Process to Remove the Size Variants Contained in the Antibody–Chelator Complex PCTA-NCAB001 for Radiolabeling with Copper-64
Abstract
:1. Introduction
2. Results
2.1. Identification of the Size Variants Contained in PCTA-NCAB001
2.2. Removal of the Size Variants Contained in PCTA-NCAB001
2.3. Stability of PCTA-NCAB001 after the Removal of the Size Variants
3. Discussion
4. Materials and Methods
4.1. Preparation of the PCTA-NCAB001 Formulation
4.2. Identification of the Size Variants Contained in PCTA-NCAB001 by SEC-MALS
4.3. Removal of the Size Variants Contained in PCTA-NCAB001 by HIC
4.4. Stability of PCTA-NCAB001 after Removal of the Size Variants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshii, Y.; Matsumoto, H.; Yoshimoto, M.; Oe, Y.; Zhang, M.R.; Nagatsu, K.; Sugyo, A.; Tsuji, A.B.; Higashi, T. 64Cu-intraperitoneal radioimmunotherapy: A novel approach for adjuvant treatment in a clinically relevant preclinical model of pancreatic cancer. J. Nucl. Med. 2019, 60, 1437–1443. [Google Scholar] [CrossRef]
- Ohya, T.; Nagatsu, K.; Suzuki, H.; Fukada, M.; Minegishi, K.; Hanyu, M.; Fukumura, T.; Zhang, M.R. Efficient preparation of high-quality 64Cu for routine use. Nucl. Med. Biol. 2016, 43, 685–691. [Google Scholar] [CrossRef]
- Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers 2011, 3, 1513–1526. [Google Scholar] [CrossRef]
- Chiramel, J.; Backen, A.C.; Pihlak, R.; Lamarca, A.; Frizziero, M.; Tariq, N.U.; Hubner, R.A.; Valle, J.W.; Amir, E.; McNamara, M.G. Targeting the epidermal growth factor receptor in addition to chemotherapy in patients with advanced pancreatic cancer: A systematic review and meta-analysis. Int. J. Mol. Sci. 2017, 18, 909. [Google Scholar] [CrossRef]
- Tummers, W.S.; Miller, S.E.; Teraphongphom, N.T.; Gomez, A.; Steinberg, I.; Huland, D.M.; Hong, S.; Kothapalli, S.R.; Hasan, A.; Ertsey, R.; et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann. Surg. Oncol. 2018, 25, 1880–1888. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Lowery, M.A.; O’Reilly, E.M. Novel therapeutics for pancreatic adenocarcinoma. Hematol. Oncol. Clin. N. Am. 2015, 29, 777–787. [Google Scholar] [CrossRef]
- Cai, J.; Chen, H.; Lu, M.; Zhang, Y.; Lu, B.; You, L.; Zhang, T.; Dai, M.; Zhao, Y. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett. 2021, 520, 1–11. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef]
- Ariyama, J.; Suyama, M.; Satoh, K.; Sai, J. Imaging of small pancreatic ductal adenocarcinoma. Pancreas 1998, 16, 396–401. [Google Scholar] [CrossRef]
- Egawa, S.; Takeda, K.; Fukuyama, S.; Motoi, F.; Sunamura, M.; Matsuno, S. Clinicopathological aspects of small pancreatic cancer. Pancreas 2004, 28, 235–240. [Google Scholar] [CrossRef]
- Jung, K.W.; Kim, M.H.; Lee, T.Y.; Kwon, S.; Oh, H.C.; Lee, S.S.; Seo, D.W.; Lee, S.K. Clinicopathological aspects of 542 cases of pancreatic cancer: A special emphasis on small pancreatic cancer. J. Korean Med. Sci. 2007, 22, S79–S85. [Google Scholar] [CrossRef]
- Matsumoto, H.; Watabe, T.; Igarashi, C.; Tachibana, T.; Hihara, F.; Waki, A.; Zhang, M.-R.; Tashima, H.; Yamaya, T.; Ooe, K.; et al. Evaluation of 64Cu-labeled new anti-EGFR antibody NCAB001 with intraperitoneal injection for early PET diagnosis of pancreatic cancer in orthotopic tumor-xenografted mice and nonhuman primates. Pharmaceuticals 2021, 14, 950. [Google Scholar] [CrossRef] [PubMed]
