The Latest FDA-Approved Pharmaceuticals Containing Fragments of Tailor-Made Amino Acids and Fluorine
Abstract
:1. Introduction
2. Asciminib (Scemblix™)
3. Avacopan (Tavneos™)
4. Atogepant (Qulipta™)
5. Sotorasib (Lumakras™)
6. Melphalan Flufenamide (Melflufen, Pepaxto™)
7. Cabotegravir (Cabenuva™)
8. Difelikefalin (Korsuva™)
9. Odevixibat (Bylvay™)
10. Ibrexafungerp (Brexafemme™)
11. Serdexmethylphenidate and Dexmethylphenidate (Azstarys™)
12. Pafolacianine (Cytalux™)
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.; Han, J.; Nakano, A.; Konno, H.; Moriwaki, H.; Abe, H.; Izawa, K.; Soloshonok, V.A. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2022, 34, 86–103. [Google Scholar] [CrossRef]
- Han, J.; Lyutenko, N.V.; Sorochinsky, A.E.; Okawara, A.; Konno, H.; White, S.; Soloshonok, V.A. Tailor-made amino acids in pharmaceutical industry: Synthetic approaches to aza-tryptophan derivatives. Chem. Eur. J. 2021, 27, 17510–17528. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Konno, H.; Sato, T.; Izawa, K.; Soloshonok, V.A. Peptidomimetics and peptide-based blockbuster drugs. Curr. Org. Chem. 2021, 25, 1627–1658. [Google Scholar] [CrossRef]
- Han, J.; Konno, H.; Sato, T.; Soloshonok, V.A.; Izawa, K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur. J. Med. Chem. 2021, 220, 113448. [Google Scholar] [CrossRef]
- Yin, Z.; Hu, W.; Zhang, W.; Konno, H.; Moriwaki, H.; Izawa, K.; Han, J.; Soloshonok, V.A. Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids 2020, 52, 1227–1261. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, J.; Izawa, K.; Sato, T.; White, S.; Meanwell, N.A.; Soloshonok, V.A. Cyclic tailor-made amino acids in the design of modern pharmaceuticals. Eur. J. Med. Chem. 2020, 208, 112736. [Google Scholar] [CrossRef] [PubMed]
- Soloshonok, V.A.; Izawa, K. (Eds.) Asymmetric Synthesis and Application of α-Amino Acids; ACS Symposium Series #1009; Oxford University Press: Washington, DC, USA, 2009. [Google Scholar]
- Blaskovich, M.A.T. Unusual amino acids in medicinal chemistry. J. Med. Chem. 2016, 59, 10807–10836. [Google Scholar] [CrossRef] [PubMed]
- Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem. 2018, 61, 1382–1414. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.R.W.; Sanderson, J.M. The synthesis of peptides and proteins containing non-natural amino acids. Chem. Soc. Rev. 2004, 33, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Wang, J.; Sato, T.; Izawa, K.; Soloshonok, V.A.; Liu, H. The second-generation of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors: Evolutionary design based on tailor-made amino acids, synthesis and major features of bioactivity. Curr. Pharm. Des. 2017, 23, 4493–4554. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Izawa, K.; Aceña, J.L.; Liu, H.; Soloshonok, V.A. Tailor-made α-amino acids in the pharmaceutical industry: Synthetic approaches to (1R, 2S)-1-amino-2-vinylcyclopropane-1-carboxylic acid (vinyl-ACCA). Eur. J. Org. Chem. 2016, 2016, 2757–2774. [Google Scholar] [CrossRef]
- Liu, J.; Lin, W.; Sorochinsky, A.E.; Butler, G.; Landa, A.; Han, J.; Soloshonok, V.A. Successful trifluoromethoxy-containing pharmaceuticals and agrochemicals. J. Fluor. Chem. 2022, 257–258, 109978. [Google Scholar] [CrossRef]
- Han, J.; Remete, A.M.; Dobson, L.S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V.A.; O’Hagan, D. Next generation organofluorine containing blockbuster drugs. J. Fluor. Chem. 2020, 239, 109639. [Google Scholar] [CrossRef]
