Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Constituents
2.2. Antioxidant Activity
2.3. Antibacterial Activity
2.4. Enzyme Inhibitory Activity
2.5. Anticancer Activity
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Essential Oil
3.3. Analysis of Essential Oil
3.4. Antioxidant Activity
3.4.1. DPPH Assay
3.4.2. ABTS Assay
3.5. Antibacterial Activity
3.5.1. Bacterial Strains
3.5.2. Disc Diffusion Assay
3.5.3. MIC and MBC Assays
3.6. Enzyme Inhibitory Activities
3.6.1. α-Glucosidase Inhibitory Activity
3.6.2. Tyrosinase Inhibitory Activity
3.6.3. Cholinesterase Inhibitory Activity
3.7. Anticancer Activity
3.7.1. Cytotoxic Activity
3.7.2. Morphology Assay
3.7.3. Flow Cytometry Assay
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils–A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crop. Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.N.; Scifo, R.; Gnoula, C.; Morel, L.; Lobaccaro, J.M.; Simpore, J. Anticancer activity of essential oils and their chemical components—A review. Am. J. Cancer Res. 2014, 4, 591–607. [Google Scholar] [PubMed]
- Hong, Y.; Liu, X.; Wang, H.; Zhang, M.; Tian, M. Chemical Composition, Antibacterial, Enzyme-Inhibitory, and Anti-Inflammatory Activities of Essential Oil from Hedychium puerense Rhizome. Agronomy 2021, 11, 2506. [Google Scholar] [CrossRef]
- Buchbauer, G.; Bohusch, R. Biological activities of essential oils: An update. In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 281–321. [Google Scholar]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Tang, X.; Xu, C.; Yagiz, Y.; Simonne, A.; Marshall, M.R. Phytochemical profiles, and antimicrobial and antioxidant activities of greater galangal [Alpinia galanga (Linn.) Swartz.] flowers. Food Chem. 2018, 255, 300–308. [Google Scholar] [CrossRef]
- The Plant List. Version 1.1. Available online: http://www.theplantlist.org/tpl1.1/record/kew-218790 (accessed on 18 July 2022).
- Wu, D.L.; Larsen, K. Zingiberaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2000; Volume 24, pp. 322–377. [Google Scholar]
- Wong, L.F.; Lim, Y.Y.; Omar, M. Antioxidant and antimicrobial activities of some Alpina species. J. Food Biochem. 2009, 33, 835–851. [Google Scholar] [CrossRef]
- Chudiwal, A.K.; Jain, D.P.; Somani, R.S. Alpiniagalanga Willd–An overview on phyto-pharmacological properties. Indian J. Nat. Prod. Resour. 2010, 1, 143–149. [Google Scholar]
- Sahoo, S.; Singh, S.; Sahoo, A.; Sahoo, B.C.; Jena, S.; Kar, B.; Nayak, S. Molecular and phytochemical stability of long term micropropagated greater galanga (Alpinia galanga) revealed suitable for industrial applications. Ind. Crop. Prod. 2020, 148, 112274. [Google Scholar] [CrossRef]
- Ye, Y.S.; Zhou, X.; Huang, J.P. Ex Situ Flora of China (Zingiberaceae); China Forestry Publishing House: Beijing, China, 2020; pp. 86–89. [Google Scholar]
- Ai, T.M. Medicinal Flora of China; Peking University Medical Press: Beijing, China, 2016; Volume 12, pp. 330–332. [Google Scholar]
- China Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2020; pp. 159–160. [Google Scholar]
- Wu, D.L.; Liu, N.; Ye, Y.S. The Zingiberaceous Resources in China; Huazhong University of Science & Technology Press: Wuhan, China, 2016; p. 15. [Google Scholar]
- CHMC-Chinese Herbal Medicine Company. The Chinese Traditional Medicine Resource Records; Science Press: Beijing, China, 1994; pp. 1502–1503. [Google Scholar]
- Raina, V.K.; Srivastava, S.K.; Syamasunder, K.V. The essential oil of ‘greater galangal’ [Alpinia galanga (L.) Willd.] from the lower Himalayan region of India. Flavour Fragr. J. 2002, 17, 358–360. [Google Scholar] [CrossRef]
- Chouni, A.; Paul, S. A review on phytochemical and pharmacological potential of Alpinia galanga. Pharmacogn. J. 2018, 10, 9–15. [Google Scholar] [CrossRef]
- Wang, J.X. The Encyclopedia of Cosmetics and Plant Raw Materials; China Textile & Apparel Press: Beijing, China, 2012; pp. 67–68. [Google Scholar]
- Tungmunnithum, D.; Tanaka, N.; Uehara, A.; Iwashina, T. Flavonoids Profile, Taxonomic Data, History of Cosmetic Uses, Anti-Oxidant and Anti-Aging Potential of Alpinia galanga (L.) Willd. Cosmetics 2020, 7, 89. [Google Scholar] [CrossRef]
- National Medical Products Administration (NMPA). Available online: https://www.nmpa.gov.cn/zhuanti/hzhpxch2021/hzhp2021fgwj/20210430162707173.html (accessed on 20 July 2022).
