Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies
Abstract
:1. Introduction
2. Structure of mAbs
3. Characterization of mAbs
3.1. Structural and Physiochemical Characterization
3.2. Immunological Properties
3.3. Biological Activities
3.4. Purity and Contaminants
3.5. Quantification
Type of Characterization | Details of Methodologies | Analytical Methods/Instrumentation | References | |
---|---|---|---|---|
Structural | sequence of amino acids | Edman chemistry, Mass-spectrometric sequencing | enzymatic or chemical digestion with LC-MS/MS; ESI-MS analysis and/or MALDI-TOF MS | [23] |
composition of amino acids | amino acid analysis | Amino acid Analyzer | [24] | |
amino-acid sequences at N- and C-terminals | identification of free amino acid or a pyroglutamic acid in the N-terminal region; identification of lysine(s) in the C-terminal on the heavy chain | LC-MS/MS | [25] | |
peptide map | peptide mapping | Online LC-MS (with MS/MS and/or MSe) | [26] | |
free sulphydryl groups and disulfide bridges | identification of expected and mismatched disulphide bridges | LC-MS/MS; peptide mapping; MALDI-TOF; Electrospray MS; colorimetric tests | [27] | |
carbohydrate content | structure of the carbohydrate chains; amino sugars, neutral sugars and sialic acids; the oligosaccharide pattern (antennary profile) | selective enzymatic cleavage and MALDI-TOF MS; HPLC; HILIC; CE-LIF or IEX | [28] | |
glycan structures | level of galactosylation, mannosylation, sialylation and fucosylation; presence and distribution of main glycan structures | peptide mapping; GC-MS; enzyme array; CE or normal phase LC; MALDI-TOF | [29] | |
Post-translational modifications | deamidation, glycosaylation, oxidation, phosphorylation, alkylation, acetylation, methylation, sulfation, truncations etc. | MS (Orbitrap and QToF) | [30] | |
higher-order structure (HOS) | secondary and tertiary structural features (á-helix, â-sheet, â-turns and random coil/unfolded) | Circular Dichroism (CD) | [31] | |
secondary structure estimation (deconvolution of the amide-1 band); | Fourier transform-infra red spectroscopy (FT-IR) | [32] | ||
3D structure determination | Nuclear magnetic resonance spectroscopy (NMR): 1D and 2D NOESY and TOCSY | [33] | ||
qualitative tertiary structural information | Intrinsic fluorescence spectroscopy; UV-vis spectroscopy | [34] | ||
aggregation studies | presence of irreversible protein oligomers and higher order aggregates | Size exclusion chromatography (SEC); Sedimentation velocity analytical ultracentrifugation (SV-AUC); Dynamic light scattering (DLS) | [35] | |
Immunological | binding assays of the antibody to antigen; identification of complementary determining regions (CDR) | Determination of affinity, avidity and immuno-reactivity | Enzyme-Linked Immunosorbent Assays (ELISA); Surface Plasmon Resonance (SPR) | [36,37] |
Biological | Cytotoxic properties such as apoptosis, competent binding ability, activation and other effector functions | Antibody-dependent cellular cytotoxicity (ADCC), anti-proliferation, migration etc. | In vitro cell-based bioassays by enzymatic/radioisotope/florescence methods | [38] |
Purity and contaminants | Estimation of physico-chemical properties | molecular weight/size | Orbitrap, QToF; MALDI; size exclusion chromatography (SEC); reducing and/or non-reducing SDS-PGE | [39] |
isoform pattern | Chromatography and traditional gel/capillary electrophoresis: IEX, CIEF, CZE and SDS-PAGE; Imaged capillary isoelectric focusing (icIEF) | [40] | ||
extinction coefficient | Amino Acid Analyzer (AAA) or UPLC | [41] | ||
electrophoretic profiles | electrophoretic analysis based on size and charge | SDS-polyacrylamide gel electrophoresis, western blot/capillary electrophoresis; capillary isoelectric focusing (CIEF/iCIEF); polyacrylamide gel electrophoresis | [42] | |
chromatographic profiles | chromatographic analysis based on size, charge, hydrophobicity/hydrophilicity | Reversed-phase liquid chromatography (RP-HPLC), size exclusion chromatography (SEC), ion exchange chromatography (IEX) | [43] | |
spectroscopic profiles | structure analysis (secondary and tertiary) | Ultraviolet-visible (UV-Vis) spectroscopy, intrinsic fluorescence studies, near and far-UV circular dichroism, Nuclear magnetic resonance (NMR), Fourier transform-infrared infrared (FT-IR) spectroscopy | [44] | |
multimers and aggregates | Field Flow Fractionation (FFF), size-based chromatography, and Analytical Ultra Centrifugation (AUC) | SEC with multi-angle laser light scattering (SEC-MALS), sedimentation velocity analytical ultracentrifugation (SV-AUC) and dynamic light scattering (DLS) | [45] | |
process and product related impurities; contaminants | presence of host cell protein, DNA, cell culture and other residues; microbial species, endotoxins | GC-MS, LC-MS/MS; real time multiplex PCR based assays | [46] | |
Quantification | estimation of total amount of mAB | colorimetric assays; HPLC or ion chromatography (IC) | [47] |
4. Analytical Techniques for mAbs Analyses
4.1. Chromatographic Methods
4.1.1. Reversed-Phase Liquid Chromatography (RPLC)
4.1.2. Size-Exclusion Chromatography (SEC)
4.1.3. Ion-Exchange Chromatography (IEX)
4.2. Electrophoretic Methods
4.2.1. Capillary Zone Electrophoresis (CZE)
4.2.2. Capillary Gel Electrophoresis (CGE)
4.2.3. Capillary-Isoelectric Focusing (cIEF)
4.3. Spectroscopic Methods
4.3.1. 1H-Based 1-Dimensional NMR
4.3.2. 1H-Based Multidimensional NMR
4.3.3. Fourier Transform Infrared (FTIR) Spectroscopy
4.3.4. Ultraviolet-Visible (UV-Vis) Spectroscopy and Liquid Chromatography-Mass Spectrometry (LC-MS)
4.3.5. Circular Dichroism (CD) Spectroscopy
4.4. Electrochemical Analyses
4.5. Recombinant DNA Technology
4.6. X-ray Diffraction Technique
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leavy, O. Therapeutic antibodies: Past, present and future. Nat. Rev. Immunol. 2010, 10, 297. [Google Scholar] [CrossRef]