- Mei, H.; Han, J.; White, S.; Graham, D.J.; Izawa, K.; Sato, T.; Fustero, S.; Meanwell, N.A.; Soloshonok, V.A. Tailor-made amino acids and fluorinated motifs as prominent traits in the modern pharmaceuticals. Chem. Eur. J. 2020, 26, 11349–11390. [Google Scholar] [CrossRef]
- Mei, H.; Han, J.; Klika, K.D.; Izawa, K.; Sato, T.; Meanwell, N.A.; Soloshonok, V.A. Applications of fluorine-containing amino acids for drug design. Eur. J. Med. Chem. 2020, 186, 111826. [Google Scholar] [CrossRef]
- Han, J.; Kiss, L.; Mei, H.; Remete, A.M.; Ponikvar-Svet, M.; Sedgwick, D.M.; Roman, R.; Fustero, S.; Moriwaki, H.; Soloshonok, V.A. Chemical aspects of human and environmental overload with fluorine. Chem. Rev. 2021, 121, 4678–4742. [Google Scholar] [CrossRef]
- Mei, H.; Remete, A.M.; Zou, Y.; Moriwaki, H.; Fustero, S.; Kiss, L.; Soloshonok, V.A.; Han, J. Fluorine-containing drugs approved by the FDA in 2019. Chin. Chem. Lett. 2020, 31, 2401–2413. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, A.; Dhawan, G.; Mei, H.; Zhang, W.; Izawa, K.; Soloshonok, V.A.; Han, J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chin. Chem. Lett. 2021, 32, 3342–3354. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Réa, D.; Hughes, T.P. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit. Rev. Oncol. Hemat. 2022, 171, 103580. [Google Scholar] [CrossRef] [PubMed]
- Manley, P.W.; Barys, L.; Cowan-Jacob, S.W. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase. Leuk. Res. 2020, 98, 106458. [Google Scholar] [CrossRef]
- Deeks, E.D. Asciminib: First approval. Drugs 2022, 82, 219–226. [Google Scholar] [CrossRef]
- Wylie, A.A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S.W.; Loo, A.; Furet, P.; Marzinzik, A.L.; Pelle, X.; Donovan, J.; Zhu, W.; et al. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature 2017, 543, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Mauro, M.J.; Cortes, J.E.; Minami, H.; Rea, D.; DeAngelo, D.J.; Breccia, M.; Goh, Y.T.; Talpaz, M.; Hochhaus, A.; et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N. Engl. J. Med. 2019, 381, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, X.; Sorochinsky, A.E.; Butler, G.; Han, J.; Soloshonok, V.A. Advances in the development of trifluoromethoxylation reagents. Symmetry 2021, 13, 2380. [Google Scholar] [CrossRef]
- Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; Cowan-Jacob, S.W.; Dodd, S.; Drueckes, P.; Fabbro, D.; Gabriel, T.; et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem. 2018, 61, 8120–8135. [Google Scholar] [CrossRef]
- Fu, L.; Wang, A.; He, B.; Sun, J.; Song, C. Preparation Method for 4-(Chlorodifluoro-Methoxy) Aniline. CN104119238A, 29 October 2014. [Google Scholar]
- Lee, A. Avacopan: First approval. Drugs 2022, 82, 79–85. [Google Scholar] [CrossRef]
- Shagdarsuren, G.; Khaidav, G.; Togtokh, A.; Sonomjamts, M.; Shagdarsuren, E. Complement anaphylatoxin C5a, endothelial dysfunction and low-grade inflammation in atherosclerotic vascular diseases. Cent. Asian J. Med. Sci. 2018, 4, 243–252. [Google Scholar]
- Jayne, D.R.W.; Merkel, P.A.; Schall, T.J.; Bekker, P. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 2021, 384, 599–609. [Google Scholar] [CrossRef]
- Osmana, M.; Tervaerta, J.W.C.; Pagnoux, C. Avacopan for the treatment of ANCA-associated vasculitis. Expert Rev. Clin. Immunol. 2021, 17, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Thorley, J. FDA approves avacopan for ANCA-associated vasculitis. Lancet Rheumatol. 2022, 4, e21. [Google Scholar] [CrossRef]
