Impact of Solidago virgaurea Extract on Biofilm Formation for ESBL-Pseudomonas aeruginosa: An In Vitro Model Study
Abstract
:1. Introduction
2. Results
2.1. Distribution of P. aeruginosa According to Source
2.2. Identification of P. aeruginosa
2.3. Susceptibility Test
2.4. Qualitative and Quantitative Detection of Biofilm Forming–P. aeruginosa
2.5. Identification of Active Compounds of Goldenrod Herba
2.6. Determination of MIC for Antimicrobial Agents against P. aeruginosa
2.7. Detection of ESBL Activity and Biofilm Formation in P. aueroginosa
2.8. Association of ESBL Production and Biofilm Formation among P. aueroginosa Isolates
2.9. Synergistic Effects between Some Antibiotics and SV Extracts against P. aueroginosa
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Isolation of Bacteria
4.3. Identification of Bacterial Isolates
4.4. Antibiotics Susceptibility of P. aueroginosa
4.5. Collection of Goldenrod Herb
4.6. Maceration Extraction of Goldenrod Herb
4.7. Analysis of Goldenrod Herb Extract Using Gas Chromatography–Mass Spectrometry
4.8. Determination of Minimum Inhibitory Concentration (MIC) and MBC
4.9. Qualitative Detection Based on Congo Red Agar (CRA) Method
4.10. Quantitative Detection of Biofilm Based on 96-Well Microtiter Plate
4.11. Antibiofilm and AntiESBL Production of Goldenrod Herb
4.12. Combination between Antibiotics and Goldenrod Herb Based on Checkerboard Assay
4.13. Analysis of Research Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al Maeni, S.A.L.; Ahmed, M.M.; Abed, A.D.; Abbas, R.H.; Jassim, S.A.A.; Mohamad, A.M. Extraction and Purification of Staphylolysin Enzyme from Local Isolate of Pseudomonas aeruginosa. Ann. Rom. Soc. Cell Biol. 2021, 25, 1201–1208. [Google Scholar]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Seder, N.; Rayyan, W.A.; Al-Fawares, M.H.O.; Bakar, A. Pseudomonas aeruginosa Virulence Factors and Antivirulence mechanisms to Combat Drug Resistance; A Systematic Review. Mortality 2023, 10, 11. [Google Scholar]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 2015, 22, 90–101. [Google Scholar] [CrossRef]
- Teklu, D.S.; Negeri, A.A.; Legese, M.H.; Bedada, T.L.; Woldemariam, H.K.; Tullu, K.D. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob. Resist. Infect. Control 2019, 8, 39. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Khadum, H.E.; Jassam, H.M.S. Medicinal Herbs as Novel Therapies against Antibiotic-Resistant Bacteria. Res. J. Pharm. Technol. 2023, 16, 62–66. [Google Scholar] [CrossRef]
- Hussein, M.S.; Al-Qaysi, A.-M.K.; Al Meani, S.A.L.; Ahmed, M.M.; Abed, N.S.; Ibrahim, M.O. Assessment of Cinamic acid and Costus roots extract against MDR-K. pneumoniae isolated from patients of COVID-19. Res. J. Pharm. Technol. 2022, 15, 5724–5728. [Google Scholar] [CrossRef]
- Fursenco, C.; Calalb, T.; Uncu, L.; Dinu, M.; Ancuceanu, R. Solidago virgaurea L.: A review of its ethnomedicinal uses, phytochemistry, and pharmacological activities. Biomolecules 2020, 10, 1619. [Google Scholar] [CrossRef]