- Hanly, W.C.; Artwohl, J.E.; Bennett, B.T. Review of Polyclonal Antibody Production Procedures in Mammals and Poultry. ILAR J. 1995, 37, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Ascoli, C.A.; Aggeler, B. Overlooked benefits of using polyclonal antibodies. Biotechniques 2018, 65, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Sharma, P.K.; Kumar, N.; Visht, S. Hybridoma technique in pharmaceutical science. Int. J. PharmTech Res. 2011, 3, 459–463. [Google Scholar]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Tsumoto, K.; Isozaki, Y.; Yagami, H.; Tomita, M. Future perspectives of therapeutic monoclonal antibodies. Immunotherapy 2019, 11, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.D.; Deng, R.; Boswell, C.A.; Zhang, Y.; Li, J.; Fielder, P.; Joshi, A.; Kenkare-Mitra, S. Monoclonal Antibodies: From Structure to Therapeutic Application. In Pharmaceutical Biotechnology; Springer: New York, NY, USA, 2013; pp. 143–178. [Google Scholar]
- Kavanaugh, A.F.; Davis, L.S.; Jain, R.I.; Nichols, L.A.; Norris, S.H.; Lipsky, P.E. A phase I/II open label study of the safety and efficacy of an anti-ICAM-1 (intercellular adhesion molecule-1; CD54) monoclonal antibody in early rheumatoid arthritis. J. Rheumatol. 1996, 23, 1338–1344. [Google Scholar]
- De Pascalis, R.; Iwahashi, M.; Tamura, M.; Padlan, E.A.; Gonzales, N.R.; Santos, A.D.; Giuliano, M.; Schuck, P.; Schlom, J.; Kashmiri, S.V. Grafting of “abbreviated” complementarity-determining regions containing specificity-determining residues essential for ligand contact to engineer a less immunogenic humanized monoclonal antibody. J. Immunol. 2002, 169, 3076–3084. [Google Scholar] [CrossRef] [PubMed]
- Cheifetz, A.; Smedley, M.; Martin, S.; Reiter, M.; Leone, G.; Mayer, L.; Plevy, S. The incidence and management of infusion reactions to infliximab: A large center experience. Am. J. Gastroenterol. 2003, 98, 1315–1324. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, D.; Mason, B.; Rossomando, T.; Li, N.; Liu, D.; Cheung, J.K.; Xu, W.; Raghava, S.; Katiyar, A.; et al. February. Structure, heterogeneity and developability assessment of therapeutic antibodies. In MAbs; Taylor & Francis: Oxford, UK, 2019; Volume 11, pp. 239–264. [Google Scholar]
- Beck, A.; Liu, H. Macro-and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies 2019, 8, 18. [Google Scholar] [CrossRef]
- Torkashvand, F.; Vaziri, B. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components. Iran. Biomed. J. 2017, 21, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Geigert, J. Quality Attributes of a Biopharmaceutical. In The Challenge of CMC Regulatory Compliance for Biopharmaceuticals; Springer: Cham, Switzerand, 2019; pp. 311–329. [Google Scholar]
- Guideline on Development, Production, Characterization and Specification for Monoclonal Antibodies and Related Products, Committee for Medicinal Products for Human Use, European Medicines Agency, July 2016. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-development-production-characterisation-specification-monoclonal-antibodies-related_en.pdf (accessed on 12 January 2023).
- ICH, Q6B; Test Procedures and Acceptance Criteria for Biotechnological/Biological Products. European Medicines Agency: London, UK, 1999.
- Qiu, J.; Qiu, T.; Huang, Y.; Cao, Z. Identifying the Epitope Regions of Therapeutic Antibodies Based on Structure Descriptors. Int. J. Mol. Sci. 2017, 18, 2457. [Google Scholar] [CrossRef]
- Heinrich, L.; Tissot, N.; Hartmann, D.J.; Cohen, R. Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. J. Immunol. Methods 2010, 352, 13–22. [Google Scholar] [CrossRef]
- Gogesch, P.; Dudek, S.; van Zandbergen, G.; Waibler, Z.; Anzaghe, M. The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies. Int. J. Mol. Sci. 2021, 22, 8947. [Google Scholar] [CrossRef] [PubMed]
- Jakes, C.; Millán-Martín, S.; Carillo, S.; Scheffler, K.; Zaborowska, I.; Bones, J. Tracking the Behavior of Monoclonal Antibody Product Quality Attributes Using a Multi-Attribute Method Workflow. J. Am. Soc. Mass Spectrom. 2021, 32, 1998–2012. [Google Scholar] [CrossRef] [PubMed]
- Solati, S.; Zhang, T.; Timman, S. The monocyte activation test detects potentiated cytokine release resulting from the synergistic effect of endotoxin and non-endotoxin pyrogens. J. Endotoxin Res. 2022, 28, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; An, Z.; Luo, W.; Xia, N.; Zhao, Q. Molecular and functional analysis of monoclonal antibodies in support of biologics development. Protein Cell 2017, 9, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Gundry, R.L.; White, M.Y.; Murray, C.I.; Kane, L.A.; Fu, Q.; Stanley, B.A.; Van Eyk, J.E. Preparation of Proteins and Peptides for Mass Spectrometry Analysis in a Bottom-Up Proteomics Workflow. Curr. Protoc. Mol. Biol. 2009, 90, 10–25. [Google Scholar]
- Rutherfurd, S.M.; Gilani, G.S. Amino acid analysis. Curr. Protoc. Protein Sci. 2009, 11, 11.9.1–11.9.37. [Google Scholar] [CrossRef]
- Nakazawa, T.; Yamaguchi, M.; Okamura, T.-A.; Ando, E.; Nishimura, O.; Tsunasawa, S. Terminal proteomics: N- and C-terminal analyses for high-fidelity identification of proteins using MS. Proteomics 2008, 8, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.B.; Berger, S.J.; Gebler, J.C. Use of an integrated MS—Multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies. Rapid Commun. Mass Spectrom. 2007, 21, 730–744. [Google Scholar] [CrossRef] [PubMed]
- Egelhofer, V.; Gobom, J.; Seitz, H.; Giavalisco, P.; Lehrach, H.; Nordhoff, E. Protein identification by MALDI-TOF-MS peptide mapping: A new strategy. Anal. Chem. 2002, 74, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Luo, S.; Zhang, B. Glycan analysis of therapeutic glycoproteins. Mabs 2015, 8, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslen, S.; Sadowski, P.; Adam, A.; Lilley, K.; Stephens, E. Differentiation of Isomeric N-Glycan Structures by Normal-Phase Liquid Chromatography−MALDI-TOF/TOF Tandem Mass Spectrometry. Anal. Chem. 2006, 78, 8491–8498. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.E.; Mocanu, V.; Mocanu, M.; Dicheva, N.; Warren, M.R. Mass Spectrometry for Post-Translational Modifications. In Neuroproteomics; Alzate, O., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010; Chapter 6. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56012/ (accessed on 12 January 2023).