- Fan, P.; Greenman, K.L.; Leleti, M.R.; Li, Y.; Powers, J.; Tanaka, H.; Yang, J.; Zeng, Y. C5AR Antagonists. WO 2011163640 A1, 24 June 2011. [Google Scholar]
- Fan, F.; Kalisiak, J.; Krasinski, A.; LUI, R.; Powers, J.; Punna, S.; Tanaka, H.; Zhang, P. Processes and Intermediates in the Preparation of C5AR Antagonists. U.S. Patent 9745268 B2, 29 August 2017. [Google Scholar]
- Han, J.; Takeda, R.; Sato, T.; Moriwaki, H.; Abe, H.; Izawa, K.; Soloshonok, V.A. Optical resolution of rimantadine. Molecules 2019, 24, 1828. [Google Scholar] [CrossRef] [PubMed]
- Takeda, R.; Kawamura, A.; Kawashima, A.; Sato, T.; Moriwaki, H.; Izawa, K.; Abe, H.; Soloshonok, V.A. Second-order asymmetric transformation and its application for the practical synthesis of α-amino acids. Org. Biomol. Chem. 2018, 16, 4968–4972. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ajona, D.; Pérez-Rodríguez, A.; Goadsby, P.J. Small-molecule CGRP receptor antagonists: A new approach to the acute and preventive treatment of migraine. Med. Drug Discov. 2020, 7, 100053. [Google Scholar] [CrossRef]
- Wattiez, A.S.; Sowers, L.P.; Russo, A.F. Calcitonin gene-related peptide (CGRP): Role in migraine pathophysiology and therapeutic targeting. Expert Opin. Ther. Targets 2020, 24, 91–100. [Google Scholar] [CrossRef]
- Edvinsson, L. The CGRP pathway in migraine as a viable target for therapies. Headache 2018, 58, 33–47. [Google Scholar] [CrossRef]
- Dubowchik, G.M.; Conway, C.M.; Xin, A.W. Blocking the CGRP pathway for acute and preventive treatment of migraine: The evolution of success. J. Med. Chem. 2020, 63, 6600–6623. [Google Scholar] [CrossRef]
- Deeks, E.D. Atogepant: First approval. Drugs 2022, 82, 65–70. [Google Scholar] [CrossRef]
- Chen, F.; Molinaro, C.; Wuelfing, W.P.; Yasuda, N.; Hong, Y.L.; Lynch, J.; Andreani, T. Process for Making CGRP Receptor Antagonists. WO2013169348, 13 May 2013. [Google Scholar]
- Bell, I.M.; Fraley, M.E.; Gallicchio, S.N.; Ginnetti, A.; Mitchell, H.J.; Paone, D.V.; Staas, D.D.; Wang, G.; Zartman, C.B.; Stevenson, H.E. Piperidinone Carboxamide Azaindane CGRP Receptor Antagonists. WO2012064910A1, 18 May 2012. [Google Scholar]
- Takeda, R.; Kawamura, A.; Kawashima, A.; Sato, T.; Moriwaki, H.; Izawa, K.; Akaji, K.; Wang, S.; Liu, H.; Aceña, J.L.; et al. Chemical dynamic kinetic resolution and (S)/(R)-interconversion of unprotected α-amino acids. Angew. Chem. Int. Ed. 2014, 53, 12214–12217. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Chen, X.; Aceña, J.L.; Soloshonok, V.A.; Liu, H. Chemical kinetic resolution of unprotected β-substituted-β-amino acids using recyclable chiral ligands. Angew. Chem. Int. Ed. 2014, 53, 7883–7886. [Google Scholar] [CrossRef] [PubMed]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, G.A.; Der, C.J.; Rossman, K.L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 2016, 129, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Chen, N.; Frohn, M.J.; Goodman, G.; et al. Discovery of a covalent Inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. J. Med. Chem. 2020, 63, 52–65. [Google Scholar] [CrossRef]
- Blair, H.A. Sotorasib: First approval. Drugs 2021, 81, 1573–1579. [Google Scholar] [CrossRef]
- Ganguly, A.; Yoo, E. Sotorassib: A KRASG12C inhibitor for non-small cell lung cancer. Trends Pharm. Sci. 2022, 43, 536–537. [Google Scholar] [CrossRef]
- Parsons, A.T.; Beaver, M.B. Improved Synthesis of KRAS G12C Inhibitor Compound. WO 2021097212, 20 May 2021. [Google Scholar]