- Móricz, A.M.; Ott, P.G.; Häbe, T.T.; Darcsi, A.; Böszörményi, A.; Alberti, A.; Krüzselyi, D.; Csontos, P.; Béni, S.; Morlock, G.E. Effect-directed discovery of bioactive compounds followed by highly targeted characterization, isolation and identification, exemplarily shown for Solidago virgaurea. Anal. Chem. 2016, 88, 8202–8209. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, M.; Doglio, A.; Rajendran, R.; Ramage, G.; Prêcheur, I.; Ranque, S. Inhibition of adhesion-specific genes by Solidago virgaurea extract causes loss of Candida albicans biofilm integrity. J. Appl. Microbiol. 2019, 127, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Rosłon, W.; Osińska, E.; Mazur, K.; Geszprych, A. Chemical characteristics of European goldenrod (Solidago virgaurea L. subsp. virgaurea) from natural sites in Central and Eastern Poland. Acta Sci. Pol. Hortorum Cultus 2014, 13, 55–65. [Google Scholar]
- Akinduti, P.A.; George, O.W.; Ohore, H.U.; Ariyo, O.E.; Popoola, S.T.; Adeleye, A.I.; Akinwande, K.S.; Popoola, J.O.; Rotimi, S.O.; Olufemi, F.O.; et al. Evaluation of Efflux-Mediated Resistance and Biofilm formation in Virulent Pseudomonas aeruginosa Associated with Healthcare Infections. Antibiotics 2023, 12, 626. [Google Scholar] [CrossRef] [PubMed]
- Kamali, E.; Jamali, A.; Ardebili, A.; Ezadi, F.; Mohebbi, A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res. Notes 2020, 13, 27. [Google Scholar] [CrossRef]
- Vaez, H.; Salehi-Abargouei, A.; Ghalehnoo, Z.R.; Khademi, F. Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and metaanalysis. J. Glob. Infect. Dis. 2018, 10, 212. [Google Scholar]
- Bavasheh, N.; Karmostaji, A. Antibiotic resistance pattern and evaluation of blaOXA-10, blaPER-1, blaVEB, blaSHV genes in clinical isolates of Pseudomonas aeruginosa isolated from hospital in south of Iran in 2014-2015. Infect. Epidemiol. Microbiol. 2017, 3, 1–5. [Google Scholar] [CrossRef]
- Faghri, J.; Nouri, S.; Jalalifar, S.; Zalipoor, M.; Halaji, M. Investigation of antimicrobial susceptibility, class I and II integrons among Pseudomonas aeruginosa isolates from hospitalized patients in Isfahan, Iran. BMC Res. Notes 2018, 11, 806. [Google Scholar] [CrossRef]
- Ölgen, S.; Altanlar, N.; Karataylı, E.; Bozdayı, M. Antimicrobial and antiviral screening of novel indole carboxamide and propanamide derivatives. Z. Naturforsch. C 2008, 63, 189–195. [Google Scholar] [CrossRef]
- Chaudhary, S.; Verma, H.C.; Gupta, M.K.; Gupta, R.K.; Kumar, A.; El-Shorbagi, A.N. Synthesis and investigation of anthelmintic, antibacterial and antifungal activity of 3, 3-diphenyl propanamide derivatives. Synthesis 2019, 12. [Google Scholar] [CrossRef]
- Yasir, A.; Jahangir, M.; Ishtiaq, S.; Shahid, M. Antimicrobial, hemolytic and thrombolytic activities of some new N-substituted-2-({5-[(1E, 3E) F-4-(1, 3-benzodioxol-5-yl)-1, 3-butadienyl]-1, 3, 4-oxadiazol-2-yl} sulfanyl) propanamides. Trop. J. Pharm. Res. 2017, 16, 1973–1981. [Google Scholar] [CrossRef]
- You-Qing, L.; Hong-Fang, L.; Zhen-Le, T.; Li-Hua, Z.; Ying-Hui, W.; He-Qing, T. Diesel pollution biodegradation: Synergetic effect of Mycobacterium and filamentous fungi. Biomed. Environ. Sci. 2008, 21, 181–187. [Google Scholar]
- Blanco, P.; Corona, F.; Martinez, J.L. Biolog phenotype microarray is a tool for the identification of multidrug resistance efflux pump inducers. Antimicrob. Agents Chemother. 2018, 62, e01263-18. [Google Scholar] [CrossRef]
- De Majumdar, S.; Veleba, M.; Finn, S.; Fanning, S.; Schneiders, T. Elucidating the regulon of multidrug resistance regulator RarA in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2013, 57, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, M.; Medioni, E.; Prêcheur, I. Inhibition of Candida albicans yeast–hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol. 2012, 61, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Balázs, V.L.; Nagy-Radványi, L.; Bencsik-Kerekes, E.; Koloh, R.; Szabó, D.; Kocsis, B.; Kocsis, M.; Farkas, Á. Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections. Microorganisms 2023, 11, 509. [Google Scholar] [CrossRef]
