Roussou, P.; Matsakas, E.; Karavidas, A.; Anagnostopoulos, N.; Marinakis, T.; Galanopoulos, A.; Georgiakodis, F.; Zimeras, S.; Kyriakidis, M.; et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: A prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am. J. Hematol. 2010, 85, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Hirji, S.A.; Qamar, A.; Bajaj, N.; Gupta, A.; Zaha, V.G.; Chandra, A.; Haykowsky, M.; Ky, B.; Moslehi, J.; et al. Efficacy of Neurohormonal Therapies in Preventing Cardiotoxicity in Patients with Cancer Undergoing Chemotherapy. JACC CardioOncol. 2019, 1, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Vuong, J.T.; Stein-Merlob, A.F.; Cheng, R.K.; Yang, E.H. Novel Therapeutics for Anthracycline Induced Cardiotoxicity. Front. Cardiovasc. Med. 2022, 9, 863314. [Google Scholar] [CrossRef]
- Acar, Z.; Kale, A.; Turgut, M.; Demircan, S.; Durna, K.; Demir, S.; Meriç, M.; Ağaç, M.T. Efficiency of Atorvastatin in the Protection of Anthracycline-Induced Cardiomyopathy. J. Am. Coll. Cardiol. 2011, 58, 988–989. [Google Scholar] [CrossRef]
- Chotenimitkhun, R.; D’Agostino, R., Jr.; Lawrence, J.A.; Hamilton, C.A.; Jordan, J.H.; Vasu, S.; Lash, T.L.; Yeboah, J.; Herrington, D.M.; Hundley, W.G. Chronic Statin Administration May Attenuate Early Anthracycline-Associated Declines in Left Ventricular Ejection Function. Can. J. Cardiol. 2015, 31, 302–307. [Google Scholar] [CrossRef]
- Cardinale, D.; Biasillo, G.; Cipolla, C.M. Curing Cancer, Saving the Heart: A Challenge That Cardioncology Should Not Miss. Curr. Cardiol. Rep. 2016, 18, 51. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Sandri, M.T.; Lamantia, G.; Colombo, N.; Civelli, M.; Martinelli, G.; Veglia, F.; Fiorentini, C.; Cipolla, C.M.; et al. Prevention of High-Dose Chemotherapy–Induced Cardiotoxicity in High-Risk Patients by Angiotensin-Converting Enzyme Inhibition. Circulation 2006, 114, 2474–2481. [Google Scholar] [CrossRef]
- Cardinale, D.; Ciceri, F.; Latini, R.; Franzosi, M.G.; Sandri, M.T.; Civelli, M.; Cucchi, G.; Menatti, E.; Mangiavacchi, M.; Cavina, R.; et al. Anthracycline-induced cardiotoxicity: A multicenter randomized trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur. J. Cancer 2018, 94, 126–137. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomiet, G.; Rubino, M.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. J. Am. Coll. Cardiol. 2010, 55, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early Detection of Anthracycline Cardiotoxicity and Improvement with Heart Failure Therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; López-Fernández, T.; Mitroi, C.; Chaparro-Muñoz, M.; Moliner, P.; Martin-Garcia, A.C.; Martinez-Monzonis, A.; Castro, A.; Lopez-Sendon, J.L.; Sanchez, P.L. Effectiveness of sacubitril–valsartan in cancer patients with heart failure. ESC Heart Fail. 2020, 7, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D.; Parissis, J.; Filippatos, G. Insights into onco-cardiology: Atrial fibrillation in cancer. Am. Coll. Cardiol. 2014, 63, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020, 2, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Versteeg, H.H.; Verschoor, A.; Trines, S.; Hemels, M.E.; Ay, C.; Huisman, M.V.; Klok, E. Atrial fibrillation and cancer—An unexplored field in cardiovascular oncology. Blood Rev. 2019, 35, 59–67. [Google Scholar] [CrossRef]