- European Commission Database for Information on Cosmetic Substances and Ingredients (CosIng). Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.simple (accessed on 20 July 2022).
- Yang, X.; Eilerman, R.G. Pungent principal of Alpinia galangal (L.) swartz and its applications. J. Agric. Food Chem. 1999, 47, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Khairullah, A.R.; Solikhah, T.I.; Ansori, A.N.M.; Fadholly, A.; Ramandinianto, S.C.; Ansharieta, R.; Widodo, A.; Riwu, K.H.P.; Putri, N.; Proboningrat, A.; et al. A review of an important medicinal plant: Alpinia galanga (L.) willd. Sys. Rev. Pharm. 2020, 11, 387–395. [Google Scholar]
- Zhou, C.; Li, C.; Siva, S.; Cui, H.; Lin, L. Chemical composition, antibacterial activity and study of the interaction mechanisms of the main compounds present in the Alpinia galanga rhizomes essential oil. Ind. Crop. Prod. 2021, 165, 113441. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, X.; Ou, Z.; Ye, M.; Shi, Y.; Chen, Y.; Zhao, J.; Zheng, D.; Xiang, H. Screening of chemical composition, anti-arthritis, antitumor and antioxidant capacities of essential oils from four Zingiberaceae herbs. Ind. Crop. Prod. 2020, 149, 112342. [Google Scholar] [CrossRef]
- Hamad, A.; Alifah, A.; Permadi, A.; Hartanti, D. Chemical constituents and antibacterial activities of crude extract and essential oils of Alpinia galanga and Zingiber officinale. Int. Food Res. J. 2016, 23, 837. [Google Scholar]
- Srivastava, B.; Singh, P.; Shukla, R.; Dubey, N.K. A novel combination of the essential oils of Cinnamomum camphora and Alpinia galanga in checking aflatoxin B1 production by a toxigenic strain of Aspergillus flavus. World J. Microbiol. Biotechnol. 2008, 24, 693–697. [Google Scholar] [CrossRef]
- Tadtong, S.; Watthanachaiyingcharoen, R.; Kamkaen, N. Antimicrobial constituents and synergism effect of the essential oils from Cymbopogon citratus and Alpinia galanga. Nat. Prod. Commun. 2014, 9, 277–280. [Google Scholar] [CrossRef]
- Prakatthagomol, W.; Klayraung, S.; Okonogi, S. Bactericidal action of Alpinia galanga essential oil on food-borne bacteria. Drug Discov. Ther. 2011, 5, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Tachakittirungrod, S.; Chowwanapoonpohn, S. Comparison of antioxidant and antimicrobial activities of essential oils from Hyptis suaveolens and Alpinia galanga growing in Northern Thailand. CMU J. Nat. Sci. 2007, 6, 31–41. [Google Scholar]
- Wu, Y.; Wang, Y.; Li, Z.; Wang, C.; Wei, J.; Li, X.; Wang, P.; Zhou, Z.; Du, S.; Huang, D.; et al. Composition of the essential oil from Alpinia galanga rhizomes and its bioactivity on Lasioderma serricorne. Bull. Insectol. 2014, 67, 247–254. [Google Scholar]
- Singh, S.; Sahoo, S.; Sahoo, B.C.; Naik, B.; Dash, M.; Nayak, S.; Kar, B. Enhancement of Bioactivities of Rhizome Essential Oil of Alpinia galanga (Greater galangal) Through Nanoemulsification. J. Essent. Oil Bear. Plants 2021, 24, 648–657. [Google Scholar] [CrossRef]
