KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease
Abstract
:1. Introduction
2. KIF1A Gene
3. KIF1A—As a Super Engaging Motor
4. Symptoms
- Neurologist—neurological abnormality, seizures, and spasticity
- Ophthalmologist—impaired vision
- Pediatrician—developmental delay
- Specialized therapist—issues with speech and coordination
- A team of specialists—intellectual disability
4.1. Autosomal Dominant Variety of KRD [KIF1A-Related Disorders]
4.2. Autosomal Recessive Forms of KIF1A-Related Disorders
4.2.1. Hereditary Sensory Neuropathy IIC (Also Represented as 2C)
4.2.2. HSP
5. Diagnosis
6. Treatment
7. De Novo Variations in the KIF1A Gene
- Intellectual disability—delay in cognitive development occurs in all cases
- Cerebellar atrophy—diagnosed using magnetic resonance imaging
- Optic nerve atrophy
- Spastic paraplegia—mainly affecting lower limbs
- Peripheral neuropathy [14]
8. Relation between KIF1A Variants and HSP
8.1. HSP
- Spastic paraplegia + Peripheral motor neuropathy + Distal wasting
- Spastic paraplegia + Cognitive impairment
- Spastic paraplegia + Ataxia
- Spastic paraplegia + Neuroimaging abnormality
- Spastic paraplegia + Additional neurologic + Systemic abnormalities [66].
8.2. KIF1A Variants and Spastic Paraplegia
9. KIF1A and Brain Atrophy
9.1. NESCAV Syndrome
9.2. PEHO Syndrome [OMIM No. 260565]
10. KIF1A and Autism Spectrum Disorder [ASD]
11. Recent Studies in the Field of KAND
- Regulation of motor ATPase activity by the process of autoinduction.
- Regulation of cargo adaptors
- Modifications on the cytoskeletal tract.
12. Gene Therapy
13. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | ATP binding cassette |
ASD | autism spectrum disorder |
CRISPR | Clustered regularly interspaced short palindromic repeats |
DNA | Deoxyribonucleic acid |
DRD1 | Dopamine receptor D1 |
FHA | Forkhead associated domain |
HSAN | Hereditary sensory and autonomic neuropathy |
HSP | Hereditary spastic paraplegia |
HSV | Herpes simplex virus |
KAND | KIF1A associated neurological disorders |
KRD | KIF1A related disorders |
LV | Lenti virus |
OMIM | Online Mendelian Inheritance in Man |
PEHO | Progressive encephalopathy with oedema, Hypsarrhythmia and optic atrophy |
PH | Pleckstrin homology |
rAAV | recombinant Adenome associated virus |
SIFT | Scale in variant feature transform |
SPG30 | Spastic paraplegia 30 |
WES | Whole exome sequencing |
References
- Roda, R.H.; Schindler, A.B.; Blackstone, C. Multigeneration family with dominant SPG30 hereditary spastic paraplegia. Ann. Clin. Transl. Neurol. 2017, 4, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Nemani, T.; Steel, D.; Kaliakatsos, M.; DeVile, C.; Ververi, A.; Scott, R.; Getov, S.; Sudhakar, S.; Male, A.; Mankad, K.; et al. KIF1A -related disorders in children: A wide spectrum of central and peripheral nervous system involvement. J. Peripher. Nerv. Syst. 2020, 25, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Boyle, L.; Rao, L.; Kaur, S.; Fan, X.; Mebane, C.; Hamm, L.; Thornton, A.; Ahrendsen, J.T.; Anderson, M.P.; Christodoulou, J.; et al. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A-associated neurological disorder. Hum. Genet. Genom. Adv. 2021, 2, 100026. [Google Scholar] [CrossRef] [PubMed]
- Di Fabio, R.; Comanducci, G.; Piccolo, F.; Santorelli, F.M.; DE Berardinis, T.; Tessa, A.; Sabatini, U.; Pierelli, F.; Casali, C. Cerebellar Atrophy in Congenital Fibrosis of the Extraocular Muscles Type 1. Cerebellum 2012, 12, 140–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, F.; Pinto, M.J.; Elvas, F.; Almeida, R.; Ambrósio, A.F. Diabetes Alters KIF1A and KIF5B Motor Proteins in the Hippocampus. PLoS ONE 2013, 8, e65515. [Google Scholar] [CrossRef]