- ICH. M3 (R2) Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. In Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Yokohama, Japan, 11 June 2009. [Google Scholar]
- Matsumoto, H.; Igarashi, C.; Tachibana, T.; Hihara, F.; Shinada, M.; Waki, A.; Yoshida, S.; Naito, K.; Kurihara, H.; Ueno, M.; et al. Preclinical safety evaluation of intraperitoneally administered Cu-Ccnjugated anti-EGFR antibody NCAB001 for the early diagnosis of pancreatic cancer using PET. Pharmaceutics 2022, 14, 1928. [Google Scholar] [CrossRef]
- Wakankar, A.; Chen, Y.; Gokarn, Y.; Jacobson, F.S. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 2011, 3, 161–172. [Google Scholar] [CrossRef]
- Matsumoto, H.; Igarashi, C.; Tachibana, T.; Hihara, F.; Waki, A.; Zhang, M.R.; Yoshida, S.; Naito, K.; Kurihara, H.; Ueno, M.; et al. Characterization and stabilization of a new 64Cu-labeled anti-EGFR antibody NCAB001 for the early detection of pancreatic cancer with positron emission tomography. Pharmaceutics 2021, 14, 67. [Google Scholar] [CrossRef]
- Zimm, B.H. The scattering of light and the radial distribution function of high polymer solutions. J. Chem. Phys. 1948, 16, 1093–1099. [Google Scholar] [CrossRef]
- Zimm, B.H. Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminaryrResults on polystyrene solutions. J. Chem. Phys. 1948, 16, 1099–1116. [Google Scholar] [CrossRef]
- Wyatt, P.J. Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta 1993, 272, 1–40. [Google Scholar] [CrossRef]
- Ye, H. Simultaneous determination of protein aggregation, degradation, and absolute molecular weight by size exclusion chromatography–multiangle laser light scattering. Anal. Biochem. 2006, 356, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.P.; Patel, B.; Jin, X.; Di Grandi, D.; Bortell, E.; Czapkowski, B.; Lerch, T.F.; Meyer, D.; Patel, S.; Pegg, J.; et al. Structural Characterization of the Aggregates of Gemtuzumab Ozogamicin. Acs Omega 2019, 4, 6468–6475. [Google Scholar] [CrossRef]
- Fekete, S.; Veuthey, J.L.; Beck, A.; Guillarme, D. Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. J. Pharm. Biomed. Anal. 2016, 130, 3–18. [Google Scholar] [CrossRef]
- Fleming, R. ADC Analysis by Hydrophobic Interaction Chromatography. Methods Mol. Biol. 2020, 2078, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.L.; Duffy, R.J.; Gandarilla, J.; Richter, S.M. Purification of ADCs by Hydrophobic Interaction Chromatography. Methods Mol. Biol. 2020, 2078, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Bobaly, B.; Fleury-Souverain, S.; Beck, A.; Veuthey, J.L.; Guillarme, D.; Fekete, S. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J. Pharm. Biomed. Anal. 2018, 147, 493–505. [Google Scholar] [CrossRef]
Sample | Number-Mean M.W. Mn * (g/mol) | Mass-Mean M.W. Mw * (g/mol) | Z-Mean M.W. Mz * (g/mol) | Multi-Variance Mw/Mn | Multi-Variance Mw/Mz | |
---|---|---|---|---|---|---|
BSA | Monomer | 6.766 × 104 | 6.770 × 104 | 6.775 × 104 | 1.001 | 1.001 |
PCTA-NCAB001 | Monomer | 1.558 × 105 | 1.559 × 105 | 1.560 × 105 | 1.000 | 1.001 |