- Alexandre, J.; Salem, J.-E.; Moslehi, J.; Sassier, M.; Ropert, C.; Cautela, J.; Thuny, F.; Ederhy, S.; Cohen, A.; Damaj, G.; et al. Identification of anticancer drugs associated with atrial fibrillation: Analysis of the WHO pharmacovigilance database. Eur. Hear. J. Cardiovasc. Pharmacother. 2021, 7, 312–320. [Google Scholar] [CrossRef]
- Kattelus, H.; Kesäniemi, Y.A.; Huikuri, H.; Ukkola, O. Cancer increases the risk of atrial fibrillation during long-term follow-up (OPERA study). PLoS ONE 2018, 13, e0205454. [Google Scholar] [CrossRef]
- Porta-Sánchez, A.; Gilbert, C.; Spears, D.; Amir, E.; Chan, J.; Nanthakumar, K.; Thavendiranathan, P. Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J. Am. Heart Assoc. 2017, 6, e007724. [Google Scholar] [CrossRef]
- Cheng, C.; Woronow, D.; Nayernama, A.; Wroblewski, T.; Jones, S.C. Ibrutinib-associated ventricular arrhythmia in the FDA Adverse Event Reporting System. Leuk. Lymphoma 2018, 59, 3016–3017. [Google Scholar] [CrossRef]
- Mir, H.; Alhussein, M.M.; Alrashidi, S.; Alzayer, H.; Alshatti, A.; Valettas, N.; Mukherjee, S.D.; Nair, V.; Leong, D.P. Cardiac Complications Associated With Checkpoint Inhibition: A Systematic Review of the Literature in an Important Emerging Area. Can. J. Cardiol. 2018, 34, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, J.L.; Lancellotti, P.; Muñoz, D.R.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-S.; Lin, C.-L. Comparison of CHA2DS2-VASc, CHADS2 and HATCH scores for the prediction of new-onset atrial fibrillation in cancer patients: A nationwide cohort study of 760,339 study participants with competing risk analysis. Atherosclerosis 2017, 266, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pérez, M.; Gaist, D.; de Abajo, F.J.; Rodríguez, L.A.G. Predictors of Over-Anticoagulation in Warfarin Users in the UK General Population: A Nested Case–Control Study in a Primary Health Care Database. Thromb. Haemost. 2018, 119, 066–076. [Google Scholar] [CrossRef]
- Steffel, J.; Verhamme, P.; Potpara, T.S.; Albaladejo, P.; Antz, M.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur. Heart J. 2018, 39, 1330–1393. [Google Scholar] [CrossRef]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef]
- McBane, R.D.; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and dalteparin in active malignancy-associated venous thrombo-embolism: The ADAM VTE trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an Oral Factor Xa Inhibitor with Low Molecular Weight Heparin in Patients with Cancer with Venous Thromboembolism: Results of a Randomized Tri-al (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- Xu, S.; Sharma, U.C.; Tuttle, C.; Pokharel, S. Immune Checkpoint Inhibitors: Cardiotoxicity in Pre-clinical Models and Clinical Studies. Front. Cardiovasc. Med. 2021, 8, 619650. [Google Scholar] [CrossRef]