- Nieh, S.E.; Madou, M.R.Z.; Sirajuddin, M.; Fregeau, B.; McKnight, D.; Lexa, K.; Strober, J.; Spaeth, C.; Hallinan, B.E.; Smaoui, N.; et al. De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy. Ann. Clin. Transl. Neurol. 2015, 2, 623–635. [Google Scholar] [CrossRef]
- Montenegro-Garreaud, X.; Hansen, A.W.; Khayat, M.M.; Chander, V.; Grochowski, C.M.; Jiang, Y.; Li, H.; Mitani, T.; Kessler, E.; Jayaseelan, J.; et al. Phenotypic expansion in KIF1A-related dominant disorders: A description of novel variants and review of published cases. Hum. Mutat. 2020, 41, 2094–2104. [Google Scholar] [CrossRef]
- Aguilera, C.; Hümmer, S.; Masanas, M.; Gabau, E.; Guitart, M.; Jeyaprakash, A.A.; Segura, M.F.; Santamaria, A.; Ruiz, A. The Novel KIF1A Missense Variant (R169T) Strongly Reduces Microtubule Stimulated ATPase Activity and Is Associated with NESCAV Syndrome. Front. Neurosci. 2021, 15, 618098. [Google Scholar] [CrossRef]
- Bharat, V.; Siebrecht, M.; Burk, K.; Ahmed, S.; Reissner, C.; Kohansal-Nodehi, M.; Steubler, V.; Zweckstetter, M.; Ting, J.T.; Dean, C. Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4. Cell Rep. 2017, 21, 2118–2133. [Google Scholar] [CrossRef]
- Okada, Y.; Yamazaki, H.; Sekine-Aizawa, Y.; Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 1995, 81, 769–780. [Google Scholar] [CrossRef]
- Hammond, J.; Cai, D.; Blasius, T.L.; Li, Z.; Jiang, Y.; Jih, G.T.; Meyhofer, E.; Verhey, K.J. Mammalian Kinesin-3 Motors Are Dimeric In Vivo and Move by Processive Motility upon Release of Autoinhibition. PLOS Biol. 2009, 7, e1000072. [Google Scholar] [CrossRef] [Green Version]
- Klopfenstein, D.R.; Tomishige, M.; Stuurman, N.; Vale, R.D. Role of Phosphatidylinositol(4,5)bisphosphate Organization in Membrane Transport by the Unc104 Kinesin Motor. Cell 2002, 109, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, L.; Yue, Y.; Ren, J.; Yu, J.; Liu, J.; Yu, Y.; Ye, F.; Xu, T.; Zhang, M.; Feng, W. The CC1-FHA Tandem as a Central Hub for Controlling the Dimerization and Activation of Kinesin-3 KIF1A. Structure 2012, 20, 1550–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-R.; Shin, H.; Ko, J.; Choi, J.; Lee, H.; Kim, E. Characterization of the Movement of the Kinesin Motor KIF1A in Living Cultured Neurons. J. Biol. Chem. 2003, 278, 2624–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrych, D.R.; Lau, V.Z.; Niwa, S.; Silverman, M.A. Going Too Far Is the Same as Falling Short†: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front. Cell. Neurosci. 2019, 13, 419. [Google Scholar] [CrossRef] [PubMed]
- Citterio, A.; Arnoldi, A.; Panzeri, E.; Merlini, L.; D’Angelo, M.G.; Musumeci, O.; Toscano, A.; Bondi, A.; Martinuzzi, A.; Bresolin, N.; et al. Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis. J. Neurol. 2015, 262, 2684–2690. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, F.F.; Gauthier, J.; Araki, Y.; Lin, D.-T.; Yoshizawa, Y.; Higashi, K.; Park, A.-R.; Spiegelman, D.; Dobrzeniecka, S.; Piton, A.; et al. Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability. Am. J. Hum. Genet. 2011, 88, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Ylikallio, E.; Kim, D.; Isohanni, P.; Auranen, M.; Kim, E.; Lönnqvist, T.; Tyynismaa, H. Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur. J. Hum. Genet. 2015, 23, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-R.; Srour, M.; Kim, D.; Hamdan, F.F.; Lim, S.-H.; Brunel-Guitton, C.; Décarie, J.-C.; Rossignol, E.; Mitchell, G.A.; Schreiber, A.; et al. De Novo Mutations in the Motor Domain of KIF1A Cause Cognitive Impairment, Spastic Paraparesis, Axonal Neuropathy, and Cerebellar Atrophy. Hum. Mutat. 2015, 36, 69–78. [Google Scholar] [CrossRef]