- Miettinen, J.J.; Kumari, R.; Traustadottir, G.A.; Huppunen, M.E.; Sergeev, P.; Majumder, M.M.; Schepsky, A.; Gudjonsson, T.; Lievonen, J.; Bazou, D.; et al. Aminopeptidase expression in multiple myeloma associates with disease progression and sensitivity to melflufen. Cancers 2021, 13, 1527. [Google Scholar] [CrossRef]
- Morabito, F.; Tripepi, G.; Martino, E.A.; Vigna, E.; Mendicino, F.; Morabito, L.; Todoerti, K.; Al-Janazreh, H.; D’Arrigo, G.; Canale, F.A.; et al. Spotlight on melphalan flufenamide: An up-and-coming therapy for the treatment of myeloma. Drug Des. Devel. Ther. 2021, 15, 2969–2978. [Google Scholar] [CrossRef]
- Gullbo, J.; Tullberg, M.; Våbenø, J.; Ehrsson, H.; Lewensohn, R.; Nygren, P.; Larsson, R.; Luthman, K. Structure–activity relationship for alkylating dipeptide nitrogen mustard derivatives. Oncol. Res. 2003, 14, 113–132. [Google Scholar] [CrossRef]
- Dhillon, S. Melphalan Flufenamide (Melflufen): First approval. Drugs 2021, 81, 963–969. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Wang, J.; Moriwaki, H.; Soloshonok, V.A.; Liu, H. Recent approaches for asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes. Amino Acids 2017, 49, 1487–1520. [Google Scholar] [CrossRef]
- Cotton, H.; Bäckström, B.; Fritzson, I.; Lehmann, F.; Monemi, T.; Oltner, V.; Sölver, E.; Wahlström, N.; Wennerber, J. Development of a safe process for manufacturing of the potent anticancer agent melflufen hydrochloride. Org. Process Res. Dev. 2019, 23, 1191–1196. [Google Scholar] [CrossRef]
- Wahlstrom, N.H.; Wennerberg, J.A. Process for Preparation of Nitrogen Mustard Deriatives. WO2016180740A1, 17 November 2016. [Google Scholar]
- Mbhele, N.; Chimukangara, B.; Gordon, M. HIV-1 integrase strand transfer inhibitors: A review of current drugs, recent advances and drug resistance. Int. J. Antimicrob. Agents 2021, 57, 106343. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Su, H.; Dash, P.; Lin, Z.; Dyavar Shetty, B.L.; Kocher, T.; Szlachetka, A.; Lamberty, B.; Fox, H.S.; Poluektova, L.; et al. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 2018, 151, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Trezza, C.; Ford, S.L.; Spreen, V.; Pan, V.; Piscitelli, S. Formulation and pharmacology of long-acting cabotegravir. Curr. Opin. HIV AIDS 2015, 10, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.H.; Chahine, E.B. Cabotegravir–rilpivirine: The first complete long-acting injectable regimen for the treatment of HIV-1 infection. Ann. Pharmacother. 2021, 55, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Voelker, R. Monthly injection is approved for patients with HIV. JAMA 2021, 325, 816. [Google Scholar] [CrossRef] [PubMed]
- Johns, B.A.; Kawasuji, T.; Weatherhead, J.G.; Taishi, T.; Temelkoff, D.P.; Yoshida, H.; Akiyama, T.; Taoda, Y.; Murai, H.; Kiyama, R.; et al. Carbamoyl pyridone HIV-1 integrase inhibitors 3. a diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). J. Med. Chem. 2013, 60, 5901–5916. [Google Scholar] [CrossRef] [PubMed]
- David, L.H. Review of synthetic routes and final forms of integrase inhibitors dolutegravir, cabotegravir, and bictegravir. Org. Process Res. Dev. 2019, 23, 716–729. [Google Scholar]
- Han, J.; Sorochinsky, A.E.; Ono, T.; Soloshonok, V.A. Biomimetic transamination—A metal-free alternative to the reductive amination. application for generalized preparation of fluorine-containing amines and amino acids. Curr. Org. Synth. 2011, 8, 281–294. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Cui, H.; He, Y.; Zhao, C. Three-step synthetic procedure to prepare dolutegravir, cabotegravir, and bictegravir. Green Chem. Lett. Rev. 2022, 15, 311–318. [Google Scholar] [CrossRef]