- Li, C.H.; Nguyen, X.; Narhi, L.; Chemmalil, L.; Towers, E.; Muzammil, S.; Gabrielson, J.; Jiang, Y. Applications of circular dichroism (CD) for structural analysis of proteins: Qualification of near- and far-UV CD for protein higher order structural analysis. J. Pharm. Sci. 2011, 100, 4642–4654. [Google Scholar] [CrossRef]
- Stockdale, G.; Murphy, B.M.; D’Antonio, J.; Manning, M.C.; Al-Azzam, W. Comparability of Higher Order Structure in Proteins: Chemometric Analysis of Second-Derivative Amide I Fourier Transform Infrared Spectra. J. Pharm. Sci. 2015, 104, 25–33. [Google Scholar] [CrossRef]
- Amezcua, C.A.; Szabo, C.M. Assessment of Higher Order Structure Comparability in Therapeutic Proteins Using Nuclear Magnetic Resonance Spectroscopy. J. Pharm. Sci. 2013, 102, 1724–1733. [Google Scholar] [CrossRef]
- Wen, J.; Batabyal, D.; Knutson, N.; Lord, H.; Wikström, M. A Comparison between Emerging and Current Biophysical Methods for the Assessment of Higher-Order Structure of Biopharmaceuticals. J. Pharm. Sci. 2020, 109, 247–253. [Google Scholar] [CrossRef]
- Fekete, S.; Beck, A.; Veuthey, J.-L.; Guillarme, D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J. Pharm. Biomed. Anal. 2014, 101, 161–173. [Google Scholar] [CrossRef]
- Alhajj, M.; Farhana, A. Enzyme Linked Immunosorbent Assay; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Singh, P. Surface plasmon resonance (SPR) based binding studies of refolded single chain antibody fragments. Biochem. Biophys. Rep. 2018, 14, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Méry, B.; Guy, J.B.; Vallard, A.; Espenel, S.; Ardail, D.; Rodriguez-Lafrasse, C.; Rancoule, C.; Magné, N. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. J. Cell Death 2017, 10, 1179670717691251. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gaza-Bulseco, G.; Chumsae, C. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Wakankar, A.; Chen, Y.; Gokarn, Y.; Jacobson, F.S. Analytical methods for physicochemical characterization of antibody drug conjugates. Mabs 2011, 3, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crabb, J.W.; West, K.A.; Dodson, W.S.; Hulmes, J.D. Amino acid analysis. Curr. Protoc. Protein Sci. 2001, 11, Unit 11.9. [Google Scholar] [CrossRef]
- Creamer, J.S.; Oborny, N.J.; Lunte, S.M. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. Anal. Methods 2014, 8, 5427–5449. [Google Scholar] [CrossRef] [PubMed]
- Dillon, T.M.; Bondarenko, P.V.; Speed Ricci, M. Development of an analytical reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry method for characterization of recombinant antibodies. J. Chromatogr. A 2004, 1053, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Seyedi, S.S.; Parvin, P.; Jafargholi, A.; Hashemi, N.; Tabatabaee, S.M.; Abbasian, A.; Khorrami, A. Spectroscopic properties of various blood antigens/antibodies. Biomed. Opt. Express 2020, 11, 2298–2312. [Google Scholar] [CrossRef] [PubMed]
- Some, D.; Amartely, H.; Tsadok, A.; Lebendiker, M. Characterization of Proteins by Size-Exclusion Chromatography Coupled to Multi-Angle Light Scattering (SEC-MALS). J. Vis. Exp. 2019, 20, 148. [Google Scholar]
- Zhu, X.; Huo, S.; Xue, C.; An, B.; Qu, J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J. Pharm. Anal. 2020, 10, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.A.; Pinto, N.D.; Gospodarek, A.; Kilgore, B.; Goswami, K.; Napoli, W.N.; Desai, J.; Heo, J.H.; Panzera, D.; Pollard, D.; et al. On-Line Ion Exchange Liquid Chromatography as a Process Analytical Technology for Monoclonal Antibody Characterization in Continuous Bioprocessing. Anal. Chem. 2017, 89, 11357–11365. [Google Scholar] [CrossRef]
- Kallewaard, N.L.; Corti, D.; Collins, P.J.; Neu, U.; McAuliffe, J.M.; Benjamin, E.; Wachter-Rosati, L.; Palmer-Hill, F.J.; Yuan, A.Q.; Walker, P.A. Structure and function analysis of an antibody recognizing all influenza a subtypes. Cell 2016, 166, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, Y.; Takeuchi, K. Role of NMR in High Ordered Structure Characterization of Monoclonal Antibodies. Int. J. Mol. Sci. 2020, 22, 46. [Google Scholar] [CrossRef]
- Fekete, S.; Molnár, I.; Guillarme, D. Separation of antibody drug conjugate species by RPLC: A generic method development approach. J. Pharm. Biomed. Anal. 2017, 137, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Sousa, F.; Gonçalves, V.M.; Sarmento, B. Development and validation of a rapid reversed-phase HPLC method for the quantification of monoclonal antibody bevacizumab from polyester-based nanoparticles. J. Pharm. Biomed. Anal. 2017, 142, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Bobály, B.; D’Atri, V.; Lauber, M.; Beck, A.; Guillarme, D.; Fekete, S. Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. J. Chromatogr. B 2018, 1096, 1–10. [Google Scholar] [CrossRef]
- Gentiluomo, L.; Schneider, V.; Roessner, D.; Frieß, W. Coupling Multi-Angle Light Scattering to Reverse-Phase Ultra-High-Pressure Chromatography (RP-UPLC-MALS) for the characterization monoclonal antibodies. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Pavon, J.A.; Li, X.; Chico, S.; Kishnani, U.; Soundararajan, S.; Cheung, J.; Li, H.; Richardson, D.; Shameem, M.; Yang, X. Analysis of monoclonal antibody oxidation by simple mixed mode chromatography. J. Chromatogr. A 2016, 1431, 154–165. [Google Scholar] [CrossRef]