- Niwa, S.; Lipton, D.M.; Morikawa, M.; Zhao, C.; Hirokawa, N.; Lu, H.; Shen, K. Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Rep. 2016, 16, 2129–2141. [Google Scholar] [CrossRef]
- Iqbal, Z.; Rydning, S.L.; Wedding, I.M.; Koht, J.; Pihlstrøm, L.; Rengmark, A.H.; Henriksen, S.P.; Tallaksen, C.M.E.; Toft, M. Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS ONE 2017, 12, e0174667. [Google Scholar] [CrossRef] [Green Version]
- Rivière, J.-B.; Ramalingam, S.; Lavastre, V.; Shekarabi, M.; Holbert, S.; Lafontaine, J.; Srour, M.; Merner, N.; Rochefort, D.; Hince, P.; et al. KIF1A, an Axonal Transporter of Synaptic Vesicles, Is Mutated in Hereditary Sensory and Autonomic Neuropathy Type 2. Am. J. Hum. Genet. 2011, 89, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Chiba, K.; Takahashi, H.; Chen, M.; Obinata, H.; Arai, S.; Hashimoto, K.; Oda, T.; McKenney, R.J.; Niwa, S. Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proc. Natl. Acad. Sci. USA 2019, 116, 18429–18434. [Google Scholar] [CrossRef] [Green Version]
- Pyrpassopoulos, S.; Gicking, A.M.; Zaniewski, T.M.; Hancock, W.O.; Ostap, E.M. KIF1A is kinetically tuned to be a super-engaging motor under hindering loads. Biophys. Comput. Biol. 2023, 120, e2216903120. [Google Scholar] [CrossRef]
- Hirokawa, N.; Noda, Y.; Tanaka, Y.; Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 2009, 10, 682–696. [Google Scholar] [CrossRef]
- Budaitis, B.G.; Jariwala, S.; Rao, L.; Yue, Y.; Sept, D.; Verhey, K.J.; Gennerich, A. Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms. J. Cell Biol. 2021, 220, e202004227. [Google Scholar] [CrossRef]
- Okada, Y.; Hirokawa, N. A Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science 1999, 283, 1152–1157. [Google Scholar] [CrossRef] [Green Version]
- Soppina, V.; Verhey, K.J. The family-specific K-loop influences the microtubule on-rate but not the superprocessivity of kinesin-3 motors. Mol. Biol. Cell 2014, 25, 2161–2170. [Google Scholar] [CrossRef]
- Okada, Y.; Hirokawa, N. Mechanism of the single-headed processivity: Diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl. Acad. Sci. USA 2000, 97, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Soppina, V.; Norris, S.R.; Dizaji, A.S.; Kortus, M.; Veatch, S.; Peckham, M.; Verhey, K.J. Dimerization of mammalian kinesin-3 motors results in superprocessive motion. Proc. Natl. Acad. Sci. USA 2014, 111, 5562–5567. [Google Scholar] [CrossRef]
- Alushin, G.M.; Lander, G.C.; Kellogg, E.H.; Zhang, R.; Baker, D.; Nogales, E. High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-Tubulin upon GTP Hydrolysis. Cell 2014, 157, 1117–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; LaFrance, B.; Nogales, E. Separating the effects of nucleotide and EB binding on microtubule structure. Proc. Natl. Acad. Sci. USA 2018, 115, E6191–E6200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Alushin, G.M.; Brown, A.; Nogales, E. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell 2015, 162, 849–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montemurro, N.; Ricciardi, L.; Scerrati, A.; Ippolito, G.; Lofrese, G.; Trungu, S.; Stoccoro, A. The Potential Role of Dysregulated miRNAs in Adolescent Idiopathic Scoliosis and 22q11.2 Deletion Syndrome. J. Pers. Med. 2022, 12, 1925. [Google Scholar] [CrossRef] [PubMed]
- Anazawa, Y.; Kita, T.; Iguchi, R.; Hayashi, K.; Niwa, S. De novo mutations in KIF1A-associated neuronal disorder (KAND) dominant-negatively inhibit motor activity and axonal transport of synaptic vesicle precursors. Proc. Natl. Acad. Sci. 2022, 119, e2113795119. [Google Scholar] [CrossRef]
- Lumpkins, C. KIF1A-Related Disorder. NORD (National Organization for Rare Disorders). Available online: https://rarediseases.org/rare-diseases/kif1a-related-disorder/ (accessed on 21 July 2022).