- Shram, M.J.; Spencer, R.H.; Qian, J.; Munera, C.L.; Lewis, M.E.; Henningfield, J.E.; Webster, L.; Menzaghi, F. Evaluation of the abuse potential of difelikefalin, a selective kappa-opioid receptor agonist, in recreational polydrug users. Clin. Transl. Sci. 2022, 15, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gou, X.; Yu, X.; Bai, D.; Tan, B.; Cao, P.; Qian, M.; Zheng, X.; Wang, H.; Tang, P.; et al. Antinociceptive and antipruritic effects of HSK21542, a peripherally-restricted kappa opioid receptor agonist, in animal models of pain and itch. Front. Pharmacol. 2021, 12, 773204. [Google Scholar] [CrossRef]
- Schteingart, C.D.; Menzaghi, F.; Jiang, G.; Alexander, R.V.; Sueiras-Diaz, J.; Spencer, R.H.; Chalmers, D.T.; Luo, Z. Synthetic Peptide Amides. WO 2008057608 A2, 15 May 2008. [Google Scholar]
- Li, X.; Wan, H.; Dong, P.; Wang, B.; Zhang, L.; Hu, Q.; Zhang, T.; Feng, J.; He, F.; Bai, C.; et al. Discovery of SHR0687, a highly potent and peripheral nervous system-restricted KOR agonist. ACS Med. Chem. Lett. 2020, 11, 2151–2155. [Google Scholar] [CrossRef]
- Deeks, E.D. Difelikefalin: First approval. Drugs 2021, 81, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Biron, E.; Chatterjee, J.; Kessler, H. Optimized selective N-methylation of peptides on solid support. J. Peptide Sci. 2006, 12, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Gillberg, P.; Graffner, H.; Starke, I. IBAT Inhibitors for the Treatment of Liver Diseases. U.S. Patent 2016/0193277 A1, 7 July 2016. [Google Scholar]
- Al-Dury, S.; Wahlström, A.; Wahlin, S.; Langedijk, J.; Elferink, R.O.; Ståhlman, M.; Marschall, H.U. Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis. Sci. Rep. 2018, 8, 6658. [Google Scholar] [CrossRef]
- Floreani, A. Experimental pharmacological agents for the treatment of primary biliary cholangitis. J. Exp. Pharmacol. 2020, 12, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Baumann, U.; Sturm, E.; Lacaille, F.; Gonzalées, E.; Arnell, H.; Fischler, B.; Jørgensen, M.H.; Thompson, R.J.; Mattsson, J.P.; Ekelund, M.; et al. Effects of odevixibat on pruritus and bile acids in children with cholestatic liver disease: Phase 2 study. Clin. Res. Hepatol. Gas. 2021, 45, 101751. [Google Scholar] [CrossRef] [PubMed]
- Starke, I.; Graffner, H.; Gillberg, P.G.; Lindqvist, A.M.; Angelin, B. IBAT Inhibitors for Treatment of Metabolic Disorders and Related Conditions. U.S. Patent 2012/0114588 A1, 10 May 2012. [Google Scholar]
- Deeks, E.D. Odevixibat: First approval. Drugs 2021, 81, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Starke, I.; Dahlstrom, M.U.J.; Blomberg, D.; Alenfalk, S.; Skjaret, T.; Lemurell, M. Benzothiazepine and Benzothiadiazepine Derivatives with Ileal Bile Acid Transport (IBAT) Inhibitory Activity for the Treatment Hyperlipidaemia. WO03/022286 A1, 20 March 2003. [Google Scholar]
- Handlon, A.L.; Hodgson, G.L.; Hyman, C.E. Hypolipidemic Cicyclic Derivatives. WO98/38182, 3 September 1998. [Google Scholar]
- Lee, A. Ibrexafungerp: First approval. Drugs 2021, 81, 1445–1450. [Google Scholar] [CrossRef]