- Abdullah, F.; Subramanian, P.; Ibrahim, H.; Abdul Malek, S.N.; Lee, G.S.; Hong, S.L. Chemical composition, antifeedant, repellent, and toxicity activities of the rhizomes of galangal, Alpinia galanga against Asian subterranean termites, Coptotermes gestroi and Coptotermes curvignathus (Isoptera: Rhinotermitidae). J. Insect Sci. 2015, 15, 7. [Google Scholar] [CrossRef]
- Cadet, M.; Williams, S.K.; Simonne, A.; Sharma, C.S. Antimicrobial efficacy of Alpinia galanga (Linn.) Swartz flower extract against Listeria monocytogenes and Staphylococcus aureus in a Ready-to-Eat turkey ham product. Int. J. Poultry Sci. 2013, 12, 335–340. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Simonne, A.; Weissman, A.; Kim, J.M. Antimicrobial activity of greater galanga [Alpinia galanga (Linn.) Swartz.] flowers. Food Sci. Biotechnol. 2010, 19, 873–880. [Google Scholar] [CrossRef]
- Padalia, R.C.; Verma, R.S.; Sundaresan, V.; Chanotiya, C.S. Chemical diversity in the genus Alpinia (Zingiberaceae): Comparative composition of four Alpinia species grown in Northern India. Chem. Biodivers. 2010, 7, 2076–2087. [Google Scholar] [CrossRef]
- Nagababu, E.; Rifkind, J.M.; Boindala, S.; Nakka, L. Assessment of Antioxidant Activity of Eugenol In Vitro and In Vivo. In Free Radicals and Antioxidant Protocols, Methods in Molecular Biology; Uppu, R., Murthy, S.N., Pryor, W.A., Parinandi, N.L., Eds.; Humana Press: New York, NY, USA, 2010; Volume 610, pp. 165–180. [Google Scholar]
- Gülçin, İ. Antioxidant activity of eugenol: A structure–activity relationship study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef]
- Keramat, M.; Golmakani, M.T.; Toorani, M.R. Effect of Interfacial Activity of Eugenol and Eugenol Esters with Different Alkyl Chain Lengths on Inhibiting Sunflower Oil Oxidation. Eur. J. Lipid Sci. Technol. 2021, 123, 2000367. [Google Scholar] [CrossRef]
- Vinholes, J.; Gonçalves, P.; Martel, F.; Coimbra, M.A.; Rocha, S.M. Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models. Food Chem. 2014, 156, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Rather, M.A.; Dar, B.A.; Dar, M.Y.; Wani, B.A.; Shah, W.A.; Bhat, B.A.; Ganai, B.A.; Bhat, K.A.; Anand, R.; Qurishi, M.A. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine 2012, 19, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, P.C.; Majolo, C.; Chaves, F.C.M.; Bizzo, H.R.; Almeida O’Sullivan, F.L.; Chagas, E.C. Antimicrobial activity of essential oils from Lippia sidoides, Ocimum gratissimum and Zingiber officinale against Aeromonas spp. J. Essent. Oil Res. 2021, 33, 152–161. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
- ÇELİK, K.; TOĞAR, B.; TÜRKEZ, H.; TAŞPINAR, N. In vitro cytotoxic, genotoxic, and oxidative effects of acyclic sesquiterpene farnesene. Turk. J. Biol. 2014, 38, 253–259. [Google Scholar] [CrossRef]