Dimer | 3.190 × 105 | 3.195 × 105 | 3.201 × 105 | 1.002 | 1.003 | |
Oligomer | 8.510 × 105 | 9.720 × 105 | 1.174 × 106 | 1.142 | 1.380 |
No. | Column | Mobile Phase A | Mobile Phase B | Injected Sample |
---|---|---|---|---|
1 | Phenyl FT-750F | 0.1 M acetate buffer (pH 6.0) containing 100 mM glycine and 76.3 μM polysorbate-80 | Mobile phase A + 1 M NaCl | PCTA-NCAB001 * |
2 | 0.1 M phosphate buffer (pH 6.8) | Mobile phase A + 150 mM sodium sulphate | PCTA-NCAB001 * + 150 mM sodium sulphate | |
3 | 50 mM acetate buffer (pH 6.0) | Mobile phase A + 50 mM glycine | PCTA-NCAB001 * × 2 diluted with H2O | |
4 | 0.1 M acetate buffer (pH 6.0) | Mobile phase A + 100 mM glycine | PCTA-NCAB001 * | |
5 | 0.3 M acetate buffer (pH 6.0) | 50 mM acetate buffer (pH 6.0) | PCTA-NCAB001 50 kDa filtrated | |
6 | HiTrap Q FF | 0.1 M acetate buffer (pH 6.0) containing 100 mM glycine and 76.3 μM polysorbate-80 | Mobile phase A + 1 M NaCl | PCTA-NCAB001 * |
7 | 50 mM Tris/HCl (pH 8.0) | Mobile phase A + 1 M NaCl | PCTA-NCAB001 * × 2 diluted with mobile phase A | |
8 | 50 mM Tris/HCl (pH 8.0) | Mobile phase A + 1 M NaCl | PCTA-NCAB001 * × 3 diluted with mobile phase A |
Oligomer | Dimer | Monomer | ||||
---|---|---|---|---|---|---|
Peak Area | Area (%) | Peak Area | Area (%) | Peak Area | Area (%) | |
At preparation | N.D. | N.D. | N.D. | N.D. | 12811561 | 100.00 |
1 month | N.D. | N.D. | 35130 | 0.268 | 12865058 | 99.732 |
2 months | N.D. | N.D. | 59230 | 0.454 | 12716827 | 99.546 |
6 months | N.D. | N.D. | 69391 | 0.531 | 12478288 | 99.469 |
Protein Concentration (mg/mL) | Pellet after Centrifugation | ||
---|---|---|---|
Before Centrifugation | After Centrifugation | ||
At preparation | 2.21 | 2.24 | N.D. |
1 month | 2.27 | 2.26 | N.D. |
2 months | 2.22 | 2.29 | N.D. |
6 months | 2.21 | 2.22 | N.D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshii, Y.; Matsumoto, H.; Igarashi, C.; Tachibana, T.; Hihara, F.; Shinada, M.; Waki, A.; Yoshida, S.; Naito, K.; Ito, K.; et al. Process to Remove the Size Variants Contained in the Antibody–Chelator Complex PCTA-NCAB001 for Radiolabeling with Copper-64. Pharmaceuticals 2023, 16, 1341. https://doi.org/10.3390/ph16101341
Yoshii Y, Matsumoto H, Igarashi C, Tachibana T, Hihara F, Shinada M, Waki A, Yoshida S, Naito K, Ito K, et al. Process to Remove the Size Variants Contained in the Antibody–Chelator Complex PCTA-NCAB001 for Radiolabeling with Copper-64. Pharmaceuticals. 2023; 16(10):1341. https://doi.org/10.3390/ph16101341
Chicago/Turabian StyleYoshii, Yukie, Hiroki Matsumoto, Chika Igarashi, Tomoko Tachibana, Fukiko Hihara, Mitsuhiro Shinada, Atsuo Waki, Sei Yoshida, Kenichiro Naito, Kimiteru Ito, and et al. 2023. "Process to Remove the Size Variants Contained in the Antibody–Chelator Complex PCTA-NCAB001 for Radiolabeling with Copper-64" Pharmaceuticals 16, no. 10: 1341. https://doi.org/10.3390/ph16101341
APA StyleYoshii, Y., Matsumoto, H., Igarashi, C., Tachibana, T., Hihara, F., Shinada, M., Waki, A., Yoshida, S., Naito, K., Ito, K., Higashi, T., Kurihara, H., & Ueno, M. (2023). Process to Remove the Size Variants Contained in the Antibody–Chelator Complex PCTA-NCAB001 for Radiolabeling with Copper-64. Pharmaceuticals, 16(10), 1341. https://doi.org/10.3390/ph16101341