Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity
Abstract
:1. Introduction
2. Results
2.1. Compound SIOC-XJC-SF02 Decreases the Viability of Human HCC Cells
2.2. Compound SIOC-XJC-SF02 Induces Apoptosis of Human HCC Cells
2.3. Compound SIOC-XJC-SF02 Inhibits Migration of Human HCC Cells
2.4. Preliminary Exploration and Identification of Potential Binding Sites of Compound SIOC-XJC-SF02 against HepG2 Cells
2.5. Compound SIOC-XJC-SF02 Suppresses Tumor Growth of HepG2 Cell Xenografts in Nude Mice
3. Discussion
4. Materials and Methods
4.1. Materials and Reagent
4.2. Cell Lines and Cell Culture
4.3. Cell Proliferation Assay
4.4. Transmission Electron Microscope Assay
4.5. Transwell Assay
4.6. Wound Healing Assay
4.7. Hoechst 33258 Staining
4.8. Annexin V/PI Flow Cytometry Assay for Apoptosis
4.9. Protein Extraction and Western Blot Analysis
4.10. In Vivo Animal Experiment
4.11. Immunohistochemical Analysis
4.12. Mass Spectrometry-Cellular Thermal Shift Assay (MS-CETSA)
4.13. Molecular Docking
4.14. Enzymatic Activity Assay of Fumarate Hydratase
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Thun, M.; Linet, M.S.; Cerhan, J.R.; Haiman, C.A.; Schottenfeld, D. (Eds.) Cancer Epidemiology and Prevention; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Liu, Z.; Liu, X.; Liang, J.; Liu, Y.; Hou, X.; Zhang, M.; Li, Y.; Jiang, X. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Prospects. Front. Immunol. 2021, 12, 765101. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the Early Diagnosis of Hepatocellular Carcinoma. World J. Gastroenterol. 2015, 21, 10573–10583. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, Y.; Hibi, T. Surgical Treatment of Hepatocellular Carcinoma. Biosci. Trends 2021, 15, 138–141. [Google Scholar] [CrossRef]
- Tung-Ping Poon, R.; Fan, S.T.; Wong, J. Risk Factors, Prevention, and Management of Postoperative Recurrence after Resection of Hepatocellular Carcinoma. Ann. Surg. 2000, 232, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef]
- Tanaka, S.; Arii, S. Molecular Targeted Therapies in Hepatocellular Carcinoma. Semin. Oncol. 2012, 39, 486–492. [Google Scholar] [CrossRef]
- Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Sorafenib. Profiles Drug Subst. Excip. Relat. Methodol. 2019, 44, 239–266. [Google Scholar]
- Xia, S.; Pan, Y.; Liang, Y.; Xu, J.; Cai, X. The Microenvironmental and Metabolic Aspects of Sorafenib Resistance in Hepatocellular Carcinoma. eBioMedicine 2020, 51, 102610. [Google Scholar] [CrossRef]
- Kato, A.; Miyazaki, M.; Ambiru, S.; Yoshitomi, H.; Ito, H.; Nakagawa, K.; Shimizu, H.; Yokosuka, O.; Nakajima, N. Multidrug Resistance Gene (MDR-1) Expression as a Useful Prognostic Factor in Patients with Human Hepatocellular Carcinoma after Surgical Resection. J. Surg. Oncol. 2001, 78, 110–115. [Google Scholar] [CrossRef]
- Jiang, W.; Lu, Z.; He, Y.; Diasio, R.B. Dihydropyrimidine Dehydrogenase Activity in Hepatocellular Carcinoma: Implication in 5-Fluorouracil-Based Chemotherapy. Clin. Cancer Res. 1997, 3, 395–399. [Google Scholar] [PubMed]