- Pennings, M.; Schouten, M.I.; van Gaalen, J.; Meijer, R.P.P.; de Bot, S.T.; Kriek, M.; Saris, C.G.J.; Berg, L.H.V.D.; van Es, M.A.; Zuidgeest, D.M.H.; et al. KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. Eur. J. Hum. Genet. 2019, 28, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Klebe, S.; Lossos, A.; Azzedine, H.; Mundwiller, E.; Sheffer, R.; Gaussen, M.; Marelli, C.; Nawara, M.; Carpentier, W.; Meyer, V.; et al. KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: Distinct phenotypes according to the nature of the mutations. Eur. J. Hum. Genet. 2012, 20, 645–649. [Google Scholar] [CrossRef] [Green Version]
- McEntagart, M.E.; Reid, S.L.; Irtthum, A.; Douglas, J.B.; Eyre, K.E.D.; Donaghy, M.J.; Anderson, N.E.; Rahman, N. Confirmation of a hereditary motor and sensory neuropathy IIC locus at chromosome 12q23-q24. Ann. Neurol. 2005, 57, 293–297. [Google Scholar] [CrossRef]
- Hedera, P. Hereditary Spastic Paraplegia Overview. In GeneReviews®; Adam, M., Everman, D., Mirzaa, G., Pagon, R., Wallace, S., Bean, L.J., Gripp, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1509/ (accessed on 20 July 2022).
- Hebbar, M.; Shukla, A.; Nampoothiri, S.; Bielas, S.; Girisha, K.M. Locus and allelic heterogeneity in five families with hereditary spastic paraplegia. J. Hum. Genet. 2018, 64, 17–21. [Google Scholar] [CrossRef]
- Fink, J.K. Chapter 77—Hereditary Spastic Paraplegia. In Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 5th ed.; Rosenberg, R.N., Pascual, J.M., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 891–906. [Google Scholar] [CrossRef]
- Rauch, A.; Hoyer, J.; Guth, S.; Zweier, C.; Kraus, C.; Becker, C.; Zenker, M.; Hüffmeier, U.; Thiel, C.; Rüschendorf, F.; et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am. J. Med. Genet. Part A 2006, 140A, 2063–2074. [Google Scholar] [CrossRef]
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef]
- Costain, G.; Cordeiro, D.; Matviychuk, D.; Mercimek-Andrews, S. Clinical Application of Targeted Next-Generation Sequencing Panels and Whole Exome Sequencing in Childhood Epilepsy. Neuroscience 2019, 418, 291–310. [Google Scholar] [CrossRef]
- Demos, M.; Guella, I.; DeGuzman, C.; McKenzie, M.B.; Buerki, S.E.; Evans, D.M.; Toyota, E.B.; Boelman, C.; Huh, L.L.; Datta, A.; et al. Diagnostic Yield and Treatment Impact of Targeted Exome Sequencing in Early-Onset Epilepsy. Front. Neurol. 2019, 10, 434. [Google Scholar] [CrossRef]
- Watson, E.; Davis, R.; Sue, C.M. New diagnostic pathways for mitochondrial disease. J. Transl. Genet. Genom. 2020, 4, 188–202. [Google Scholar] [CrossRef]
- Lee, H.; Chi, C.; Tsai, C. Diagnostic yield and treatment impact of whole-genome sequencing in paediatric neurological disorders. Dev. Med. Child Neurol. 2020, 63, 934–938. [Google Scholar] [CrossRef]
- KIF1A. Wikipedia. 2022. Available online: https://en.wikipedia.org/w/index.php?title=KIF1A&oldid=1077108149 (accessed on 22 July 2022).