- Awadalla, M.; Syed, S.M.; Groarke, J.D.; Hassan, M.Z.O.; Nohria, A.; Rokicki, A.; Murphy, S.P.; Mercaldo, N.D.; Zhang, L.; Zlotoff, D.D.; et al. Global Longitudinal Strain and Cardiac Events in Patients with Immune Checkpoint Inhibitor-Related Myocarditis. J. Am. Coll. Cardiol. 2020, 75, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, S.; Neilan, T.G. Immune Checkpoint Inhibitor-Associated Myocarditis. Oncologist 2018, 23, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, S.; Parikh, R.; Neilan, T.G. Cardiotoxicity of Immune Therapy. Cardiol. Clin. 2019, 37, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.Y.; Windecker, S.; Lancellotti, P.; Bax, J.J.; Griffin, B.P.; Cahlon, O.; Johnston, D.R. Prevention, Diagnosis, and Management of Radiation-Associated Cardiac Disease. J. Am. Coll. Cardiol. 2019, 74, 905–927. [Google Scholar] [CrossRef] [PubMed]
- Bergom, C.; Bradley, J.A.; Ng, A.K.; Samson, P.; Robinson, C.; Lopez-Mattei, J.; Mitchell, J.D. Past, Present, and Future of Radiation-Induced Cardiotoxicity: Refinements in Targeting, Surveillance, and Risk Stratification. J. Am. Coll. Cardiol. CardioOncol. 2021, 3, 343–359. [Google Scholar] [CrossRef]
- Sárközy, M.; Varga, Z.; Gáspár, R.; Szűcs, G.; Kovács, M.G.; Kovács, Z.Z.A.; Dux, L.; Kahán, Z.; Csont, T. Pathomechanisms and therapeutic opportunities in radiation-induced heart disease: From bench to bedside. Clin. Res. Cardiol. 2021, 110, 507–531. [Google Scholar] [CrossRef]
- Marlatt, K.L.; Steinberger, J.; Rudser, K.D.; Dengel, D.R.; Sadak, K.T.; Lee, J.L.; Blaes, A.H.; Duprez, D.A.; Perkins, J.L.; Ross, J.A.; et al. The Effect of Atorvastatin on Vascular Function and Structure in Young Adult Survivors of Childhood Cancer: A Randomized, Placebo-Controlled Pilot Clinical Trial. J. Adolesc. Young Adult Oncol. 2019, 8, 442–450. [Google Scholar] [CrossRef]
- Donis, N.; Oury, C.; Moonen, M.; Lancellotti, P. Treating cardiovascular complications of radiotherapy: A role for new pharmacotherapies. Expert Opin. Pharmacother. 2018, 19, 431–442. [Google Scholar] [CrossRef]
- Boerma, M.; Singh, P.; Sridharan, V.; Tripathi, P.; Sharma, S.; Singh, S.P. Effects of Local Heart Irradiation in a Glutathione S-Transferase Alpha 4-Null Mouse Model. Radiat. Res. 2015, 183, 610–619. [Google Scholar] [CrossRef]
- Zeng, Y.-C.; Chi, F.; Xing, R.; Zeng, J.; Gao, S.; Chen, J.-J.; Wang, H.-M.; Duan, Q.-Y.; Sun, Y.-N.; Niu, N.; et al. Sestrin2 protects the myocardium against radiation-induced damage. Radiat. Environ. Biophys. 2016, 55, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Rabender, C.; Mezzaroma, E.; Mauro, A.G.; Mullangi, R.; Abbate, A.; Anscher, M.; Hart, B.; Mikkelsen, R. IPW-5371 Proves Effective as a Radiation Countermeasure by Mitigating Radiation-Induced Late Effects. Radiat. Res. 2016, 186, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Gu, A.; Jie, Y.; Sun, L.; Zhao, S.; E, M.; You, Q. RhNRG-1β Protects the Myocardium against Irradiation-Induced Damage via the ErbB2-ERK-SIRT1 Signaling Pathway. PLoS ONE 2015, 10, e0137337. [Google Scholar] [CrossRef] [PubMed]
Chemotherapeutic Class and Agents | Cardiomyopathy Incidence | Other Types of Cardiovascular Toxicity | Clinical Use in Hematologic Malignancies |
---|---|---|---|
Anthracyclines [7,8,9] | |||
Doxorubicin | (3–26)% | Myopericarditis, cardiac arrhythmias | Acute myeloid leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, Hodgkin and non-Hodgkin lymphoma |