- Maia, N.L.; de Barros, M.; de Oliveira, L.L.; Cardoso, S.A.; dos Santos, M.H.; Pieri, F.A.; Ramalho, T.C.; da Cunha, E.F.F.; Moreira, M.A.S. Synergism of plant compound with traditional antimicrobials against Streptococcus spp. isolated from bovine mastitis. Front. Microbiol. 2018, 9, 1203. [Google Scholar] [CrossRef]
- Wojnicz, D.; Tichaczek-Goska, D.; Gleńsk, M.; Hendrich, A.B. Is it Worth Combining Solidago virgaurea Extract and Antibiotics against Uropathogenic Escherichia coli rods? An In Vitro Model Study. Pharmaceutics 2021, 13, 573. [Google Scholar] [CrossRef]
- Finegold, S.M.; Martin, W.J. Bailey and Scotts diagnostic microbiology. In Bailey and Scotts Diagnostic Microbiology; The CV Mosby Company: St. Louis, MO, USA, 1982; p. 705. [Google Scholar]
- Clinical And Laboratory Standars Institute. M100 Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2018; Volume 8. [Google Scholar] [CrossRef]
- Committee, The European Testing, Antimicrobial Susceptibility Changes, Content Guidance, Notes Breakpoint, Eu-cast Dosages, Tables Pseudomonas, Enterobacterales Document, Guidance Document, Guidance. European Committee on Anti-microbial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2020. Available online: https://www.eucast.org/ (accessed on 1 January 2020).
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Kebede, B.; Shibeshi, W. In vitro antibacterial and antifungal activities of extracts and fractions of leaves of Ricinus communis Linn against selected pathogens. Vet. Med. Sci. 2022, 8, 1802–1815. [Google Scholar] [CrossRef]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Chen, L.; Zhao, J.; Shen, T.; Surette, M.G.; Shen, L.; Duan, K. Hybrid sensor kinase PA 1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol. Microbiol. 2013, 88, 784–797. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Llarena, F.; Martín, J.F.; Galleni, M.; Coque, J.J.; Fuente, J.L.; Frère, J.M.; Liras, P. The bla gene of the cephamycin cluster of Streptomyces clavuligerus encodes a class A beta-lactamase of low enzymatic activity. J. Bacteriol. 1997, 179, 6035–6040. [Google Scholar] [CrossRef]
- Berditsch, M.; Jäger, T.; Strempel, N.; Schwartz, T.; Overhage, J.; Ulrich, A.S. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2015, 59, 5288–5296. [Google Scholar] [CrossRef]
- den Hollander, J.G.; Mouton, J.W.; Verbrugh, H.A. Use of pharmacodynamic parameters to predict efficacy of combination therapy by using fractional inhibitory concentration kinetics. Antimicrob. Agents Chemother. 1998, 42, 744–748. [Google Scholar] [CrossRef]
No. | Test | P. aeruginosa |
---|---|---|
1 | MacConkey agar medium | Non-lactose fermented |
2 | Blood Agar | β-hemolysis |
3 | Chromogenic agar | Blue colonies |
4 | Gram-stain | G-rod |
5 | Catalase test | Positive |
6 | Oxidase test | Positive |
7 | Indol Test | Negative |
8 | Methyl Red Test | Negative |
9 | VP Test | Negative |
10 | Citrate Utilization Test | Positive |
11 | Urease | Negative |
Peak | Active Compound | Area% | a RT (min) | b RRI |
---|---|---|---|---|
1 | Ethanamine | 0.99 | 4.632 | 4663 |
