Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice
Abstract
:1. Introduction
2. Results
2.1. Affinities of PCA and HYP at 5-HT1A and 5-HT2A Receptors
2.2. Effect of Acute PCA or HYP Administration on the Mice Behavior Assessed in the EPM
2.3. Effect of Chronic (14 Days) PCA or HYP Administration on Mice Behavior Assessed in the EPM
2.4. Effect of Chronic (14 Days) PCA or HYP Administration on the Mice Behavior Assessed in the FST
2.5. Effects of Acute or Chronic PCA or HYP Administration on the Short-Term Memory Acquisition of Mice Assessed in the NOR
2.6. Effects of Acute or Chronic PCA or HYP Administration on the Long-Term Memory Acquisition of Mice Assessed in the NOR
2.7. Effects of an Acute PCA or HYP Administration on the Scopolamine-Induced Short-Term (Figure 7A) or Long-Term (Figure 7B) Memory Impairment of Mice Assessed in the NOR
2.8. Effect of Chronic (14 Days) PCA or HYP Administration on the Locomotor Activity of Mice
2.9. Effect of PCA, HYP, and/or Scopolamine Acute Administration on the Locomotor Activity of Mice
2.10. Changes in Body Weight (Means ± SEM) in Mice Chronically Administered with Saline, Ser (15 mg/kg), PCA, or HYP (3.75 mg/kg)
2.11. The Influence on Serotonin Level in the Serum of Mice after Acute (A) and Chronic (B) Exposure of PCA, HYP, and Ser (Figure 9)
3. Discussion
4. Materials and Methods
4.1. Isolation of Hyperoside and Protocatechuic Acid
4.2. Animals
4.3. Drugs
4.4. Experimental Protocol for Chronic Experiment
4.5. Behavioral Tests
4.5.1. Novel Object Recognition Test
4.5.2. Elevated Plus-Maze (EPM) Test
4.5.3. Spontaneous Locomotor Activity
4.5.4. Forced Swimming Test
4.6. Radioligand Receptor Binding
4.6.1. Membrane Preparation
4.6.2. Competitive 5-HT1A and 5-HT2A Binding Assays
4.7. Determination of Serotonin Level in the Serum of Mice
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dean, J.; Keshavan, M. The neurobiology of depression: An integrated view. Asian J. Psychiatr. 2017, 27, 101–111. [Google Scholar] [CrossRef]
- Roca, M.; Vives, M.; López-Navarro, E.; García-Campayo, J.; Gili, M. Cognitive impairments and depression: A critical review. Actas Esp. Psiquiatr. 2015, 43, 187–193. [Google Scholar] [PubMed]
- German-Ponciano, L.J.; Rosas-Sánchez, G.U.; Cueto-Escobedo, J.; Fernández-Demeneghi, R.; Guillén-Ruiz, G.; Soria-Fregozo, C.; Herrera-Huerta, E.V.; Rodríguez-Landa, J.F. Participation of the serotonergic system and brain-derived neurotrophic factor in the antidepressant-like effect of flavonoids. Int. J. Mol. Sci. 2022, 17, 10896. [Google Scholar] [CrossRef] [PubMed]
- Canale, V.; Partyka, A.; Kurczab, R.; Krawczyk, M.; Kos, T.; Satała, G.; Kubica, B.; Jastrzębska-Więsek, M.; Wesołowska, A.; Bojarski, A.J.; et al. Novel 5-HT7R antagonists, arylsulfonamide derivatives of (aryloxy)propyl piperidines: Add-on effect to the antidepressant activity of SSRI and DRI, and pro-cognitive profile. Bioorg. Med. Chem. 2017, 15, 2789–2799. [Google Scholar] [CrossRef] [PubMed]