- Ghannoum, M.; Arendrup, M.C.; Chaturvedi, V.P.; Lockhart, S.R.; McCormick, T.S.; Chaturvedi, S.; Berkow, E.L.; Juneja, D.; Tarai, B.; Azie, N.; et al. Ibrexafungerp: A novel oral triterpenoid antifungal in development for the treatment of candida auris infections. Antibiotics 2020, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Apgar, J.M.; Wilkening, R.R.; Parker, D.L., Jr.; Meng, D.; Wildonger, K.J.; Sperbeck, D.; Greenlee, M.L.; Balkovec, J.M.; Flattery, A.M.; Abruzzo, G.K.; et al. Ibrexafungerp: An orally active β-1,3-glucan synthesis inhibitor. Bioorg. Med. Chem. Lett. 2021, 32, 127661. [Google Scholar] [CrossRef] [PubMed]
- Apgar, J.M.; Wilkening, R.R.; Parker, D.L., Jr.; Meng, D.; Wildonger, K.J.; Sperbeck, D.; Greenlee, M.L.; Balkovec, J.M.; Flattery, A.M.; Abruzzo, G.K.; et al. MK-5204: An orally active β-1,3-glucan synthesis inhibitor. Bioorg. Med. Chem. Lett. 2020, 30, 127357. [Google Scholar] [CrossRef] [PubMed]
- Apgar, J.M.; Wilkening, R.R.; Greenlee, M.L.; Balkovec, J.M.; Flattery, A.M.; Abruzzo, G.K.; Galgoci, A.M.; Giacobbe, R.A.; Gill, C.J.; Hsu, M.J.; et al. Novel orally active inhibitors of β-1,3-glucan synthesis derived from enfumafungin. Bioorg. Med. Chem. Lett. 2015, 25, 5813–5818. [Google Scholar] [CrossRef] [PubMed]
- Kollins, S.H.; Braeckman, R.; Guenther, S.; Barrett, A.C.; Mickle, T.C.; Oh, C.; Marraffino, A.; Cutler, A.J.; Brams, M.N. A randomized, controlled laboratory classroom study of serdexmethylphenidate and d-methylphenidate capsules in children with attention-deficit/hyperactivity disorder. J. Child Adol. Psychop. 2021, 31, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Guenther, S.; Chi, G.; Mickle, T. Serdexmethylphenidate Conjugates, Compositions and Methods of Use Thereof. WO2019/241020 A1, 19 December 2019. [Google Scholar]
- Braeckman, R.; Guenther, S.; Mickle, T.C.; Barrett, A.C.; Smith, A.; Oh, C. Dose Proportionality and steady-state pharmacokinetics of serdexmethylphenidate/dexmethylphenidate, a novel prodrug combination to treat attention-deficit/hyperactivity disorder. J. Child Adol. Psychop. 2022, 32, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Mickle, T.; Guenther, S.M.; Chi, G. Compositions Comprising Methylphenidate-Progrugs, Processes of Making and Using the Same. WO2018/107132 A1, 14 June 2018. [Google Scholar]
- Prashad, M.; Har, D.; Repic, O.; Blacklock, T.J.; Giannousis, P. An efficient large scale resolution of (±)-threo-methylphenidate hydrochloride (Ritalin® hydrochloride). Tetrahedron Asymmetry 1999, 10, 3111–3116. [Google Scholar] [CrossRef]
- Mahalingam, S.M.; Kularatne, S.A.; Myers, C.H.; Gagare, P.; Norshi, M.; Liu, X.; Singhal, S.; Low, P.S. Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer. J. Med. Chem. 2018, 61, 9637–9646. [Google Scholar] [CrossRef]
- Kularatne, S.A.; Gagare, P.; Noshi, M. Method of Manufacture and Synthesis of Amino Acid Linking Groups Conjugated to Compounds Used for Targeted Imaging of Tumors. WO 2014/149073 A1, 25 September 2014. [Google Scholar]
- Tanyi, J.L.; Chon, H.S.; Morgan, M.A.; Chambers, S.K.; Han, E.S.; Butler, K.A.; Langstraat, C.L.; Powell, M.A.; Randall, L.M.; Vahrmeijer, A.L.; et al. Phase 3, randomized, single-dose, open-label study to investigate the safety and efficacy of pafolacianine sodium injection (OTL38) for intraoperative imaging of folate receptor positive ovarian cancer. J. Clin. Oncol. 2021, 39, 5503. [Google Scholar] [CrossRef]
- Kayki-Mutlu, G.; Aksoyalp, Z.S.; Wojnowski, L.; Michel, M.C. A year in pharmacology: New drugs approved by the US Food and Drug Administration in 2021. Naunyn-Schmiedeberg’s Arch. Pharm. 2022, 395, 867–885. [Google Scholar] [CrossRef]