- Soini, Y.; Virkajärvi, N.; Raunio, H.; Pääkkö, P. Expression of P-Glycoprotein in Hepatocellular Carcinoma: A Potential Marker of Prognosis. J. Clin. Pathol. 1996, 49, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Giannini, E.G.; Farinati, F.; Ciccarese, F.; Pecorelli, A.; Rapaccini, G.L.; Di Marco, M.; Benvegnù, L.; Caturelli, E.; Zoli, M.; Borzio, F.; et al. Prognosis of Untreated Hepatocellular Carcinoma. Hepatology 2015, 61, 184–190. [Google Scholar] [CrossRef] [PubMed]
- McKeage, K.; Keating, G.M. Fenofibrate: A Review of Its Use in Dyslipidaemia. Drugs 2011, 71, 1917–1946. [Google Scholar] [CrossRef]
- Montagner, A.; Polizzi, A.; Fouché, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Régnier, M.; Lukowicz, C.; Benhamed, F.; et al. Liver PPARα Is Crucial for Whole-Body Fatty Acid Homeostasis and Is Protective against Nafld. Gut 2016, 65, 1202–1214. [Google Scholar] [CrossRef]
- Wilk, A.; Wyczechowska, D.D.; Zapata, A.; Dean, M.J.; Mullinax, J.; Marrero, L.; Parsons, C.H.; Peruzzi, F.; Culicchia, F.; Ochoa, A.C.; et al. Molecular Mechanisms of Fenofibrate-Induced Metabolic Catastrophe and Glioblastoma Cell Death. Mol. Cell. Biol. 2014, 35, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Su, C.; Jiang, M.; Shen, Y.; Shi, A.; Zhao, F.; Chen, R.; Shen, Z.; Bao, J.; Tang, W. Fenofibrate Inhibited Pancreatic Cancer Cells Proliferation via Activation of p53 Mediated by Upregulation of LncRNA MEG3. Biochem. Biophys. Res. Commun. 2016, 471, 290–295. [Google Scholar] [CrossRef]
- Yamasaki, D.; Kawabe, N.; Nakamura, H.; Tachibana, K.; Ishimoto, K.; Tanaka, T.; Aburatani, H.; Sakai, J.; Hamakubo, T.; Kodama, T.; et al. Fenofibrate Suppresses Growth of the Human Hepatocellular Carcinoma Cell via PPARα-Independent Mechanisms. Eur. J. Cell. Biol. 2011, 90, 657–664. [Google Scholar] [CrossRef]
- Piwowarczyk, K.; Wybieralska, E.; Baran, J.; Borowczyk, J.; Rybak, P.; Kosińska, M.; Włodarczyk, A.J.; Michalik, M.; Siedlar, M.; Madeja, Z.; et al. Fenofibrate Enhances Barrier Function of Endothelial Continuum within the Metastatic Niche of Prostate Cancer Cells. Expert Opin. Ther. Targets 2015, 19, 163–176. [Google Scholar] [CrossRef]
- Liu, X.; Jang, S.S.; An, Z.; Song, H.; Kim, W.D.; Yu, J.R.; Park, W.Y. Fenofibrate Decreases Radiation Sensitivity via Peroxisome Proliferator-Activated Receptor A-Mediated Superoxide Dismutase Induction in Hela Cells. Radiat. Oncol. J. 2012, 30, 88–95. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Q.; Zhang, J.; Yang, G.; Shao, Z.; Luo, J.; Fan, M.; Ni, C.; Wu, Z.; Hu, X. Fenofibrate Induces Apoptosis of Triple-Negative Breast Cancer Cells via Activation of Nf-Κb Pathway. BMC Cancer 2014, 14, 96. [Google Scholar] [CrossRef]
- Murad, H.; Collet, P.; Huin-Schohn, C.; Al-Makdissy, N.; Kerjan, G.; Chedotal, A.; Donner, M.; Devignes, M.D.; Becuwe, P.; Schohn, H.; et al. Effects of PPAR and RXR Ligands in Semaphorin 6B Gene Expression of Human MCF-7 Breast Cancer Cells. Int. J. Oncol. 2006, 28, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.L.; Zhao, B.L. Cytotoxic Effect of Peroxisome Proliferator Fenofibrate on Human HepG2 Hepatoma Cell Line and Relevant Mechanisms. Toxicol. Appl. Pharmacol. 2002, 185, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Binello, E.; Mormone, E.; Emdad, L.; Kothari, H.; Germano, I.M. Characterization of Fenofibrate-Mediated Anti-Proliferative Pro-Apoptotic Effects on High-Grade Gliomas and Anti-Invasive Effects on Glioma Stem Cells. J. Neurooncol. 2014, 117, 225–234. [Google Scholar] [CrossRef]