Idarubicin | (5–18)% | ECG abnormalities | Acute myeloid leukemia |
Mitoxantrone | (0.2–30)% | Cardiac arrhythmias, ECG abnormalities | Acute nonlymphocytic leukemias |
Alkylating agents [7,8,9] | |||
Cyclophosphamide (high dose) | (7–28)% | Peri-/myocarditis, cardiac tamponade, arrhythmias | Bone marrow transplant, chronic myelogenous leukemias |
Ifosfamide | 17% | Arrhythmias, cardiac arrest, myocardial hemorrhage, myocardial infarction | Hodgkin and non-Hodgkin lymphoma |
Busulphan | Rare | Endomyocardial fibrosis, pericardial effusion, tamponade, ECG changes, chest pain, hyper-/hypotension, thrombosis, arrhythmias | Chronic myelogenous leukemia, hematopoietic stem cell conditioning regimen |
Antimetabolites [8] | |||
Clofarabine | 27% | Arrhythmias, hypo-/hypertension, pericarditis/pericardial effusion | Acute lymphocytic leukemia |
Cytarabine | Undefined | Pericarditis, chest pain (including angina) | Hodgkin and non-Hodgkin lymphoma, acute leukemia (myeloid and lymphocytic) |
Antimicrotubule agents [7,8] | |||
Vincristine | 25% | Hyper-/hypotension, myocardial ischemia | Acute lymphocytic leukemia, Hodgkin and non-Hodgkin lymphoma, multiple myeloma |
Monoclonal antibody-based tyrosine kinase inhibitors [8] | |||
Alemtuzumab | Rare | Hypo-/hypertension, arrhythmia | Chronic lymphocytic leukemia, cutaneous T-cell lymphoma, bone marrow transplant |
Rituximab | Rare | Hypotension, arrhythmia | Non -Hodgkin lymphoma |
Small-molecule tyrosine kinase inhibitors [7,8] | |||
Dasatinib | (2–4)% | Pericardial effusion, hypertension, arrhythmia, QT interval prolongation, Pulmonary arterial hypertension | Philadelphia chromosome + chronic myeloid leukemia and acute lymphoblastic leukemia |
Imatinib mesylate | (0.5–1.7)% | Pericardial effusion and tamponade, anasarca, arrhythmias, hypertension, Raynaud disease | Philadelphia chromosome + chronic myeloid leukemia and acute lymphoblastic leukemia |
Ponanitib | Undefined | Arterial thrombosis | Chronic myeloid leukemia and Philadelphia chromosome + acute lymphoblastic leukemia, resistant to traditional TKIs |
Proteasome Inhibitors [7,8] | |||
Bortezomib | (2–5)% | Ischemia, bradycardia | Multiple myeloma, mantle cell lymphoma |
Carfilzomib | 8.68% | Uncontrolled hypertension | Relapsed or refractory multiple myeloma |
Immune Checkpoint Inhibitors [7,10] | |||
Pembrolizumab | 1% | Myocarditis, pericardial desease, conduction abnormalities | Hodgkin Lymphoma |
Nivolumab | 0.54% | Myocarditis, pericardial desease, conduction abnormalities | Hodgkin Lymphoma |
Type of Malignancy | Protocols | Cardiotoxicity |
---|---|---|
1. Hodgkin Lymphoma | 1st line 1. ABVD: Doxorubicin, Bleomycin, Vinblastine, Dacarbazine 2. B + AVD: Brentuximab Vedotin, Doxorubicin, Vinblastine, Dacarbazine 3. BEACOPP escalated: Bleomycin, Etoposide, Doxorubicin, Cyclophosphamide, Vincristine, Procarbazine, Prednisolone | Heart Failure, heart attack, arrhythmias, pericardial effusion, peri-/myocarditis, hyper/hypotension, ischemia |