- Bonikowski, R.; Świtakowska, P.; Sienkiewicz, M.; Zakłos-Szyda, M. Selected Compounds Structurally Related to Acyclic Sesquiterpenoids and Their Antibacterial and Cytotoxic Activity. Molecules 2015, 20, 11272–11296. [Google Scholar] [CrossRef] [PubMed]
- Hateet, R.R.; Hachim, A.K.; Shawi, H. Biological activity of eugenol acetate as antibacterial and antioxidant agent, isolation from Myrtus communis L. essential oil. Int. J. Bioeng. Biotechnol. 2016, 1, 6–11. [Google Scholar]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef]
- Kiryu, M.; Hamanaka, M.; Yoshitomi, K.; Mochizuki, S.; Akimitsu, K.; Gomi, K. Rice Terpene synthase 18 (OsTPS18) encodes a sesquiterpene synthase that produces an antibacterial (E)-nerolidol against a bacterial pathogen of rice. J. Gen. Plant Pathol. 2018, 84, 221–229. [Google Scholar] [CrossRef]
- van de Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; van de Lisdonk, E.H.; Rutten, G.E.; van Weel, C. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005, 28, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ogunsuyi, O.B.; Adegbola, D.O.; Ademiluyi, A.O.; Oladun, F.L. Influence of gallic and tannic acid on therapeutic properties of acarbose in vitro and in vivo in Drosophila melanogaster. Biomed. J. 2019, 42, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Minoshima, Y.; Yamamoto, J.; Adachi, I.; Watson, A.A.; Nash, R.J. Protective effects of dietary chamomile tea on diabetic complications. J. Agric. Food Chem. 2008, 56, 8206–8211. [Google Scholar] [CrossRef] [PubMed]
- Valdes, M.; Calzada, F.; Mendieta-Wejebe, J. Structure–Activity Relationship Study of Acyclic Terpenes in Blood Glucose Levels: Potential α-Glucosidase and Sodium Glucose Cotransporter (SGLT-1) Inhibitors. Molecules 2019, 24, 4020. [Google Scholar] [CrossRef] [PubMed]
- Tolmie, M.; Bester, M.J.; Apostolides, Z. Inhibition of α-glucosidase and α-amylase by herbal compounds for the treatment of type 2 diabetes: A validation of in silico reverse docking with in vitro enzyme assays. J. Diabetes 2021, 13, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R.; et al. Potential Dual Role of Eugenol in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights. Sci. Rep. 2016, 6, 18798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tshiyoyo, K.S.; Bester, M.J.; Serem, J.C.; Apostolides, Z. In-silico reverse docking and in-vitro studies identified curcumin, 18α-glycyrrhetinic acid, rosmarinic acid, and quercetin as inhibitors of α-glucosidase and pancreatic α-amylase and lipid accumulation in HepG2 cells, important type 2 diabetes targets. J. Mol. Struct. 2022, 1266, 133492. [Google Scholar] [CrossRef]
- Shirota, S.; Miyazaki, K.; Aiyama, R.; Ichioka, M.; Yokokura, T. Tyrosinase inhibitors from crude drugs. Biol. Pharm. Bull. 1994, 17, 266–269. [Google Scholar] [CrossRef]
- Arung, E.T.; Matsubara, E.; Kusuma, I.W.; Sukaton, E.; Shimizu, K.; Kondo, R. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Fitoterapia 2011, 82, 198–202. [Google Scholar] [CrossRef]