- Ang, R.; Tang, Y.; Zhang, B.; Lu, X.; Liu, A.; Zhang, Y.T. High resolution separation of recombinant monoclonal antibodies by size-exclusion ultra-high performance liquid chromatography (SE-UHPLC). J. Pharm. Biomed. Anal. 2015, 109, 52–61. [Google Scholar] [CrossRef]
- Fekete, S.; Beck, A.; Fekete, J.; Guillarme, D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach. J. Pharm. Biomed. Anal. 2015, 102, 33–44. [Google Scholar] [CrossRef]
- Füssl, F.; Cook, K.; Scheffler, K.; Farrell, A.; Mittermayr, S.; Bones, J. Charge variant analysis of monoclonal antibodies using direct coupled pH gradient cation exchange chromatography to high-resolution native mass spectrometry. Anal. Chem. 2018, 90, 4669–4676. [Google Scholar] [CrossRef]
- Baek, J.; Schwahn, A.B.; Lin, S.; Pohl, C.A.; De Pra, M.; Tremintin, S.M.; Cook, K. New Insights into the Chromatography Mechanisms of Ion-Exchange Charge Variant Analysis: Dispelling Myths and Providing Guidance for Robust Method Optimization. Anal. Chem. 2020, 92, 13411–13419. [Google Scholar] [CrossRef]
- Dadouch, M.; Ladner, Y.; Bich, C.; Larroque, M.; Larroque, C.; Morel, J.; Bonnet, P.-A.; Perrin, C. An in-line enzymatic microreactor for the middle-up analysis of monoclonal antibodies by capillary electrophoresis. Anal. 2020, 145, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Goyon, A.; François, Y.N.; Colas, O.; Beck, A.; Veuthey, J.-L.; Guillarme, D. High-resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method. Electrophoresis 2018, 39, 2083–2090. [Google Scholar] [CrossRef]
- Haselberg, R.; De Vijlder, T.; Heukers, R.; Smit, M.J.; Romijn, E.P.; Somsen, G.W.; Domínguez-Vega, E. Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Anal. Chim. Acta 2018, 1044, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Belov, A.M.; Zang, L.; Sebastiano, R.; Santos, M.R.; Bush, D.R.; Karger, B.L.; Ivanov, A.R. Complementary middle-down and intact monoclonal antibody proteoform characterization by capillary zone electrophoresis–mass spectrometry. Electrophoresis 2018, 39, 2069–2082. [Google Scholar] [CrossRef]
- Carillo, S.; Jakes, C.; Bones, J. In-depth analysis of monoclonal antibodies using microfluidic capillary electrophoresis and native mass spectrometry. J. Pharm. Biomed. Anal. 2020, 185, 113218. [Google Scholar] [CrossRef] [PubMed]
- Moritz, B.; Locatelli, V.; Niess, M.; Bathke, A.; Kiessig, S.; Entler, B.; Finkler, C.; Wegele, H.; Stracke, J. Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles. Electrophoresis 2017, 38, 3136–3146. [Google Scholar] [CrossRef]
- Kahle, J.; Stein, M.; Wätzig, H. Design of experiments as a valuable tool for biopharmaceutical analysis with (imaged) capillary isoelectric focusing. Electrophoresis 2019, 40, 2382–2389. [Google Scholar] [CrossRef]
- Kiss, R.; Fizil, Á.; Szántay, C., Jr. What NMR can do in the biopharmaceutical industry. J. Pharm. Biomed. Anal. 2018, 147, 367–377. [Google Scholar] [CrossRef]
- Brinson, R.G.; Marino, J.P. 2D J-correlated proton NMR experiments for structural fingerprinting of biotherapeutics. J. Magn. Reson. 2019, 307, 106581. [Google Scholar] [CrossRef]
- Elliott, K.W.; Delaglio, F.; Wikström, M.; Marino, J.P.; Arbogast, L.W. Principal Component Analysis of 1D ¹H Diffusion Edited NMR Spectra of Protein Therapeutics. J. Pharm. Sci. 2021, 110, 3385–3394. [Google Scholar] [CrossRef] [PubMed]
- Kheddo, P.; Cliff, M.J.; Uddin, S.; van der Walle, C.F.; Golovanov, A.P. October. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy. In Mabs; Taylor & Francis: Oxford, UK, 2016; Volume 8, pp. 1245–1258. [Google Scholar]
- Kheddo, P.; Bramham, J.E.; Dearman, R.J.; Uddin, S.; Van Der Walle, C.F.; Golovanov, A.P. Investigating liquid–liquid phase separation of a monoclonal antibody using solution-state NMR spectroscopy: Effect of Arg· Glu and Arg·HCl. Mol. Pharm. 2017, 14, 2852–2860. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Long, D.S.; Lute, S.C.; Levy, M.J.; Brorson, K.A.; Keire, D.A. Simple NMR methods for evaluating higher order structures of monoclonal antibody therapeutics with quinary structure. J. Pharm. Biomed. Anal. 2016, 128, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Bramham, J.E.; Podmore, A.; Davies, S.A.; Golovanov, A.P. Comprehensive Assessment of Protein and Excipient Stability in Biopharmaceutical Formulations Using 1H NMR Spectroscopy. ACS Pharmacol. Transl. Sci. 2020, 4, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Doyen, C.; Larquet, E.; Coureux, P.-D.; Frances, O.; Herman, F.; Sablé, S.; Burnouf, J.-P.; Sizun, C.; Lescop, E. Nuclear Magnetic Resonance Spectroscopy: A Multifaceted Toolbox to Probe Structure, Dynamics, Interactions, and Real-Time In Situ Release Kinetics in Peptide-Liposome Formulations. Mol. Pharm. 2021, 18, 2521–2539. [Google Scholar] [CrossRef]
- Phyo, P.; Zhao, X.; Templeton, A.C.; Xu, W.; Cheung, J.K.; Su, Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv. Drug Deliv. Rev. 2021, 174, 1–29. [Google Scholar] [CrossRef]
- Kondzior, M.; Grabowska, I. Antibody-Electroactive Probe Conjugates Based Electrochemical Immunosensors. Sensors 2020, 20, 2014. [Google Scholar] [CrossRef]