- Artigas, F. Developments in the field of antidepressants, where do we go now? Eur. Neuropsychopharmacol. 2015, 25, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Gao, Q.; Zhao, P.; Gao, Y.; Xi, Y.; Wang, X.; Liang, Y.; Shi, H.; Ma, Y. Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice. Behav. Brain Res. 2016, 15, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Perviz, S.; Sureda, A.; Nabavi, S.M.; Tejada, S. Current standing of plant derived flavonoids as an antidepressant. Food Chem. Toxicol. 2018, 119, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Orzelska-Górka, J.; Polakowska, M.; Biała, G. Antinociceptive and antianxiety activity of hydroethanolic extracts of three Impatiens species in mice. Acta Pol. Pharm. 2018, 75, 989–1001. [Google Scholar] [CrossRef]
- Szewczyk, K.; Zidorn, C.; Biernasiuk, A.; Komsta, Ł.; Granica, S. Polyphenols from Impatiens (Balsaminaceae) and their antioxidant and antimicrobial activities. Ind. Crops Prod. 2016, 86, 262–272. [Google Scholar] [CrossRef]
- Vieira, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef]
- Szewczyk, K.; Olech, M. Optimization of extraction method for LC-MS based determination of phenolic acid profiles in different Impatiens species. Phytochem. Lett. 2017, 20, 322–330. [Google Scholar] [CrossRef]
- Szewczyk, K.; Sezai Cicek, S.; Zidorn, C.; Granica, S. Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities. Nat. Prod. Res. 2019, 33, 2851–2855. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.; Cunha, M.P.; Neis, V.B.; Balen, G.O.; Colla, A.; Bettio, L.E.B.; Oliveira, Á.; Pazini, F.L.; Dalmarco, J.B.; Simionatto, E.L.; et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem. 2013, 136, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Szafrański, T. Herbal remedies in depression—State of the art. Psychiatr Pol. 2014, 48, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Orzelska-Górka, J.; Szewczyk, K.; Gawrońska-Grzywacz, M.; Kędzierska, E.; Głowacka, E.; Herbet, M.; Dudka, J.; Biała, G. Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice. Neurochem. Int. 2019, 128, 206–214. [Google Scholar] [CrossRef]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, H.C.; Zhou, S.J.; Li, Y.; Zheng, T.T.; Zhou, C.Z.; Wan, X.H. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytother. Res. 2022, 36, 2779–2802. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 1987, 92, 180–185. [Google Scholar] [CrossRef]
- Cao, B.J.; Rodgers, R.J. Influence of 5-HT1A receptor antagonism on plus-maze behaviour in mice. II. WAY 100635, SDZ 216-525 and NAN-190. Pharmacol. Biochem. Behav. 1997, 58, 593–603. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar]
- Contreras, C.M.; Rodriguez-Landa, J.F.; Gutiérrez-García, A.G.; Bernal-Morales, B. The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat. J. Psychopharmacol. 2001, 15, 231–236. [Google Scholar] [CrossRef]
- Lozanondash, R.; Rodriguez, J.F. Antidepressant-like effects of two commercially available products of Hypericum perforatum in the forced swim test: A long-term study. J. Med. Plant Res. 2010, 4, 131–137. [Google Scholar]
- Pytka, K.; Gawlik, K.; Pawlica-Gosiewska, D.; Witalis, J.; Waszkielewicz, A. HBK-14 and HBK-15 with antidepressant-like and/or memory-enhancing properties increase serotonin levels in the hippocampus after chronic treatment in mice. Metab. Brain Dis. 2017, 32, 547–556. [Google Scholar] [CrossRef]