- Grutzendler, J.; Morris, J.C. Cholinesterase inhibitors for Alzheimer’s disease. Drugs 2001, 61, 41–52. [Google Scholar] [CrossRef]
- Dalai, M.K.; Bhadra, S.; Chaudhary, S.K.; Bandyopadhyay, A.; Mukherjee, P.K. Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L. Pharmacogn. Mag. 2014, 10, S276–S282. [Google Scholar] [PubMed]
- Kaur, A.; Jaiswal, G.; Brar, J.; Kumar, P. Neuroprotective effect of nerolidol in traumatic brain injury associated behavioural comorbidities in rats. Toxicol. Res. 2021, 10, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, A.; Mathieu, V.; Rastogi, S.K.; Lefranc, F.; Kiss, R. Therapeutic agents triggering nonapoptotic cancer cell death. J. Med. Chem. 2013, 12, 4823–4839. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.V.; Menezes, L.R.A.; Rocha, S.L.A.; Baliza, I.R.S.; Dias, R.B.; Rocha, C.A.G.; Soares, M.B.P.; Bezerra, D.P. Antitumor properties of the leaf essential oil of Zornia brasiliensis. Planta Med. 2015, 81, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Walia, M.; Mann, T.S.; Kumar, D.; Agnihotri, V.K.; Singh, B. Chemical Composition and In Vitro Cytotoxic Activity of Essential Oil of Leaves of Malus domestica Growing in Western Himalaya (India). Evid. Based Complement. Alternat. Med. 2012, 2012, 649727. [Google Scholar] [CrossRef] [PubMed]
- Tomko, A.M.; Whynot, E.G.; Ellis, L.D.; Dupré, D.J. Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers 2020, 12, 1985. [Google Scholar] [CrossRef] [PubMed]
- Phutdhawong, W.; Donchai, A.; Korth, J.; Pyne, S.G.; Picha, P.; Ngamkham, J.; Buddhasukh, D. The components and anticancer activity of the volatile oil from Streblus asper. Flavour Fragr. J. 2004, 19, 445–447. [Google Scholar] [CrossRef]
- Zari, A.T.; Zari, T.A.; Hakeem, K.R. Anticancer Properties of Eugenol: A Review. Molecules 2021, 26, 7407. [Google Scholar] [CrossRef]
- Parvez, S.; Karole, A.; Mudavath, S.L. Fabrication, physicochemical characterization and In vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line. Colloids Surf. B Biointerfaces 2022, 215, 112520. [Google Scholar] [CrossRef]
- Afoulous, S.; Ferhout, H.; Raoelison, E.G.; Valentin, A.; Moukarzel, B.; Couderc, F.; Bouajila, J. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem. Toxicol. 2013, 56, 352–362. [Google Scholar] [CrossRef]
- da Silva, E.B.P.; Matsuo, A.L.; Figueiredo, C.R.; Chaves, M.H.; Sartorelli, P.; Lago, J.H.G. Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat. Prod. Commun. 2013, 8, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.Y.; Wu, X.H.; Lu, T.Y.; Zhao, X.G.; Wei, F.; Deng, G.D.; Zhou, Y. Phytochemical analysis, antioxidant, antibacterial, cytotoxic, and enzyme inhibitory activities of Hedychium flavum rhizome. Front. Pharmacol. 2020, 11, 572659. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherston, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Compound a | RT (min) | RI b | RI c | %Area | Identification d |