- Arunkumar, R.; Drummond, C.; Greaves, T.L. FTIR Spectroscopic Study of the Secondary Structure of Globular Proteins in Aqueous Protic Ionic Liquids. Front. Chem. 2019, 7, 74. [Google Scholar] [CrossRef]
- Derenne, A.; Derfoufi, K.-M.; Cowper, B.; Delporte, C.; Goormaghtigh, E. FTIR spectroscopy as an analytical tool to compare glycosylation in therapeutic monoclonal antibodies. Anal. Chim. Acta 2020, 1112, 62–71. [Google Scholar] [CrossRef]
- Chavez, J.D.; Park, S.G.; Mohr, J.P.; Bruce, J.E. Applications and advancements of FT-ICR-MS for interactome studies. Mass Spectrom. Rev. 2020, 41, 248–261. [Google Scholar] [CrossRef]
- Van der Burgt, Y.E.; Kilgour, D.P.; Tsybin, Y.O.; Srzentić, K.; Fornelli, L.; Beck, A.; Wuhrer, M.; Nicolardi, S. Structural analysis of monoclonal antibodies by ultrahigh resolution MALDI in-source decay FT-ICR mass spectrometry. Anal. Chem. 2018, 91, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Gstöttner, C.; Reusch, D.; Haberger, M.; Dragan, I.; Van Veelen, P.; Kilgour, D.P.A.; Tsybin, Y.O.; van der Burgt, Y.E.M.; Wuhrer, M.; Nicolardi, S. Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh-resolution MALDI FT-ICR mass spectrometry. In MAbs; Taylor & Francis: Oxford, UK, 2020; Volume 12, p. 1682403. [Google Scholar]
- Jaccoulet, E.; Schweitzer-Chaput, A.; Toussaint, B.; Prognon, P.; Caudron, E. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method. Talanta 2018, 187, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Camperi, J.; Goyon, A.; Guillarme, D.; Zhang, K.; Stella, C. Multi-dimensional LC-MS: The next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. Analyst 2021, 146, 747–769. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Mercader, J.V.; Checa-Orrego, B.I.; De La Escosura-Muñiz, A.; Costa-García, A. A monoclonal antibody-based immunosensor for the electrochemical detection of imidacloprid pesticide. Analyst 2019, 144, 2936–2941. [Google Scholar] [CrossRef]
- François, Y.N.; Biacchi, M.; Said, N.; Renard, C.; Beck, A.; Gahoual, R.; Leize-Wagner, E. Characterization of cetuxim AbMAB Fc/2 dimers by off-line CZE-MS. Anal. Chim. Acta 2016, 908, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Suba, D.; Urbányi, Z.; Salgó, A. Method development and qualification of capillary zone electrophoresis for investigation of therapeutic monoclonal antibody quality. J. Chromatogr. B 2016, 1032, 224–229. [Google Scholar] [CrossRef]
- An, Y.; Verma, S.; Chen, Y.; Yu, S.; Zhang, Y.; Kelner, S.; Mengisen, S.; Richardson, D.; Chen, Z. Forced degradation study of monoclonal antibody using two-dimensional liquid chromatography. J. Chromatogr. Sep. Tech. 2017, 8, 1000365. [Google Scholar]
- Cheng, Y.; Chen, M.T.; Patterson, L.C.; Yu, X.C.; Zhang, Y.T.; Burgess, B.L.; Chen, Y. Domain-specific free thiol variant characterization of an IgG1 by reversed-phase high-performance liquid chromatography mass spectrometry. Anal. Biochem. 2017, 519, 8–14. [Google Scholar] [CrossRef]
- Giorgetti, J.; Lechner, A.; Del Nero, E.; Beck, A.; François, Y.-N.; Leize-Wagner, E. Intact monoclonal antibodies separation and analysis by sheathless capillary electrophoresis-mass spectrometry. Eur. J. Mass Spectrom. 2019, 25, 324–332. [Google Scholar] [CrossRef]
- Giorgetti, J.; Beck, A.; Leize-Wagner, E.; François, Y.N. Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis–Mass spectrometry. J. Pharm. Biomed. Anal. 2020, 182, 113107. [Google Scholar] [CrossRef]
- Goyon, A.; D’Atri, V.; Bobaly, B.; Wagner-Rousset, E.; Beck, A.; Fekete, S.; Guillarme, D. Protocols for the analytical characterization of therapeutic monoclonal antibodies. I – Non-denaturing chromatographic techniques. J. Chromatogr. B 2017, 1058, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Joob, K.; Hühner, J.; Kiessig, S.; Moritz, B.; Neusüb, C. Two-dimensional capillary zone electrophoresis–mass spectrometry for the characterization of intact monoclonal antibody charge variants, including deamidation products. Anal. Bioanal. Chem. 2017, 409, 6057–6067. [Google Scholar]
- Mouchahoir, T.; Schiel, J.E. Development of an LC-MS/MS peptide mapping protocol for the NISTmAbMAB. Anal. Bioanal. Chem. 2018, 410, 2111–2126. [Google Scholar] [CrossRef]
- Henley, W.H.; He, Y.; Mellors, J.S.; Batz, N.G.; Ramsey, J.M.; Jorgenson, J.W. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength. J. Chromatogr. A 2017, 1523, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Le-Minh, V.; Tran, N.; Makky, A.; Rosilio, V.; Taverna, M.; Smadja, C. Capillary zone electrophoresis-native mass spectrometry for the quality control of intact therapeutic monoclonal antibodies. J. Chromatogr. A 2019, 1601, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Li, F.; Ding, J. Development of an efficient LC-MS peptide mapping method using accelerated sample preparation for monoclonal antibodies. J. Chromatogr. B 2020, 1137, 121895. [Google Scholar] [CrossRef] [PubMed]
- Goyon, A.; Dai, L.; Chen, T.; Wei, B.; Yang, F.; Andersen, N.; Kopf, R.; Leiss, M.; Mølhøj, M.; Guillarme, D.; et al. From proof of concept to the routine use of an automated and robust multi-dimensional liquid chromatography mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies. J. Chromatogr. A 2020, 1615, 460740. [Google Scholar] [CrossRef]