- Assié, M.B.; Bardin, L.; Auclair, A.L.; Carilla-Durand, E.; Depoortère, R.; Koek, W.; Kleven, M.S.; Colpaert, F.; Vacher, B.; Newman-Tancredi, A. F15599, a highly selective post-synaptic 5-HT(1A) receptor agonist: In-vivo profile in behavioural models of antidepressant and serotonergic activity. Int. J. Neuropsychopharmacol. 2010, 13, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Poleszak, E.; Szewczyk, B.; Kędzierska, E.; Wlaź, P.; Pilc, A.; Nowak, G. Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol. Biochem. Behav. 2004, 78, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Thakare, V.N.; Patil, R.R.; Suralkar, A.A.; Dhakane, V.D.; Patel, B.M. Protocatechuic acid attenuate depressive-like behavior in olfactory bulbectomized rat model: Behavioral and neurobiochemical investigations. Metab. Brain Dis. 2019, 34, 775–787. [Google Scholar] [CrossRef]
- Butterweck, V.; Jürgenliemk, G.; Nahrstedt, A.; Winterhoff, H. Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med. 2000, 66, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Ampuero, E.; Stehberg, J.; Gonzalez, D.; Besser, N.; Ferrero, M.; Diaz-Veliz, G.; Wyneken, U.; Rubio, F.J. Repetitive fluoxetine treatment affects long-term memories but not learning. Behav. Brain Res. 2013, 15, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Hansson, S.; Carlsson, A.; Carlsson, M.L. Differential effects of the N-methyl-d-aspartate receptor antagonist MK-801 on different stages of object recognition memory in mice. Neuroscience 2007, 12, 123–130. [Google Scholar] [CrossRef]
- Kukuła-Koch, W.; Kruk-Słomka, M.; Stępnik, K.; Szalak, R.; Biała, G. The evaluation of pro-cognitive and antiamnestic broperties of berberine and magnoflorine isolated from barberry species by Centrifugal Partition Chromatography (CPC), in relation to QSAR modelling. Int. J. Mol. Sci. 2017, 24, 2511. [Google Scholar] [CrossRef] [PubMed]
- Puma, C.; Deschaux, O.; Molimard, R.; Bizot, J.C. Nicotine improves memory in an object recognition task in rats. Eur. Neuropsychopharmacol. 1999, 9, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Krzysztoforska, K.; Piechal, A.; Blecharz-Klin, K.; Pyrzanowska, J.; Joniec-Maciejak, I.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Effect of protocatechuic acid on cognitive processes and central nervous system neuromodulators in the hippocampus, prefrontal cortex, and striatum of healthy rats. Nutr. Neurosci. 2022, 25, 1362–1373. [Google Scholar] [CrossRef] [PubMed]
- Bertaina-Anglade, V.; Enjuanes, E.; Morillon, D.; Drieu la, R.C. The object recognition task in rats andmice: A simple and rapidmodel in safety pharmacology to detect amnesic properties of a new chemical entity. J. Pharmacol. Toxicol. Methods. 2006, 54, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Kruk-Słomka, M.; Budzyńska, B.; Biała, G. Involvement of cholinergic receptors in the different stages of memory measured in the modified elevated plus maze test in mice. Pharmacol. Rep. 2012, 64, 1066–1080. [Google Scholar] [CrossRef] [PubMed]