2. Non-Hodgkin Lymphomas | 1st line 1. R-CHOP: Rituximab, Cyclophosphamide, Vincristine, Prednisolone 2. R-da (dose adjusted) EPOCH: Rituximab, Etoposide, Vincristine, Doxorubicin, Cyclophosphamide, Prednisolone 3. CODOX-M/IVAC + R: Cyclophosphamide, Vincristine, Doxorubicin, High dose Methotrexate/ Ifosfamide, Etoposide, High Dose Cytarabine + Rituximab 4. R-Hyper—CVAD: Rituximab, Cyclophosphamide Vincristine, Doxorubicin, Dexamethasone/High Dose Methotrexate, High Dose Cytarabine 5. BR: Bendamustine, Rituximab | Arrhythmias, ischemia, heart failure, peri-/myocarditis, hyper/hypotension |
3. Multiple Myeloma | 1st line 1. VRd: Bortezomib, Lenalidomide, Dexamethazone 2. DRd: Daratumumab, Lenalidomide, Dexamethazone 3. CRd: Carfilzomib, Lenalidomide, Dexamethasone 4. VCd: Bortezomid, Cyclophosphamide, Dexamethazone 5. VAd: Bortezomib, Doxorubicin, Dexamethasone | Arrhythmias, atrial fibrillation, heart failure, myocarditis, hypertension |
4. Acute Promyelocytic Leukemia | 1st line 1. ATRA + Arsenic Trioxide (+/−Idarubicin, +/−Gemtuzumab Ozogamicin) | Pleural or pericardial effusion, Arterial and venous thrombosis, heart failure, QT prolongation |
5. Acute Myeloid Leukemia | 1. Idarubicin + Cytarabine (+/−Midostaurin, +/−Gemtuzumab Ozogamicin) 2. Azacitidine + Venetoclax 3. LDAC: Low dose Cytarabine + Venetoclax | Heart failure, arrhythmias, angina, pericarditis with effusion, QT prolongation, rarely edema, heart failure and myocardial infarction rarely induced by Venetoclax |
6. Acute Lymphoblastic Leukemia | 1. Hyper-CVAD +/− L-Asparaginase +/− TKI (Imatinibe, Dasatinib, Nilotinib, Bosutinib, Ponatinib) CVAD: Cyclophosphamide, vincristine, doxorubicin, dexamethasone | Heart failure and/or Myocarditis, pericardial effusion, hypertension, arrhythmia, QT interval prolongation, pulmonary arterial hypertension arrhythmias, hypertension, arterial thrombosis |
7. Chronic Lymphocytic Leukemia | 1. Ibrutinib 2. Venetoclax + Obinutuzumab 3. Bendamustine + Rituximab 4. FCR: Fludarabine, Cyclophosphamide, Rituximab | Atrial fibrillation, arrhythmias, hypotension, peri-/myocarditis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perpinia, A.S.; Kadoglou, N.; Vardaka, M.; Gkortzolidis, G.; Karavidas, A.; Marinakis, T.; Papachrysostomou, C.; Makaronis, P.; Vlachou, C.; Mantzourani, M.; et al. Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies. Pharmaceuticals 2022, 15, 1007. https://doi.org/10.3390/ph15081007
Perpinia AS, Kadoglou N, Vardaka M, Gkortzolidis G, Karavidas A, Marinakis T, Papachrysostomou C, Makaronis P, Vlachou C, Mantzourani M, et al. Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies. Pharmaceuticals. 2022; 15(8):1007. https://doi.org/10.3390/ph15081007
Chicago/Turabian StylePerpinia, Anastasia Stella, Nikolaos Kadoglou, Maria Vardaka, Georgios Gkortzolidis, Apostolos Karavidas, Theodoros Marinakis, Chrysostomi Papachrysostomou, Panagiotis Makaronis, Charikleia Vlachou, Marina Mantzourani, and et al. 2022. "Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies" Pharmaceuticals 15, no. 8: 1007. https://doi.org/10.3390/ph15081007
APA StylePerpinia, A. S., Kadoglou, N., Vardaka, M., Gkortzolidis, G., Karavidas, A., Marinakis, T., Papachrysostomou, C., Makaronis, P., Vlachou, C., Mantzourani, M., Farmakis, D., & Konstantopoulos, K. (2022). Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies. Pharmaceuticals, 15(8), 1007. https://doi.org/10.3390/ph15081007