- Gahoual, R.; Beck, A.; Leize-Wagner, E.; François, Y.-N. Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J. Chromatogr. B 2016, 1032, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Lechner, A.; Giorgetti, J.; Gahoual, R.; Beck, A.; Leize-Wagner, E.; François, Y.N. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J. Chromatogr. B 2019, 1122, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, Y.; Ramon, C.; Bihoreau, N.; Chevreux, G. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: Case study after a long-term storage at +5 °C. J. Chromatogr. B 2017, 1048, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Černý, M.; Skalák, J.; Cerna, H.; Brzobohatý, B. Advances in purification and separation of posttranslationally modified proteins. J. Proteom. 2013, 92, 2–27. [Google Scholar] [CrossRef]
- Rehder, D.S.; Dillon, T.M.; Pipes, G.D.; Bondarenko, P.V. Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J. Chromatogr. A 2006, 1102, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.J.; Kwong, M.Y.; Keck, R.G.; Harris, R.J. The application of tert-butylhydroperoxide oxidation to study sites of potential methionine oxidation in a recombinant antibody. In Techniques in Protein Chemistry VII; Marshak, D., Ed.; Academic Press: San Diego, CA, USA, 1996; pp. 275–284. [Google Scholar]
- Houde, D.; Kauppinen, P.; Mhatre, R.; Lyubarskaya, Y. Determination of protein oxidation by mass spectrometry and method transfer to quality control. J. Chromatogr. A. 2006, 1123, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Chelius, D.; Jing, K.; Lueras, A.; Rehder, D.S.; Dillon, T.M.; Vizel, A.; Rajan, R.S.; Li, T.; Treuheit, M.J.; Bondarenko, P.V. Formation of Pyroglutamic Acid from N-Terminal Glutamic Acid in Immunoglobulin Gamma Antibodies. Anal. Chem. 2006, 78, 2370–2376. [Google Scholar] [CrossRef]
- Yan, B.; Valliere-Douglass, J.; Brady, L.; Steen, S.; Han, M.; Pace, D.; Elliott, S.; Yates, Z.; Han, Y.; Balland, A.; et al. Analysis of post-translational modifications in recombinant monoclonal antibody IgG1 by reversed-phase liquid chromatography/mass spectrometry. J. Chromatogr. A 2007, 1164, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Chromedia 2021. Available online: http://www.chromedia.org/chromedia?waxtrapp=nvlhlDsHiemBpdmBlIEcCX&subNav=wrsmrDsHiemBpdmBlIEcCXhB (accessed on 12 September 2022).
- Whitmore, C.D.; Gennaro, L.A. Capillary electrophoresis-mass spectrometry methods for tryptic peptide mapping of therapeutic antibodies. Electrophoresis 2012, 33, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A. Separation of monoclonal antibodies by analytical size exclusion chromatography. In Antibody Engineering; IntechOpen: London, UK, 2018. [Google Scholar]
- Fekete, S.; Ganzler, K.; Guillarme, D. Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2μm particles. J. Pharm. Biomed. Anal. 2013, 78–79, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Chi, L.M.; Chien, K.Y. Size-exclusion chromatography using reverse-phase columns for protein separation. J. Chromatogr. A. 2018, 1571, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Koza, S.; Bouvier, E.S. A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2923–2950. [Google Scholar] [CrossRef]
- Bouvier, E.S.; Koza, S.M. Advances in size-exclusion separations of proteins and polymers by UHPLC. TrAC Trends Anal. Chem. 2014, 63, 85–94. [Google Scholar] [CrossRef]
- Graf, T.; Ruppert, R.; Knaupp, A.; Hafenmair, G.; Violini, S.; Kiessig, S.; Haindl, M.; Wegele, H.; Leiss, M. Development of a Multi-Product SE-UHPLC Method for the Determination of Size-Variants in Bispecific Antibody Formats. LC GC N. Am. 2018, 36, 870–879. [Google Scholar]
- Rea, J.; Fulchiron, D.; Lou, Y.; Darer, L. Size-Exclusion Chromatography for the Analysis of Complex and Novel Biotherapeutic Products. LC GC N. Am. 2018, 37, 22–28. [Google Scholar]
- Arakawa, T.; Ejima, D.; Li, T.; Philo, J.S. The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J. Pharm. Sci. 2010, 99, 1674–1692. [Google Scholar] [CrossRef] [PubMed]
- Haberger, M.; Leiss, M.; Heidenreich, A.-K.; Pester, O.; Hafenmair, G.; Hook, M.; Bonnington, L.; Wegele, H.; Haindl, M.; Reusch, D.; et al. 2016, February. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. In MAbs; Taylor & Francis: Oxford, UK, 2016; Volume 8, pp. 331–339. [Google Scholar]
- Glover, Z.W.K.; Gennaro, L.; Yadav, S.; Demeule, B.; Wong, P.Y.; Sreedhara, A. Compatibility and stability of pertuzumAbMAB and trastuzumAbMAB admixtures in iv infusion bags for coadministration. J. Pharm. Sci. 2013, 102, 794–812. [Google Scholar] [CrossRef] [PubMed]
- Ehkirch, A.; Goyon, A.; Hernandez-Alba, O.; Rouviere, F.; D’atri, V.; Dreyfus, C.; Haeuw, J.F.; Diemer, H.; Beck, A.; Heinisch, S. A novel online four-dimensional SEC× SEC-IM× MS methodology for characterization of monoclonal antibody size variants. Anal. Chem. 2018, 90, 13929–13937. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Walsh, A.; Ehrick, R.; Xu, W.; May, K.; Liu, H. September. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. In MAbs; Taylor & Francis: Oxford, UK, 2012; Volume 4, pp. 578–585. [Google Scholar]