- Barbitoff, Y.A.; Polev, D.E.; Glotov, A.S.; Serebryakova, E.A.; Shcherbakova, I.V.; Kiselev, A.M.; Kostareva, A.A.; Glotov, O.S.; Predeus, A.V. Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. Sci. Rep. 2020, 10, 2057. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.M.; Stark, Z.; Farnaes, L.; Tan, T.Y.; White, S.M.; Dimmock, D.; Kingsmore, S.F. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. npj Genom. Med. 2018, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Pena, S.A.; Iyengar, R.; Eshraghi, R.S.; Bencie, N.; Mittal, J.; Aljohani, A.; Mittal, R.; Eshraghi, A.A. Gene therapy for neurological disorders: Challenges and recent advancements. J. Drug Target. 2019, 28, 111–128. [Google Scholar] [CrossRef]
- Simonato, M.; Bennett, J.; Boulis, N.M.; Castro, M.G.; Fink, D.J.; Goins, W.F.; Gray, S.J.; Lowenstein, P.R.; Vandenberghe, L.H.; Wilson, T.J.; et al. Progress in gene therapy for neurological disorders. Nat. Rev. Neurol. 2013, 9, 277–291. [Google Scholar] [CrossRef]
- Puranik, N.; Yadav, D.; Chauhan, P.S.; Kwak, M.; Jin, J.-O. Exploring the Role of Gene Therapy for Neurological Disorders. Curr. Gene Ther. 2021, 21, 11–22. [Google Scholar] [CrossRef]
- Choong, C.-J.; Baba, K.; Mochizuki, H. Gene therapy for neurological disorders. Expert Opin. Biol. Ther. 2015, 16, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Manfredsson, F.P.; Mandel, R.J. Development of gene therapy for neurological disorders. Discov. Med. 2010, 9, 204–211. [Google Scholar] [PubMed]
- Khan, S.M.; Bennett, J.P. Development of Mitochondrial Gene Replacement Therapy. J. Bioenerg. Biomembr. 2004, 36, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Shan, G. RNA interference as a gene knockdown technique. Int. J. Biochem. Cell Biol. 2010, 42, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Bonini, C.; Bondanza, A.; Perna, S.K.; Kaneko, S.; Traversari, C.; Ciceri, F.; Bordignon, C. The Suicide Gene Therapy Challenge: How to Improve a Successful Gene Therapy Approach. Mol. Ther. 2007, 15, 1248–1252. [Google Scholar] [CrossRef]
- Ohba, C.; Haginoya, K.; Osaka, H.; Kubota, K.; Ishiyama, A.; Hiraide, T.; Komaki, H.; Sasaki, M.; Miyatake, S.; Nakashima, M.; et al. De novo KIF1A mutations cause intellectual deficit, cerebellar atrophy, lower limb spasticity and visual disturbance. J. Hum. Genet. 2015, 60, 739–742. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [Green Version]
- Sunyaev, S. Prediction of deleterious human alleles. Hum. Mol. Genet. 2001, 10, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.D.; Kejariwal, A.; Guo, N.; Mi, H.; Campbell, M.J.; Muruganujan, A.; Lazareva-Ulitsky, B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 2006, 34, W645–W650. [Google Scholar] [CrossRef]
- Giudice, T.L.; Lombardi, F.; Santorelli, F.M.; Kawarai, T.; Orlacchio, A. Hereditary spastic paraplegia: Clinical-genetic characteristics and evolving molecular mechanisms. Exp. Neurol. 2014, 261, 518–539. [Google Scholar] [CrossRef]
- Klebe, S.; Azzedine, H.; Durr, A.; Bastien, P.; Bouslam, N.; Elleuch, N.; Forlani, S.; Charon, C.; Koenig, M.; Melki, J.; et al. Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain 2006, 129, 1456–1462. [Google Scholar] [CrossRef] [Green Version]
- Fink, J. Hereditary Spastic Paraplegia: Clinical Principles and Genetic Advances. Semin. Neurol. 2014, 34, 293–305. [Google Scholar] [CrossRef]