- Han, D.-f.; Zhang, J.-x.; Wei, W.-j.; Tao, T.; Hu, Q.; Wang, Y.-y.; Wang, X.-f.; Liu, N.; You, Y.-p. Fenofibrate Induces G0/G1 Phase Arrest by Modulating the PPARα/FoxO1/p27kip Pathway in Human Glioblastoma Cells. Tumor Biol. 2015, 36, 3823–3829. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wei, W.; Chen, X.; Zhang, Y.; Wang, Y.; Zhang, J.; Wang, X.; Yu, T.; Hu, Q.; Liu, N.; et al. Nf-Κb/RelA-PKM2 Mediates Inhibition of Glycolysis by Fenofibrate in Glioblastoma Cells. Oncotarget 2015, 6, 26119–26128. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, C.; Qin, C.; Tao, T.; Li, J.; Cheng, G.; Li, P.; Cao, Q.; Meng, X.; Ju, X.; et al. Fenofibrate Down-Regulates the Expressions of Androgen Receptor (AR) and AR Target Genes and Induces Oxidative Stress in the Prostate Cancer Cell Line LNCaP. Biochem. Biophys. Res. Commun. 2013, 432, 320–325. [Google Scholar] [CrossRef]
- Wybieralska, E.; Szpak, K.; Górecki, A.; Bonarek, P.; Miękus, K.; Drukała, J.; Majka, M.; Reiss, K.; Madeja, Z.; Czyż, J. Fenofibrate Attenuates Contact-Stimulated Cell Motility and Gap Junctional Coupling in Du-145 Human Prostate Cancer Cell Populations. Oncol. Rep. 2011, 26, 447–453. [Google Scholar]
- Holland, C.M.; Saidi, S.A.; Evans, A.L.; Sharkey, A.M.; Latimer, J.A.; Crawford, R.A.; Charnock-Jones, D.S.; Print, C.G.; Smith, S.K. Transcriptome Analysis of Endometrial Cancer Identifies Peroxisome Proliferator-Activated Receptors as Potential Therapeutic Targets. Mol. Cancer Ther. 2004, 3, 993–1001. [Google Scholar] [CrossRef]
- Saidi, S.A.; Holland, C.M.; Charnock-Jones, D.S.; Smith, S.K. In Vitro and in Vivo Effects of the PPAR-Alpha Agonists Fenofibrate and Retinoic Acid in Endometrial Cancer. Mol. Cancer 2006, 5, 13. [Google Scholar] [CrossRef]
- Tsai, S.C.; Tsai, M.H.; Chiu, C.F.; Lu, C.C.; Kuo, S.C.; Chang, N.W.; Yang, J.S. Ampk-Dependent Signaling Modulates the Suppression of Invasion and Migration by Fenofibrate in Cal 27 Oral Cancer Cells through Nf-Κb Pathway. Environ. Toxicol. 2016, 31, 866–876. [Google Scholar] [CrossRef]
- Jan, C.I.; Tsai, M.H.; Chiu, C.F.; Huang, Y.P.; Liu, C.J.; Chang, N.W. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer. Int. J. Biol. Sci. 2016, 12, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Kowalczyk, P.; Junco, J.J.; Santiago, H.L.K.-D.; Malik, G.; Wei, S.J.; Slaga, T.J. Differential Effects on Lung Cancer Cell Proliferation by Agonists of Glucocorticoid and PPARα Receptors. Mol. Carcinog. 2014, 53, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Skrypnyk, N.; Chen, X.; Hu, W.; Su, Y.; Mont, S.; Yang, S.; Gangadhariah, M.; Wei, S.; Falck, J.R.; Jat, J.L.; et al. PPARα Activation Can Help Prevent and Treat Non-Small Cell Lung Cancer. Cancer Res. 2014, 74, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Schmeel, L.C.; Schmeel, F.C.; Schmidt-Wolf, I.G.H. In Vitro Apoptosis Induction by Fenofibrate in Lymphoma and Multiple Myeloma. Anticancer Res. 2017, 37, 3513–3520. [Google Scholar] [CrossRef]