- Pitsikas, N.; Rigamonti, A.E.; Cella, S.G.; Locatelli, V.; Sala, M.; Muller, E.E. Effects of molsidomine on scopolamine-induced amnesia and hypermotility in the rat. Eur. J. Pharmacol. 2001, 31, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Krzysztoforska, K.; Piechal, A.; Blecharz-Klin, K.; Pyrzanowska, J.; Joniec-Maciejak, I.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Administration of protocatechuic acid affects memory and restores hippocampal and cortical serotonin turnover in rat model of oral D-galactose-induced memory impairment. Behav. Brain Res. 2019, 368, 111896. [Google Scholar] [CrossRef]
- Krzysztoforska, K.; Piechal, A.; Wojnar, E.; Blecharz-Klin, K.; Pyrzanowska, J.; Joniec-Maciejak, I.; Krzysztoforski, J.; Widy-Tyszkiewicz, E. Protocatechuic acid prevents some of the memory-related behavioural and neurotransmitter changes in a pyrithiamine-induced thiamine deficiency model of Wernicke-Korsakoff syndrome in rats. Nutrients 2023, 26, 625. [Google Scholar] [CrossRef]
- Uguz, F.; Sahingoz, M.; Gungor, B.; Aksoy, F.; Askin, R. Weight gain and associated factors in patients using newer antidepressant drugs. Gen. Hosp. Psychiatry 2015, 37, 46–48. [Google Scholar] [CrossRef]
- Masand, P.S.; Gupta, S. Long-term side effects of newer-generation antidepressants: SSRIS, venlafaxine, nefazodone, bupropion, and mirtazapine. Ann. Clin. Psychiatry 2002, 14, 175–182. [Google Scholar] [CrossRef]
- Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 1, 54–63. [Google Scholar] [CrossRef]
- Da Prada, M.; Cesura, A.M.; Launay, J.M.; Richards, J.G. Platelets as a model for neurones? Experientia 1988, 44, 115–126. [Google Scholar] [CrossRef]
- Li, C.; Cai, Q.; Su, Z.; Chen, Z.; Cao, J.; Xu, F. Could peripheral 5-HT level be used as a biomarker for depression diagnosis and treatment? A narrative minireview. Front. Pharmacol. 2023, 7, 1149511. [Google Scholar] [CrossRef]
- Read, J.R.; Sharpe, L.; Modini, M.; Dear, B.F. Multimorbidity and depression: A systematic review and meta-analysis. J. Affect. Disord. 2017, 221, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci. 2019, 22, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.K.; He, J.L.; Liu, X.; Zeng, J.; Chen, J.S.; Nie, H. Anti-PTSD-like effects of albiflorin extracted from radix Paeoniae alba. J. Ethnopharmacol. 2017, 23, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Elizalde, N.; Gil-Bea, F.J.; Ramírez, M.J.; Aisa, B.; Lasheras, B.; Del Rio, J.; Tordera, R.M. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology 2008, 199, 1–14. [Google Scholar] [CrossRef]
- Fiorino, F.; Magli, E.; Kędzierska, E.; Ciano, A.; Corvino, A.; Severino, B.; Perissutti, E.; Frecentese, F.; Di Vaio, P.; Saccone, I.; et al. New 5-HT1A, 5HT2A and 5HT2C receptor ligands containing a picolinic nucleus: Synthesis, in vitro and in vivo pharmacological evaluation. Bioorg. Med. Chem. 2017, 25, 5820–5837. [Google Scholar] [CrossRef]
5-HT1A | 5-HT2A | Selectivity (5-HT2A/5-HT1A) | |
---|---|---|---|
Compound | µM (95% CI) | µM (95% CI) | |
HYP | 42.92 (25–74) *** | 394 (255–608) *** | 9.18 |
PCA | 33.3 (17–63) ### | 205 (106–390) ### | 6.15 |
5-HT | 0.007 (0.0045–0.011) | – | – |
ketanserin | – | 0.0023 (0.0013–0.041) | – |
Compound (mg/kg) | Total Exploration Time in Seconds (Mean ± S.E.M.) During the Short-Term Memory Acquisition | |
---|---|---|
Acute Treatment | Chronic Treatment | |
Saline | 6.9 ± 0.61 | 27.71 ± 3.57 |
PCA 1.875 | 4.105 ± 1.076 | - |
3.75 | 7.73 ± 0.53 | 35.43 ± 3.682 |
7.5 | 10.31 ± 1.185 | 35.62 ± 2.52 |
HYP 1.875 | 5.2 ± 1.05 | - |