---|---|---|---|---|---|
Octane | 7.066 | 800 | 800 | 0.1 | RI, MS |
Ethylbenzene | 8.877 | 855 | 862 | tr e | RI, MS |
p-Xylene | 9.122 | 865 | 871 | 0.1 | RI, MS |
Nonane | 9.961 | 900 | 900 | 0.1 | RI, MS |
α-Pinene | 11.56 | 937 | 936 | 0.2 | RI, MS |
Camphene | 12.257 | 952 | 952 | 0.1 | RI, MS |
Sabinen | 13.306 | 974 | 976 | 0.2 | RI, MS |
β-Pinene | 13.545 | 979 | 981 | 0.4 | RI, MS |
Sulcatone | 13.714 | 986 | 985 | 0.6 | RI, MS |
2,2,4,6,6-Pentamethylheptane | 14.02 | 990 | 992 | 0.2 | RI, MS |
Decane | 14.356 | 1000 | 1000 | tr e | RI, MS |
α-Phellandrene | 14.831 | 1005 | 1008 | tr e | RI, MS |
p-Cymene | 15.86 | 1025 | 1026 | 0.1 | RI, MS |
D-Limonene | 16.113 | 1031 | 1031 | tr e | RI, MS |
Eucalyptol | 16.281 | 1032 | 1034 | 0.4 | RI, MS |
Melonal | 17.365 | 1054 | 1053 | 0.1 | RI, MS |
γ-Terpinene | 17.768 | 1060 | 1060 | tr e | RI, MS |
1-Octanol | 18.214 | 1070 | 1068 | tr e | RI, MS |
3-Methylbenzaldehyde | 18.399 | 1071 | 1071 | tr e | RI, MS |
Linalool oxide | 18.543 | 1074 | 1074 | 0.1 | RI, MS |
Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate | 19.47 | 1090 | 1090 | tr e | RI, MS |
Linalool | 20.049 | 1099 | 1100 | 0.7 | RI, MS |
6-Methyl-3,5-heptadiene-2-one | 20.34 | 1107 | 1105 | 0.1 | RI, MS |
Terpinen-4-ol | 25.136 | 1177 | 1180 | tr e | RI, MS |
α-Terpineol | 25.959 | 1189 | 1193 | tr e | RI, MS |
Decanal | 26.725 | 1206 | 1205 | 0.1 | RI, MS |
cis-5-Octenyl acetate | 26.88 | 1206 | 1208 | 0.1 | RI, MS |
Octyl acetate | 27.044 | 1210 | 1211 | 2.0 | RI, MS |
Geraniol | 29.888 | 1255 | 1255 | 0.1 | RI, MS |
α-Citral | 30.993 | 1270 | 1272 | 0.1 | RI, MS |
Nonanol acetate | 33.492 | 1309 | 1311 | tr e | RI, MS |
Eugenol | 36.71 | 1358 | 1361 | 3.1 | RI, MS |
Cerulignol | 37.301 | 1373 | 1370 | 0.2 | RI, MS |
Copaene | 38.038 | 1376 | 1382 | 0.1 | RI, MS |
Geranyl acetate | 38.165 | 1382 | 1384 | 0.2 | RI, MS |
β-Elemen | 39.009 | 1391 | 1397 | 0.6 | RI, MS |
Methyleugenol | 39.546 | 1403 | 1406 | 0.1 | RI, MS |
Decyl acetate | 39.815 | 1409 | 1410 | 2.4 | RI, MS |
Caryophyllene | 40.853 | 1419 | 1427 | 0.8 | RI, MS |
trans-Bergamotene | 41.662 | 1435 | 1440 | 0.2 | RI, MS |
Isoeugenol | 42.473 | 1450 | 1453 | 0.3 | RI, MS |
(E)-β-Farnesene | 42.804 | 1457 | 1459 | 1.7 | RI, MS |
Humulene | 42.949 | 1460 | 1461 | 0.2 | RI, MS |
epi-β-Caryophyllene | 43.404 | 1466 | 1469 | 0.1 | RI, MS |
Germacrene D | 44.631 | 1481 | 1489 | 1.5 | RI, MS |
(Z)-α-Farnesene | 45.135 | 1491 | 1497 | 0.3 | RI, MS |
Farnesene | 46.296 | 1508 | 1516 | 64.3 | RI, MS |
Aceteugenol | 47.163 | 1524 | 1531 | 3.2 | RI, MS |
Sesquirosefuran | 48.691 | 1557 | 1557 | 1.9 | RI, MS |
E-Nerolidol | 49.266 | 1564 | 1567 | 2.9 | RI, MS |
Germacrene D-4-ol | 50.233 | 1574 | 1584 | 0.2 | RI, MS |
Spathulenol | 50.387 | 1576 | 1586 | 0.5 | RI, MS |