- Zak, Z.; Gelebart, P.; Lai, R. Fenofibrate Induces Effective Apoptosis in Mantle Cell Lymphoma by Inhibiting the TNFα/NF-κB Signaling Axis. Leukemia 2010, 24, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Shi, A.; Cao, G.; Tao, T.; Chen, R.; Hu, Z.; Shen, Z.; Tao, H.; Cao, B.; Hu, D.; et al. Fenofibrate Suppressed Proliferation and Migration of Human Neuroblastoma Cells via Oxidative Stress Dependent of Txnip Upregulation. Biochem. Biophys. Res. Commun. 2015, 460, 983–988. [Google Scholar] [CrossRef]
- Huang, Y.C.; Liu, K.C.; Chiou, Y.L.; Yang, C.H.; Chen, T.H.; Li, T.T.; Liu, L.L. Fenofibrate Suppresses Melanogenesis in B16-F10 Melanoma Cells via Activation of the P38 Mitogen-Activated Protein Kinase Pathway. Chem. Biol. Interact. 2013, 205, 157–164. [Google Scholar] [CrossRef]
- Chekaoui, A.; Ertl, H.C.J. PPARα Agonist Fenofibrate Enhances Cancer Vaccine Efficacy. Cancer Res. 2021, 81, 4431–4440. [Google Scholar] [CrossRef]
- Liu, P.; Yu, D.; Sheng, W.; Geng, F.; Zhang, J.; Zhang, S. PPARα Activation by Fenofibrate Ameliorates Radiation-Induced Skin Injury. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e207–e210. [Google Scholar] [CrossRef]
- Tao, T.; Zhao, F.; Xuan, Q.; Shen, Z.; Xiao, J.; Shen, Q. Fenofibrate Inhibits the Growth of Prostate Cancer through Regulating Autophagy and Endoplasmic Reticulum Stress. Biochem. Biophys. Res. Commun. 2018, 503, 2685–2689. [Google Scholar] [CrossRef]
- Martinez Molina, D.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson, E.A.; Dan, C.; Sreekumar, L.; Cao, Y.; Nordlund, P. Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay. Science 2013, 341, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Evan, G.I.; Vousden, K.H. Proliferation, Cell Cycle and Apoptosis in Cancer. Nature 2001, 411, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Madhukar, N.S.; Khade, P.K.; Huang, L.; Gayvert, K.; Galletti, G.; Stogniew, M.; Allen, J.E.; Giannakakou, P.; Elemento, O. A Bayesian Machine Learning Approach for Drug Target Identification Using Diverse Data Types. Nat. Commun. 2019, 10, 5221. [Google Scholar] [CrossRef]
- Savitski, M.M.; Reinhard, F.B.; Franken, H.; Werner, T.; Savitski, M.F.; Eberhard, D.; Molina, D.M.; Jafari, R.; Dovega, R.B.; Klaeger, S.; et al. Tracking Cancer Drugs in Living Cells by Thermal Profiling of the Proteome. Science 2014, 346, 1255784. [Google Scholar] [CrossRef]
- Fraser, J.A.; Madhumalar, A.; Blackburn, E.; Bramham, J.; Walkinshaw, M.D.; Verma, C.; Hupp, T.R. A Novel p53 Phosphorylation Site within the MDM2 Ubiquitination Signal: II. A Model in Which Phosphorylation at SER269 Induces a Mutant Conformation to p53. J. Biol. Chem. 2010, 285, 37773–37786. [Google Scholar] [CrossRef] [PubMed]
- Carnero Corrales, M.A.; Zinken, S.; Konstantinidis, G.; Rafehi, M.; Abdelrahman, A.; Wu, Y.W.; Janning, P.; Müller, C.E.; Laraia, L.; Waldmann, H. Thermal Proteome Profiling Identifies the Membrane-Bound Purinergic Receptor P2X4 as a Target of the Autophagy Inhibitor Indophagolin. Cell Chem. Biol. 2021, 28, 1750–1757.e5. [Google Scholar] [CrossRef]