- Doherty, E.S.; Lacbawan, F.L. 2q37 Microdeletion Syndrome—Retired Chapter, For Historical Reference Only. In GeneReviews®; Adam, M., Everman, D., Mirzaa, G., Pagon, R., Wallace, S., Bean, L.J., Gripp, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Cheon, C.K.; Lim, S.-H.; Kim, Y.-M.; Kim, D.; Lee, N.-Y.; Yoon, T.-S.; Kim, N.-S.; Kim, E.; Lee, J.-R. Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Sci. Rep. 2017, 7, 12527. [Google Scholar] [CrossRef] [Green Version]
- Nitta, R.; Kikkawa, M.; Okada, Y.; Hirokawa, N. KIF1A Alternately Uses Two Loops to Bind Microtubules. Science 2004, 305, 678–683. [Google Scholar] [CrossRef]
- Erlich, Y.; Edvardson, S.; Hodges, E.; Zenvirt, S.; Thekkat, P.; Shaag, A.; Dor, T.; Hannon, G.J.; Elpeleg, O. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011, 21, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Schule, R.; Kremer, B.P.H.; Kassubek, J.; Auer-Grumbach, M.; Kostic, V.; Klopstock, T.; Klimpe, S.; Otto, S.; Boesch, S.; van de Warrenburg, B.P.; et al. SPG10 is a rare cause of spastic paraplegia in European families. J. Neurol. Neurosurg. Psychiatry 2008, 79, 584–587. [Google Scholar] [CrossRef] [Green Version]
- Yonekawa, Y.; Harada, A.; Okada, Y.; Funakoshi, T.; Kanai, Y.; Takei, Y.; Terada, S.; Noda, T.; Hirokawa, N. Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice. J. Cell Biol. 1998, 141, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kikkawa, M.; Sablin, E.P.; Okada, Y.; Yajima, H.; Fletterick, R.J.; Hirokawa, N. Switch-based mechanism of kinesin motors. Nature 2001, 411, 439–445. [Google Scholar] [CrossRef]
- Nescav Syndrome Disease: Malacards—Research Articles, Drugs, Genes, Clinical Trials. Available online: https://www.malacards.org/card/nescav_syndrome (accessed on 6 August 2022).
- Okamoto, N.; Miya, F.; Tsunoda, T.; Yanagihara, K.; Kato, M.; Saitoh, S.; Yamasaki, M.; Kanemura, Y.; Kosaki, K. KIF1A mutation in a patient with progressive neurodegeneration. J. Hum. Genet. 2014, 59, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Chitty, L.S.; Robb, S.; Berry, C.; Silver, D.; Baraitser, M. PEHO or PEHO-like syndrome? Clin. Dysmorphol. 1996, 5, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Somer, M. Diagnostic criteria and genetics of the PEHO syndrome. J. Med. Genet. 1993, 30, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Yiş, U.; Hız, S.; Anal, O.; Dirik, E. Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy and PEHO-like syndrome: Report of two cases. J. Pediatr. Neurosci. 2011, 6, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Anesthesia Analg. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Levy, S.E.; Mandell, D.S.; Schultz, R.T. Autism. Lancet 2009, 374, 1627–1638. [Google Scholar] [CrossRef]
- Tomaselli, P.J.; Rossor, A.M.; Horga, A.; Laura, M.; Blake, J.C.; Houlden, H.; Reilly, M.M. A de novo dominant mutation in KIF1A associated with axonal neuropathy, spasticity and autism spectrum disorder. J. Peripher. Nerv. Syst. 2017, 22, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, M.; Ishiura, H.; Bannai, T.; Mitsui, J.; Yoshimura, J.; Morishita, S.; Hayashi, T.; Shimizu, J.; Toda, T.; Tsuji, S. A Novel de novo KIF1A Mutation in a Patient with Autism, Hyperactivity, Epilepsy, Sensory Disturbance, and Spastic Paraplegia. Intern. Med. 2020, 59, 839–842. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Jiao, J.; Zhang, M.; Situ, M.; Yuan, D.; Lyu, P.; Li, S.; Wang, Z.; Yang, Y.; Huang, Y. A study on KIF1A gene missense variant analysis and its protein expression and structure profiles of an autism spectrum disorder family trio. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2021, 38, 620–625. [Google Scholar] [CrossRef]