- Li, K.; Liu, S.; Xing, R.; Yu, H.; Qin, Y.; Li, R.; Li, P. High-resolution separation of homogeneous chitooligomers series from 2-mers to 7-mers by ion-exchange chromatography. J. Sep. Sci. 2013, 36, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Pabst, T.M.; Carta, G.; Ramasubramanyan, N.; Hunter, A.K.; Mensah, P.; Gustafson, M.E. Separation of protein charge variants with induced pH gradients using anion exchange chromatographic columns. Biotechnol. Prog. 2008, 24, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Quan, C.; Alcala, E.; Petkovska, I.; Matthews, D.; Canova-Davis, E.; Taticek, R.; Ma, S. A study in glycation of a therapeutic recombinant humanized monoclonal antibody: Where it is, how it got there, and how it affects charge-based behavior. Anal. Biochem. 2008, 373, 179–191. [Google Scholar] [CrossRef]
- Farnan, D.; Moreno, G.T. Multiproduct High-Resolution Monoclonal Antibody Charge Variant Separations by pH Gradient Ion-Exchange Chromatography. Anal. Chem. 2009, 81, 8846–8857. [Google Scholar] [CrossRef] [PubMed]
- Rea, J.C.; Moreno, G.T.; Lou, Y.; Farnan, D. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations. J. Pharm. Biomed. Anal. 2011, 54, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Tsonev, L.I.; Hirsh, A.G. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases. J. Chromatogr. A 2008, 1200, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Amartely, H.; Avraham, O.; Friedler, A.; Livnah, O.; Lebendiker, M. Coupling multi angle light scattering to ion exchange chromatography (IEX-MALS) for protein characterization. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Yamamoto, S. Optimization of monoclonal antibody purification by ion-exchange chromatography: Application of simple methods with linear gradient elution experimental data. J. Chromatogr. A 2005, 1069, 99–106. [Google Scholar] [CrossRef]
- Urmann, M.; Graalfs, H.; Joehnck, M.; Jacob, L.R.; Frech, C. Cation-exchange chromatography of monoclonal antibodies: Characterisation of a novel stationary phase designed for production-scale purification. In MAbs; Taylor & Francis: Oxford, UK, 2010; Volume 2, pp. 395–404. [Google Scholar]
- Alhazmi, H.A.; Al Bratty, M.; Javed, S.A.; Lalitha, K.G. Investigation of transferrin interaction with medicinally important noble metal ions using affinity capillary electrophoresis. Die Pharm. Int. J. Pharm. Sci. 2017, 72, 243–248. [Google Scholar]
- Alhazmi, H.A.; El Deeb, S.; Nachbar, M.; Redweik, S.; Albishri, H.M.; El-Hady, D.A.; Wätzig, H. Optimization of affinity capillary electrophoresis for routine investigations of protein-metal ion interactions. J. Sep. Sci. 2015, 38, 3629–3637. [Google Scholar] [CrossRef]
- Staub, A.; Schappler, J.; Rudaz, S.; Veuthey, J.-L. CE-TOF/MS: Fundamental concepts, instrumental considerations and applications. Electrophoresis 2009, 30, 1610–1623. [Google Scholar] [CrossRef]
- Wehr, T. Capillary Zone Electrophoresis. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 355–368. [Google Scholar] [CrossRef]
- Staub, A.; Guillarme, D.; Schappler, J.; Veuthey, J.-L.; Rudaz, S. Intact protein analysis in the biopharmaceutical field. J. Pharm. Biomed. Anal. 2011, 55, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Petersen, N.J.; Rand, K.D. A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples. Anal. Chim. Acta 2016, 936, 157–167. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Z.; Qiao, Y.; Lin, J. Development and validation of a rapid capillary zone electrophoresis method for determining charge variants of mAb. J. Chromatogr. B 2012, 906, 63–68. [Google Scholar] [CrossRef]
- Kubota, K.; Kobayashi, N.; Yabuta, M.; Ohara, M.; Naito, T.; Kubo, T.; Otsuka, K. Validation of Capillary Zone Electrophoretic Method for Evaluating Monoclonal Antibodies and Antibody-Drug Conjugates. Chromatography 2016, 37, 117–124. [Google Scholar] [CrossRef]
- Alhazmi, H.A.; Javed, S.A.; Ahsan, W.; Rehman, Z.; Al Bratty, M.; El Deeb, S.; Saleh, S.F. Investigation of binding behavior of important metal ions to thioredoxin reductase using mobility-shift affinity capillary electrophoresis: A preliminary insight into the development of new metal-based anticancer drugs. Microchem. J. 2019, 145, 259–265. [Google Scholar] [CrossRef]
- Han, H.; Livingston, E.; Chen, X. High Throughput Profiling of Charge Heterogeneity in Antibodies by Microchip Electrophoresis. Anal. Chem. 2011, 83, 8184–8191. [Google Scholar] [CrossRef] [PubMed]
- Gahoual, R.; Busnel, J.-M.; Wolff, P.; François, Y.N.; Leize-Wagner, E. Novel sheathless CE-MS interface as an original and powerful infusion platform for nanoESI study: From intact proteins to high molecular mass noncovalent complexes. Anal. Bioanal. Chem. 2013, 406, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Szekrényes, Á.; Park, S.S.; Santos, M.; Lew, C.; Jones, A.; Haxo, T.; Kimzey, M.; Pourkaveh, S.; Szabó, Z.; Sosic, Z.; et al. 2016, January. Multi-Site N-glycan mapping study 1: Capillary electrophoresis–laser induced fluorescence. In MAbs; Taylor & Francis: Oxford, UK, 2016; Volume 8, pp. 56–64. [Google Scholar]
- Rustandi, R.R.; Washabaugh, M.W.; Wang, Y. Applications of CE SDS gel in development of biopharmaceutical antibody-based products. Electrophoresis 2008, 29, 3612–3620. [Google Scholar] [CrossRef]