- Corpas-Lopez, V.; Moniz, S.; Thomas, M.; Wall, R.J.; Torrie, L.S.; Zander-Dinse, D.; Tinti, M.; Brand, S.; Stojanovski, L.; Manthri, S.; et al. Pharmacological Validation of N-Myristoyltransferase as a Drug Target in Leishmania donovani. ACS Infect. Dis. 2019, 5, 111–122. [Google Scholar] [CrossRef]
- Bulku, A.; Weaver, T.M.; Berkmen, M.B. Biochemical Characterization of Two Clinically-Relevant Human Fumarase Variants Defective for Oligomerization. Open Biochem. J. 2018, 12, 1–15. [Google Scholar] [CrossRef]
- Puthan Veetil, V.; Fibriansah, G.; Raj, H.; Thunnissen, A.M.; Poelarends, G.J. Aspartase/Fumarase Superfamily: A Common Catalytic Strategy Involving General Base-Catalyzed Formation of a Highly Stabilized Aci-Carboxylate Intermediate. Biochemistry 2012, 51, 4237–4243. [Google Scholar] [CrossRef]
- King, A.; Selak, M.A.; Gottlieb, E. Succinate Dehydrogenase and Fumarate Hydratase: Linking Mitochondrial Dysfunction and Cancer. Oncogene 2006, 25, 4675–4682. [Google Scholar] [CrossRef]
- Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; da Costa, A.S.; Gaude, E.; Drubbel, A.V.; Theobald, S.J.; Abbo, S.R.; Tran, M.G.; et al. Fumarate Is an Epigenetic Modifier that Elicits Epithelial-to-Mesenchymal Transition. Nature 2016, 537, 544–547. [Google Scholar] [CrossRef]
- Laukka, T.; Mariani, C.J.; Ihantola, T.; Cao, J.Z.; Hokkanen, J.; Kaelin, W.G., Jr.; Godley, L.A.; Koivunen, P. Fumarate and Succinate Regulate Expression of Hypoxia-Inducible Genes via Tet Enzymes. J. Biol. Chem. 2016, 291, 4256–4265. [Google Scholar] [CrossRef] [PubMed]
- Delhommeau, F.; Dupont, S.; Della Valle, V.; James, C.; Trannoy, S.; Massé, A.; Kosmider, O.; Le Couedic, J.P.; Robert, F.; Alberdi, A.; et al. Mutation in TET2 in Myeloid Cancers. N. Engl. J. Med. 2009, 360, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Green, D.R.; Kroemer, G. Pharmacological Manipulation of Cell Death: Clinical Applications in Sight? J. Clin. Investig. 2005, 115, 2610–2617. [Google Scholar] [CrossRef]
- Ooi, A. Advances in Hereditary Leiomyomatosis and Renal Cell Carcinoma (HLRCC) Research. Semin. Cancer. Biol. 2020, 61, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Li, M.; Yin, J.; Shi, Z.; Fu, Y.; Zhao, N.; Chen, H.; Meng, L.; Li, X.; Hu, Z.; et al. Fumarate Inhibits Pten to Promote Tumorigenesis and Therapeutic Resistance of Type2 Papillary Renal Cell Carcinoma. Mol. Cell 2022, 82, 1249–1260.e7. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Q.; Li, J.; Hu, B.; Zhao, Q.; Ma, C.; Huang, W.; Zhuo, L.; Fang, H.; Liao, L.; et al. O-Glcnacylation of Fumarase Maintains Tumour Growth under Glucose Deficiency. Nat. Cell Biol. 2017, 19, 833–843. [Google Scholar] [CrossRef]
- Yu, H.E.; Wang, F.; Yu, F.; Zeng, Z.L.; Wang, Y.; Lu, Y.X.; Jin, Y.; Wang, D.S.; Qiu, M.Z.; Pu, H.Y.; et al. Suppression of Fumarate Hydratase Activity Increases the Efficacy of Cisplatin-Mediated Chemotherapy in Gastric Cancer. Cell Death Dis. 2019, 10, 413. [Google Scholar] [CrossRef]