- Kayki-Mutlu, G.; Michel, M.C. A year in pharmacology: New drugs approved by the US Food and Drug Administration in 2020. Naunyn-Schmiedeberg’s Arch. Pharm. 2021, 394, 839–852. [Google Scholar] [CrossRef]
- Tressaud, A.; Haufe, G. (Eds.) Fluorine and Health. Molecular Imaging, Biomedical Materials and Pharmaceuticals; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Kirsch, P. Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Applications, 2nd ed.; Completely Revised and Enlarged; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar]
- Ragni, R.; Punzi, A.; Babudri, F.; Farinola, G.M. Organic and organometallic fluorinated materials for electronics and optoelectronics: A survey on recent research. Eur. J. Org. Chem. 2018, 2018, 3500–3519. [Google Scholar] [CrossRef]
- Bravo, P.; Guidetti, M.; Viani, F.; Zanda, M.; Markovsky, A.L.; Sorochinsky, A.E.; Soloshonok, I.V.; Soloshonok, V.A. Chiral sulfoxide controlled asymmetric additions to C,N double bond. An efficient approach to stereochemically defined α-fluoroalkyl amino compounds. Tetrahedron 1998, 54, 12789–12806. [Google Scholar] [CrossRef]
- Begue, J.P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Yamada, T.; Okada, T.; Sakaguchi, K.; Ohfune, Y.; Ueki, H.; Soloshonok, V.A. Efficient asymmetric synthesis of novel 4-substituted and configurationally stable analogs of thalidomide. Org. Lett. 2006, 8, 5625–5628. [Google Scholar] [CrossRef] [PubMed]
- Soloshonok, V.A.; Mikami, K.; Yamazaki, T.; Welch, J.T.; Honek, J.F. (Eds.) New Synthetic Directions, Technologies, Materials, and Biological. In ApplicationsCurrent Fluoroorganic Chemistry; ACS Symposium Series 949; American Chemical Society: Washington, DC, USA, 2007. [Google Scholar]
- Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chem. Eur. J. 2017, 23, 14676–14701. [Google Scholar] [CrossRef] [PubMed]
- Soloshonok, V.A.; Cai, C.; Hruby, V.J. A practical asymmetric synthesis of enantiomerically pure 3-substituted pyroglutamic acids and related compounds. Angew. Chem. Int. Ed. 2000, 39, 2172–2175. [Google Scholar] [CrossRef]
- Han, J.; Nelson, D.J.; Sorochinsky, A.E.; Soloshonok, V.A. Self-disproportionation of enantiomers via sublimation; new and truly green dimension in optical purification. Curr. Org. Synth. 2011, 8, 310–317. [Google Scholar] [CrossRef]
- Soloshonok, V.A.; Roussel, C.; Kitagawa, O.; Sorochinsky, A.E. Self-disproportionation of enantiomers via achiral chromatography: A warning and extra dimension in optical purifications. Chem. Soc. Rev. 2012, 41, 4180–4188. [Google Scholar] [CrossRef]
- Sorochinsky, A.E.; Aceña, J.L.; Soloshonok, V.A. Self-disproportionation of enantiomers of chiral, non-racemic fluoroorganic compounds: Role of fluorine as enabling element. Synthesis 2013, 45, 141–152. [Google Scholar] [CrossRef]
- Sorochinsky, A.E.; Katagiri, T.; Ono, T.; Wzorek, A.; Aceña, J.L.; Soloshonok, V.A. Optical purifications via self-disproportionation of enantiomers by achiral chromatography; case study of a series of α-CF3 -containing secondary alcohols. Chirality 2013, 25, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Soloshonok, V.A.; Berbasov, D.O. Self-disproportionation of enantiomers on achiral phase chromatography. One more example of fluorine’s magic powers. Chim. Oggi Chem. Today 2006, 24, 44–47. [Google Scholar]
- Nakamura, T.; Tateishi, K.; Tsukagoshi, S.; Hashimoto, S.; Watanabe, S.; Soloshonok, V.A.; Aceña, J.L.; Kitagawa, O. Self-disproportionation of enantiomers of non-racemic chiral amine derivatives through achiral chromatography. Tetrahedron 2012, 68, 4013–4017. [Google Scholar] [CrossRef]