3.75 | 10.4 ± 1.56 | 35.05 ± 4.881 |
7.5 | 12.54 ± 1.378 ** | 25.69 ± 3.043 |
Compound (mg/kg) | Total Exploration Time in Seconds (Mean ± S.E.M.) During the Long-Term Memory Acquisition | |
---|---|---|
Acute Treatment | Chronic Treatment | |
Saline | 6.962 ± 0.49 | 26.93 ± 4.865 |
PCA 1.875 | 5.25 ± 1.08 | - |
3.75 | 8.835 ± 1.213 | 28.91 ± 4.488 |
7.5 | 9.844 ± 1.344 | 24.6 ± 3.383 |
HYP 1.875 | 5.67 ± 0.9 | - |
3.75 | 9.895 ± 1.866 | 27.01 ± 5.795 |
7.5 | 10.72 ± 1.141 | 24.08 ± 3.315 |
Pretreatment | Treatment | Total Exploration Time in Seconds (Mean ± S.E.M.) During | |
---|---|---|---|
Short-Term Memory Acquisition | Long-Term Memory Acquisition | ||
Saline | Saline | 8.127 ± 0.57 | 35.18 ± 2.186 |
Saline | Scopolamine 1 mg/kg | 12.02 ± 1.6 | 43.6 ± 4.806 |
PCA 1.875 mg/kg | Scopolamine 1 mg/kg | 7.02 ± 0.85 | 35.56 ± 2.341 |
7.5 mg/kg | Scopolamine 1 mg/kg | 12.09 ± 0.93 | 43.85 ± 4.247 |
HYP 1.875 mg/kg | Scopolamine 1 mg/kg | 8.18 ± 0.64 | 51.32 ± 3.156 |
7.5 mg/kg | Scopolamine 1 mg/kg | 11.51 ± 1.6 | 37.19 ± 3.787 |
Treatment | Dose (mg/kg) | Mean of Distance Traveled ± S.E.M (cm) Within 6 min |
---|---|---|
Control (saline) | - | 2324 ± 91.83 |
Sertraline | 15 | 2217 ± 99.87 |
PCA | 3.75 7.5 | 2368 ± 214.8 2152 ± 187.5 |
HYP | 3.75 7.5 | 2553 ± 192.2 2730 ± 149.6 |
Pretreatment | Treatment | Mean of Distance Traveled ± S.E.M (cm) Within 6 min | Mean of Distance Traveled ± S.E.M (cm) Within 60 min |
---|---|---|---|
Saline | saline | 580.3 ± 30 | 3450 ± 308.3 |
PCA 1.875 mg/kg | saline | 492.1 ± 75.87 | 2127 ± 268.3 |
7.5 mg/kg | saline | 565.7 ± 39.14 | 2204 ± 327.9 |
HYP 1.875 mg/kg | saline | 562.3 ± 26.01 | 2423 ± 389.6 |
7.5 mg/kg | saline | 546.7 ± 48.16 | 2181 ± 444.4 |
Saline | Scopolamine 1 mg/kg | 985.3 ± 104 *** | 6188 ± 381 ** |
PCA 1.875 mg/kg | Scopolamine 1 mg/kg | 1028 ± 39.82 | 5162 ± 772.1 |
7.5 mg/kg | Scopolamine 1 mg/kg | 915.6 ± 81.33 | 5741 ± 820.2 |
HYP 1.875 mg/kg | Scopolamine 1 mg/kg | 1017 ± 68.36 | 6517 ± 560.2 |
7.5 mg/kg | Scopolamine 1 mg/kg | 1021 ± 23.77 | 5428 ± 847.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzelska-Górka, J.; Dos Santos Szewczyk, K.; Gawrońska-Grzywacz, M.; Herbet, M.; Lesniak, A.; Bielenica, A.; Bujalska-Zadrożny, M.; Biała, G. Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice. Pharmaceuticals 2023, 16, 1691. https://doi.org/10.3390/ph16121691
Orzelska-Górka J, Dos Santos Szewczyk K, Gawrońska-Grzywacz M, Herbet M, Lesniak A, Bielenica A, Bujalska-Zadrożny M, Biała G. Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice. Pharmaceuticals. 2023; 16(12):1691. https://doi.org/10.3390/ph16121691
Chicago/Turabian StyleOrzelska-Górka, Jolanta, Katarzyna Dos Santos Szewczyk, Monika Gawrońska-Grzywacz, Mariola Herbet, Anna Lesniak, Anna Bielenica, Magdalena Bujalska-Zadrożny, and Grażyna Biała. 2023. "Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice" Pharmaceuticals 16, no. 12: 1691. https://doi.org/10.3390/ph16121691
APA StyleOrzelska-Górka, J., Dos Santos Szewczyk, K., Gawrońska-Grzywacz, M., Herbet, M., Lesniak, A., Bielenica, A., Bujalska-Zadrożny, M., & Biała, G. (2023). Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice. Pharmaceuticals, 16(12), 1691. https://doi.org/10.3390/ph16121691