Caryophyllene oxide | 50.74 | 1581 | 1592 | 0.4 | RI, MS |
α-Cadinol | 54.673 | 1653 | 1663 | 0.8 | RI, MS |
trans-Farnesal | 58.842 | 1745 | 1754 | 0.5 | RI, MS |
cis-9-Hexadecenal | 60.467 | 1803 | 1796 | 0.2 | RI, MS |
Farnesyl acetate | 61.754 | 1843 | 1848 | 3.6 | RI, MS |
Monoterpene hydrocarbons | 1.08 | ||||
Oxygenated monoterpenes | 1.59 | ||||
Sesquiterpene hydrocarbons | 69.64 | ||||
Oxygenated sesquiterpenes | 10.75 | ||||
Others | 12.97 | ||||
Total (%) | 96.0 | ||||
Yield (w/w) (%) | 0.11 |
Samples | Antioxidant Activity (IC50, μg/mL) 1 | |
---|---|---|
DPPH | ABTS | |
Essential oil | 138.62 ± 3.07 a | 40.48 ± 0.49 a |
BHT 2 | 14.16 ± 0.30 b | 1.99 ± 0.05 b |
Ascorbic acid 2 | 0.52 ± 0.01 c | 1.05 ± 0.02 c |
Bacterial Strains a | Essential Oil | Streptomycin | ||||
---|---|---|---|---|---|---|
DIZ b (mm) | MIC c (mg/mL) | MBC c (mg/mL) | DIZ b (mm) | MIC c (μg/mL) | MBC c (μg/mL) | |
Gram-positive | ||||||
S. aureus | 10.98 ± 1.14 | 3.13 | 6.25 | 19.78 ± 0.29 | 0.78 | 1.56 |
B. subtilis | 14.32 ± 2.81 | 3.13 | 6.25 | 18.43 ± 0.82 | 0.78 | 1.56 |
E. faecalis | 9.21 ± 0.92 | 6.25 | 12.50 | 8.38 ± 0.34 | 12.50 | 25.00 |
Gram-negative | ||||||
P. aeruginosa | 9.54 ± 0.20 | 3.13 | 12.50 | 10.35 ± 0.19 | 1.56 | 3.13 |
E. coli | 8.79 ± 0.49 | 6.25 | 12.50 | 11.83 ± 0.40 | 1.56 | 6.25 |
P. vulgaris | 9.57 ± 0.42 | 3.13 | 6.25 | 16.92 ± 0.54 | 0.78 | 6.25 |
Samples | Enzyme Inhibitory Effect (IC50, mg/mL) 1 | |||
---|---|---|---|---|
α-Glucosidase | Tyrosinase | Acetylcholinesterase | Butyrylcholinesterase | |
Essential oil | 0.16 ± 0.03 a | 0.62 ± 0.09 a | 2.49 ± 0.24 a | 10.14 ± 0.59 a |
Acarbose | 0.15 ± 0.01 a | – | – | – |
Arbutin | – | 0.19 ± 0.06 b | – | – |
Galanthamine * | – | – | 0.25 ± 0.06 b | 4.65 ± 0.16 b |
Samples | Cell Line (IC50, µg/mL) 1 | ||||
---|---|---|---|---|---|
A549 | PC-3 | K562 | NCI-H1299 | L929 | |
Essential oil | 102.09 ± 3.86 a | 97.09 ± 5.02 a | 41.55 ± 2.28 b | 127.37 ± 4.15 c | 120.54 ± 8.37 c |
Cisplatin | 15.13 ± 0.72 a | 10.69 ± 0.69 b | 6.32 ± 0.77 c | 4.78 ± 0.93 d | 9.16 ± 0.64 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Jia, X.; Wang, Q.; Lu, T.; Deng, G.; Tian, M.; Zhou, Y. Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil. Pharmaceuticals 2022, 15, 1069. https://doi.org/10.3390/ph15091069
Tian Y, Jia X, Wang Q, Lu T, Deng G, Tian M, Zhou Y. Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil. Pharmaceuticals. 2022; 15(9):1069. https://doi.org/10.3390/ph15091069
Chicago/Turabian StyleTian, Yufeng, Xiaoyan Jia, Qinqin Wang, Tingya Lu, Guodong Deng, Minyi Tian, and Ying Zhou. 2022. "Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil" Pharmaceuticals 15, no. 9: 1069. https://doi.org/10.3390/ph15091069
APA StyleTian, Y., Jia, X., Wang, Q., Lu, T., Deng, G., Tian, M., & Zhou, Y. (2022). Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil. Pharmaceuticals, 15(9), 1069. https://doi.org/10.3390/ph15091069