- Suzuki, Y.; Han, J.; Kitagawa, O.; Aceña, J.L.; Klika, K.D.; Soloshonok, V.A. A comprehensive examination of the self-disproportionation of enantiomers (SDE) of chiral amides via achiral, laboratory-routine, gravity-driven column chromatography. RSC Adv. 2015, 5, 2988–2993. [Google Scholar] [CrossRef]
- Han, J.; Wzorek, A.; Kwiatkowska, M.; Soloshonok, V.A.; Klika, K.D. The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives. Amino Acids 2019, 51, 865–889. [Google Scholar] [CrossRef]
- Hosaka, T.; Imai, T.; Wzorek, A.; Marcinkowska, M.; Kolbus, A.; Kitagawa, O.; Soloshonok, V.A.; Klika, K.D. The self-disproportionation of enantiomers (SDE) of α-amino acid derivatives; facets of steric and electronic properties. Amino Acids 2019, 51, 283–294. [Google Scholar] [CrossRef]
- Wzorek, A.; Sato, A.; Drabowicz, J.; Soloshonok, V.A.; Klika, K.D. Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography; application to the practical-scale enantiopurification of β-amino acid esters. Amino Acids 2016, 48, 605–613. [Google Scholar] [CrossRef]
- Han, J.; Kitagawa, O.; Wzorek, A.; Klika, K.D.; Soloshonok, V.A. The self-disproportionation of enantiomers (SDE): A menace or an opportunity? Chem. Sci. 2018, 9, 1718–1739. [Google Scholar] [CrossRef]
- Han, J.; Soloshonok, V.A.; Klika, K.D.; Drabowicz, J.; Wzorek, A. Chiral sulfoxides: Advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem. Soc. Rev. 2018, 47, 1307–1350. [Google Scholar] [CrossRef]
- Soloshonok, V.A.; Wzorek, A.; Klika, K.D. A question of policy: Should tests for the self-disproportionation of enantiomers (SDE) be mandatory for reports involving scalemates? Tetrahedron Asymmetry 2017, 28, 1430–1434. [Google Scholar] [CrossRef]
- Han, J.; Wzorek, A.; Klika, K.D.; Soloshonok, V.A. Recommended tests for the self-disproportionation of enantiomers (SDE) to ensure accurate reporting of the stereochemical outcome of enantioselective reactions. Molecules 2021, 26, 2757. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Dembinski, R.; Soloshonok, V.A.; Klika, K.D. A call for a change in policy regarding the necessity for SDE tests to validate the veracity of the outcome of enantioselective syntheses, the inherent chiral state of natural products, and other cases involving enantioenriched samples. Molecules 2021, 26, 3994. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Han, J.; Sorochinsky, A.; Landa, A.; Butler, G.; Soloshonok, V.A. The Latest FDA-Approved Pharmaceuticals Containing Fragments of Tailor-Made Amino Acids and Fluorine. Pharmaceuticals 2022, 15, 999. https://doi.org/10.3390/ph15080999
Wang Q, Han J, Sorochinsky A, Landa A, Butler G, Soloshonok VA. The Latest FDA-Approved Pharmaceuticals Containing Fragments of Tailor-Made Amino Acids and Fluorine. Pharmaceuticals. 2022; 15(8):999. https://doi.org/10.3390/ph15080999
Chicago/Turabian StyleWang, Qian, Jianlin Han, Alexander Sorochinsky, Aitor Landa, Greg Butler, and Vadim A. Soloshonok. 2022. "The Latest FDA-Approved Pharmaceuticals Containing Fragments of Tailor-Made Amino Acids and Fluorine" Pharmaceuticals 15, no. 8: 999. https://doi.org/10.3390/ph15080999
APA StyleWang, Q., Han, J., Sorochinsky, A., Landa, A., Butler, G., & Soloshonok, V. A. (2022). The Latest FDA-Approved Pharmaceuticals Containing Fragments of Tailor-Made Amino Acids and Fluorine. Pharmaceuticals, 15(8), 999. https://doi.org/10.3390/ph15080999