- Zhang, H.; Ju, Q.; Ji, J.; Zhao, Y. Pan-Cancer Analysis Reveals Fh as a Potential Prognostic and Immunological Biomarker in Lung Adenocarcinoma. Dis. Markers 2021, 2021, 8554844. [Google Scholar] [CrossRef]
- Hooftman, A.; Peace, C.G.; Ryan, D.G.; Day, E.A.; Yang, M.; McGettrick, A.F.; Yin, M.; Montano, E.N.; Huo, L.; Toller-Kawahisa, J.E.; et al. Macrophage Fumarate Hydratase Restrains Mtrna-Mediated Interferon Production. Nature 2023, 615, 490–498. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, X.; Zhang, F.X.; Lin, J.H.; Xiao, J.C.; Liang, S.H. Synthesis and 18F Labeling of Alkenyl Sulfonyl Fluorides via an Unconventional Elimination Pathway. Org. Lett. 2022, 24, 4992–4997. [Google Scholar] [CrossRef]
- Dziekan, J.M.; Yu, H.; Chen, D.; Dai, L.; Wirjanata, G.; Larsson, A.; Prabhu, N.; Sobota, R.M.; Bozdech, Z.; Nordlund, P. Identifying Purine Nucleoside Phosphorylase as the Target of Quinine Using Cellular Thermal Shift Assay. Sci. Transl. Med. 2019, 11, eaau3174. [Google Scholar] [CrossRef]
- Franken, H.; Mathieson, T.; Childs, D.; Sweetman, G.M.; Werner, T.; Tögel, I.; Doce, C.; Gade, S.; Bantscheff, M.; Drewes, G.; et al. Thermal Proteome Profiling for Unbiased Identification of Direct and Indirect Drug Targets Using Multiplexed Quantitative Mass Spectrometry. Nat. Protoc. 2015, 10, 1567–1593. [Google Scholar] [CrossRef]
- Zinn, N.; Werner, T.; Doce, C.; Mathieson, T.; Boecker, C.; Sweetman, G.; Fufezan, C.; Bantscheff, M. Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags. J. Proteome Res. 2021, 20, 1792–1801. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. Autodock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Gusakov, E.A.; Topchu, I.A.; Mazitova, A.M.; Dorogan, I.V.; Bulatov, E.R.; Serebriiskii, I.G.; Abramova, Z.I.; Tupaeva, I.O.; Demidov, O.P.; Toan, D.N.; et al. Design, Synthesis and Biological Evaluation of 2-Quinolyl-1,3-Tropolone Derivatives as New Anti-Cancer Agents. RSC Adv. 2021, 11, 4555–4571. [Google Scholar] [CrossRef]
Compound | Cell | IC50 a |
---|---|---|
SIOC-XJC-SF01 | HepG2 | >50 μM |
SIOC-XJC-SF02 | HepG2 | 10.908 μM |
SIOC-XJC-SF03 | HepG2 | >50 μM |
SIOC-XJC-SF04 | HepG2 | >50 μM |
SIOC-XJC-SF05 | HepG2 | >50 μM |
SIOC-XJC-SF06 | HepG2 | 4.182 μM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Liang, X.; Bi, W.; Liu, R.; Zhang, S.; He, Y.; Xie, Q.; Liu, S.; Xiao, J.-C.; Zhang, P. Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity. Pharmaceuticals 2023, 16, 1705. https://doi.org/10.3390/ph16121705
Jin J, Liang X, Bi W, Liu R, Zhang S, He Y, Xie Q, Liu S, Xiao J-C, Zhang P. Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity. Pharmaceuticals. 2023; 16(12):1705. https://doi.org/10.3390/ph16121705
Chicago/Turabian StyleJin, Jin, Xujun Liang, Wu Bi, Ruijie Liu, Sai Zhang, Yi He, Qingming Xie, Shilei Liu, Ji-Chang Xiao, and Pengfei Zhang. 2023. "Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity" Pharmaceuticals 16, no. 12: 1705. https://doi.org/10.3390/ph16121705
APA StyleJin, J., Liang, X., Bi, W., Liu, R., Zhang, S., He, Y., Xie, Q., Liu, S., Xiao, J. -C., & Zhang, P. (2023). Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity. Pharmaceuticals, 16(12), 1705. https://doi.org/10.3390/ph16121705