- Demily, C.; Lesca, G.; Poisson, A.; Till, M.; Barcia, G.; Chatron, N.; Sanlaville, D.; Munnich, A. Additive Effect of Variably Penetrant 22q11.2 Duplication and Pathogenic Mutations in Autism Spectrum Disorder: To Which Extent Does the Tree Hide the Forest? J. Autism Dev. Disord. 2018, 48, 2886–2889. [Google Scholar] [CrossRef]
- Schimert, K.I.; Budaitis, B.G.; Reinemann, D.N.; Lang, M.J.; Verhey, K.J. Intracellular cargo transport by single-headed kinesin motors. Proc. Natl. Acad. Sci. USA 2019, 116, 6152–6161. [Google Scholar] [CrossRef] [Green Version]
- Derr, N.D.; Goodman, B.S.; Jungmann, R.; Leschziner, A.E.; Shih, W.M.; Reck-Peterson, S.L. Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold. Science 2012, 338, 662–665. [Google Scholar] [CrossRef] [Green Version]
- Hariadi, R.F.; Sommese, R.F.; Sivaramakrishnan, S. Tuning myosin-driven sorting on cellular actin networks. Elife 2015, 4, e05472. [Google Scholar] [CrossRef]
- Toropova, K.; Mladenov, M.; Roberts, A.J. Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements. Nat. Struct. Mol. Biol. 2017, 24, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Driller-Colangelo, A.R.; Chau, K.W.; Morgan, J.M.; Derr, N.D. Cargo rigidity affects the sensitivity of dynein ensembles to individual motor pausing. Cytoskeleton 2016, 73, 693–702. [Google Scholar] [CrossRef]
- Furuta, K.; Furuta, A.; Toyoshima, Y.Y.; Amino, M.; Oiwa, K.; Kojima, H. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proc. Natl. Acad. Sci. USA 2012, 110, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Cong, D.; Ren, J.; Zhou, Y.; Wang, S.; Liang, J.; Ding, M.; Feng, W. Motor domain-mediated autoinhibition dictates axonal transport by the kinesin UNC-104/KIF1A. PLOS Genet. 2021, 17, e1009940. [Google Scholar] [CrossRef]
- Ren, J.; Wang, S.; Chen, H.; Wang, W.; Huo, L.; Feng, W. Coiled-coil 1-mediated fastening of the neck and motor domains for kinesin-3 autoinhibition. Proc. Natl. Acad. Sci. USA 2018, 115, E11209–E11942. [Google Scholar] [CrossRef]
- Kanai, Y.; Wang, D.; Hirokawa, N. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. J. Cell Biol. 2014, 204, 395–408. [Google Scholar] [CrossRef]
- Hanada, T.; Lin, L.; Tibaldi, E.V.; Reinherz, E.L.; Chishti, A.H. GAKIN, a Novel Kinesin-like Protein Associates with the Human Homologue of the Drosophila Discs Large Tumor Suppressor in T Lymphocytes. J. Biol. Chem. 2000, 275, 28774–28784. [Google Scholar] [CrossRef] [Green Version]
- Miki, H.; Setou, M.; Kaneshiro, K.; Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 2001, 98, 7004–7011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frontiers|Breaking Boundaries in the Brain—Advances in Editing Tools for Neurogenetic Disorders. Available online: https://www.frontiersin.org/articles/10.3389/fgeed.2021.623519/full (accessed on 8 January 2023).