2 | Malic Acid | 1.02 | 5.320 | 14,971 |
3 | Silver acetate | 0.71 | 5.685 | 35,237 |
4 | 1,6-Hexanediamine | 0.58 | 8.251 | 8254 |
5 | Cytisine | 0.55 | 14.393 | 52,877 |
6 | Lysicamine monophenol | 3.04 | 15.837 | 125,087 |
7 | Acetamide | 1.34 | 17.018 | 20,526 |
8 | 5-Acetoxytridecane | 1.39 | 17.341 | 95,848 |
9 | 1,9-Diaminononane | 0.63 | 19.091 | 30,366 |
10 | 2,4(1H,3H)-Pyrimidinedione | 0.63 | 20.229 | 20,528 |
11 | Clioquinol | 5.77 | 21.512 | 148,956 |
12 | Propanamide | 20.29 | 22.242 | 49,432 |
13 | Oleic Acid | 1.89 | 22.973 | 129,336 |
14 | Bromoacetic acid | 1.63 | 23.984 | 207,396 |
15 | trans-13-Octadecenoic acid | 0.71 | 27.025 | 129,357 |
16 | 2-Methyl-Z,Z-3,13-octadecadienol | 1.76 | 28.138 | 127,747 |
17 | Oleic Acid | 2.19 | 29.582 | 129,336 |
18 | Octadecane | 45.21 | 30.653 | 194,511 |
19 | Fumaric acid | 0.76 | 32.352 | 194,365 |
20 | Glycerol tricaprylate | 8.92 | 33.873 | 231,044 |
Total | 100% |
Sr. No. | Bacterial Strain | Concentration of Antibiotic at Which MIC Was Obtained (µg mL−1) | Concentration of Crude Plant Extracts at Which MIC Was Obtained (mg mL−1) | ||
---|---|---|---|---|---|
Ceftazidime | Cefepime | Amikacin | SA Extract | ||
1 | P1 | 128 | 32 | 32 | 64 |
2 | P2 | 64 | 64 | 16 | 16 |
3 | P3 | 64 | 32 | 32 | 0.25 |
4 | S1 | 16 | 16 | 8 | 32 |
5 | S2 | 32 | 8 | 16 | 8 |
Name | A: Before Treatment with SV Extract | B: After Treatment with SV Extract | p-Value |
---|---|---|---|
ESBL activity (nitrocefin hydrolyzed/min/mg) | 0.2793 | 0.2837 | 0.0001 *** |
Biofilm assay (at OD630nm) | 0.05215 | 0.02532 | 0.0004 *** |
Type | ESBL Producing (n:36) | Non-ESBL Producing (n:14) | Total | p-Value |
---|---|---|---|---|
Strong biofilm | 20 (55.5) | 5 (35.7) | 25 | <0.05 |
Moderate biofilm | 8 (22.8) | 2 (14.2) | 10 | |
Weak biofilm | 2 (5.5) | 3 (21.4) | 5 | |
Non-biofilm | 6 (16.6) | 4 (28.5) | 10 | |
Total | 36 | 14 | 50 |
FICI | ||||
---|---|---|---|---|
Plant | Ceftazidime | Cefepime | Amikacin | Outcome |
SV extract | 0.91 | 0.61 | 0.664 | Additive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkareem, A.H.; Alalwani, A.K.; Ahmed, M.M.; Al-Meani, S.A.L.; Al-Janaby, M.S.; Al-Qaysi, A.-M.K.; Edan, A.I.; Lahij, H.F. Impact of Solidago virgaurea Extract on Biofilm Formation for ESBL-Pseudomonas aeruginosa: An In Vitro Model Study. Pharmaceuticals 2023, 16, 1383. https://doi.org/10.3390/ph16101383
Abdulkareem AH, Alalwani AK, Ahmed MM, Al-Meani SAL, Al-Janaby MS, Al-Qaysi A-MK, Edan AI, Lahij HF. Impact of Solidago virgaurea Extract on Biofilm Formation for ESBL-Pseudomonas aeruginosa: An In Vitro Model Study. Pharmaceuticals. 2023; 16(10):1383. https://doi.org/10.3390/ph16101383
Chicago/Turabian StyleAbdulkareem, Ali Hazim, Anmar Kamil Alalwani, Mohammed Mukhles Ahmed, Safaa Abed Latef Al-Meani, Mohammed Salih Al-Janaby, Al-Moghira Khairi Al-Qaysi, Ali Ibrahim Edan, and Hasan Falah Lahij. 2023. "Impact of Solidago virgaurea Extract on Biofilm Formation for ESBL-Pseudomonas aeruginosa: An In Vitro Model Study" Pharmaceuticals 16, no. 10: 1383. https://doi.org/10.3390/ph16101383
APA StyleAbdulkareem, A. H., Alalwani, A. K., Ahmed, M. M., Al-Meani, S. A. L., Al-Janaby, M. S., Al-Qaysi, A. -M. K., Edan, A. I., & Lahij, H. F. (2023). Impact of Solidago virgaurea Extract on Biofilm Formation for ESBL-Pseudomonas aeruginosa: An In Vitro Model Study. Pharmaceuticals, 16(10), 1383. https://doi.org/10.3390/ph16101383