- Westhaus, A.; Cabanes-Creus, M.; Rybicki, A.; Baltazar, G.; Navarro, R.G.; Zhu, E.; Drouyer, M.; Knight, M.; Albu, R.F.; Ng, B.H.; et al. High-Throughput In Vitro, Ex Vivo, and In Vivo Screen of Adeno-Associated Virus Vectors Based on Physical and Functional Transduction. Hum. Gene Ther. 2020, 31, 575–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.G.; Chandrasegaran, S. Chimeric restriction endonuclease. Proc. Natl. Acad. Sci. USA 1994, 91, 883–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, D.F.; Tan, W.; Lillico, S.G.; Stverakova, D.; Proudfoot, C.; Christian, M.; Voytas, D.F.; Long, C.R.; Whitelaw, C.B.A.; Fahrenkrug, S.C. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. USA 2012, 109, 17382–17387. [Google Scholar] [CrossRef] [Green Version]
- Iyama, T.; Wilson, D.M., III. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair 2013, 12, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Tsunekawa, Y.; Hernandez-Benitez, R.; Wu, J.; Zhu, J.; Kim, E.J.; Hatanaka, F.; Yamamoto, M.; Araoka, T.; Li, Z.; et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016, 540, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Yamamoto, M.; Hernandez-Benitez, R.; Li, Z.; Wei, C.; Soligalla, R.D.; Aizawa, E.; Hatanaka, F.; Kurita, M.; Reddy, P.; et al. Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res. 2019, 29, 804–819. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Homology-Mediated End Joining-Based Targeted Integration Using CRISPR/Cas9|Cell Research. Available online: https://www.nature.com/articles/cr201776 (accessed on 10 January 2023).
- Nishiyama, J.; Mikuni, T.; Yasuda, R. Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain. Neuron 2017, 96, 755–768.e5. [Google Scholar] [CrossRef]
- Microhomology-Mediated End-Joining-Dependent Integration of Donor DNA in Cells and Animals Using TALENs and CRISPR/Cas9|Nature Communications. Available online: https://www.nature.com/articles/ncomms6560 (accessed on 10 January 2023).
- Płoski, R. Next Generation Sequencing—General Information about the Technology, Possibilities, and Limitations. In Clinical Applications for Next-Generation Sequencing; Academic Press: Cambridge, MA, USA, 2016; pp. 1–18. [Google Scholar] [CrossRef]
- Cheng, E.Y. 18—Prenatal Diagnosis. In Avery’s Diseases of the Newborn, 10th ed.; Gleason, C.A., Juul, S.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 190–200. [Google Scholar] [CrossRef]
Sl no. | Modes of Action | Specification |
---|---|---|
1. | Gene replacement [57] | This is done when the disease is caused due to the loss of functionality of the gene. |
2. | Gene knockdown [58] | This is employed when a function has been toxically increased or when gene metabolites or gene products have accumulated. |
3. | Pro-survival or symptomatic gene therapy [56] | Here the pathological condition is reversed by using a pro-survival gene that is non-specific in nature. |
4. | Cell suicide gene therapy [59] | This is typically thought of as the last option. This is primarily used in cancer treatment, where it is necessary to eradicate malignant cells. In the case of KAND, this method’s application is constrained. |
Sl no. | Domains | Proteins under Mutations. |
---|---|---|
1. | Motor domain | p.S58L p.G102D p.V144F p.R167C p.A202P p.S215R p.R216P p.L249Q p.E253K p.R316W |
2. | Forkhead-associated domain | p.L947Rfs*4 |
3. | Pleckstrin homology | p.S1758Qfs*7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, A.; Greeny, A.; Rajendran, R.; Abdelgawad, M.A.; Ghoneim, M.M.; Raghavan, R.P.; Sudevan, S.T.; Mathew, B.; Kim, H. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals 2023, 16, 147. https://doi.org/10.3390/ph16020147
Nair A, Greeny A, Rajendran R, Abdelgawad MA, Ghoneim MM, Raghavan RP, Sudevan ST, Mathew B, Kim H. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals. 2023; 16(2):147. https://doi.org/10.3390/ph16020147
Chicago/Turabian StyleNair, Ayushi, Alosh Greeny, Rajalakshmi Rajendran, Mohamed A. Abdelgawad, Mohammed M. Ghoneim, Roshni Pushpa Raghavan, Sachithra Thazhathuveedu Sudevan, Bijo Mathew, and Hoon Kim. 2023. "KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease" Pharmaceuticals 16, no. 2: 147. https://doi.org/10.3390/ph16020147
APA StyleNair, A., Greeny, A., Rajendran, R., Abdelgawad, M. A., Ghoneim, M. M., Raghavan, R. P., Sudevan, S. T., Mathew, B., & Kim, H. (2023). KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals, 16(2), 147. https://doi.org/10.3390/ph16020147