- Kotia, R.B.; Raghani, A.R. Analysis of monoclonal antibody product heterogeneity resulting from alternate cleavage sites of signal peptide. Anal. Biochem. 2010, 399, 190–195. [Google Scholar] [CrossRef]
- Lacher, N.A.; Roberts, R.K.; He, Y.; Cargill, H.; Kearns, K.M.; Holovics, H.; Ruesch, M.N. Development, validation, and implementation of capillary gel electrophoresis as a replacement for SDS-PAGE for purity analysis of IgG2 mAbs. J. Sep. Sci. 2010, 33, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Fekete, S.; Gassner, A.-L.; Rudaz, S.; Schappler, J.; Guillarme, D. Analytical strategies for the characterization of therapeutic monoclonal antibodies. TrAC Trends Anal. Chem. 2013, 42, 74–83. [Google Scholar] [CrossRef]
- Xie, P.; Niu, H.; Chen, X.; Zhang, X.; Miao, S.; Deng, X.; Liu, X.; Tan, W.-S.; Zhou, Y.; Fan, L. Elucidating the effects of pH shift on IgG1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures. Appl. Microbiol. Biotechnol. 2016, 100, 10343–10353. [Google Scholar] [CrossRef] [PubMed]
- Esterman, A.L.; Katiyar, A.; Krishnamurthy, G. Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods. J. Pharm. Biomed. Anal. 2016, 128, 447–454. [Google Scholar] [CrossRef]
- Feng, H.-T.; Su, M.; Rifai, F.N.; Li, P.; Li, S.F. Parallel analysis and orthogonal identification of N-glycans with different capillary electrophoresis mechanisms. Anal. Chim. Acta 2017, 953, 79–86. [Google Scholar] [CrossRef]
- Chen, C.H.; Feng, H.; Guo, R.; Li, P.; Laserna, A.K.C.; Ji, Y.; Ng, B.H.; Li, S.F.Y.; Khan, S.H.; Paulus, A.; et al. Intact NIST monoclonal antibody characterization-Proteoforms, glycoforms-Using CE-MS and CE-LIF. Cogent Chem. 2018, 4, 1480455. [Google Scholar] [CrossRef]
- Khan, S.; Liu, J.; Szabo, Z.; Kunnummal, B.; Han, X.; Ouyang, Y.; Linhardt, R.J.; Xia, Q. On-line capillary electrophoresis/laser-induced fluorescence/mass spectrometry analysis of glycans labeled with Teal™ fluorescent dye using an electrokinetic sheath liquid pump-based nanospray ion source. Rapid Commun. Mass Spectrom. 2018, 32, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Matsumura, C.; Yamada, K.; Teshima, K.; Hiroshima, T.; Kinoshita, M.; Suzuki, S.; Kakehi, K. Combination of SDS-PAGE and intact mass analysis for rapid determination of heterogeneities in monoclonal antibody therapeutics. Electrophoresis 2017, 38, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Tamizi, E.; Jouyban, A. Forced degradation studies of biopharmaceuticals: Selection of stress conditions. Eur. J. Pharm. Biopharm. 2015, 98, 26–46. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, B.; Zhou, D.; Xu, J.; Li, W.; Suen, W.-C. Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods. J. Chromatogr. B 2017, 1048, 121–129. [Google Scholar] [CrossRef]
- Wang, W.H.; Cheung-Lau, J.; Chen, Y.; Lewis, M.; Tang, Q.M. Specific and high-resolution identification of monoclonal antibody fragments detected by capillary electrophoresis–sodium dodecyl sulfate using reversed-phase HPLC with top-down mass spectrometry analysis. In MAbs; Taylor & Francis: Oxford, UK, 2019; Volume 11, pp. 1233–1244. [Google Scholar]
- Borza, B.; Szigeti, M.; Szekrenyes, A.; Hajba, L.; Guttman, A. Glycosimilarity assessment of biotherapeutics 1: Quantitative comparison of the N -glycosylation of the innovator and a biosimilar version of etanercept. J. Pharm. Biomed. Anal. 2018, 153, 182–185. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Isele, C.; Hou, W.; Ruesch, M. Rapid analysis of charge variants of monoclonal antibodies with capillary zone electrophoresis in dynamically coated fused-silica capillary. J. Sep. Sci. 2011, 34, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Štěpánová, S.; Kašička, V. Application of Capillary Electromigration Methods for Physicochemical Measurements. In Capillary Electromigration Separation Methods; Elsevier: Amsterdam, The Netherlands, 2018; pp. 547–591. [Google Scholar]
- Turner, A.; Schiel, J.E. Qualification of NISTmAbMAB charge heterogeneity control assays. Anal. Bioanal. Chem. 2018, 410, 2079–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Chemmalil, L.; Ding, J.; Mussa, N.; Li, Z. Imaged capillary isoelectric focusing in native condition: A novel and successful example. Anal. Biochem. 2017, 537, 13–19. [Google Scholar] [CrossRef] [PubMed]
- He, X.Z.; Que, A.H.; Mo, J.J. Analysis of charge heterogeneities in mAbMABs using imaged CE. Electrophoresis 2009, 30, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Hühner, J.; Neusüß, C. CIEF-CZE-MS applying a mechanical valve. Anal. Bioanal. Chem. 2016, 408, 4055–4061. [Google Scholar] [CrossRef] [PubMed]
- Mack, S.; Arnold, D.; Bogdan, G.; Bousse, L.; Danan, L.; Dolnik, V.; Ducusin, M.; Gwerder, E.; Herring, C.; Jensen, M.; et al. A novel microchip-based imaged CIEF-MS system for comprehensive characterization and identification of biopharmaceutical charge variants. Electrophoresis 2019, 40, 3084–3091. [Google Scholar] [CrossRef] [PubMed]
- Maeda, E.; Urakami, K.; Shimura, K.; Kinoshita, M.; Kakehi, K. Charge heterogeneity of a therapeutic monoclonal antibody conjugated with a cytotoxic antitumor antibiotic, calicheamicin. J. Chromatogr. A 2010, 1217, 7164–7171. [Google Scholar] [CrossRef] [PubMed]
- Kahle, J.; Zagst, H.; Wiesner, R.; Wätzig, H. Comparative charge-based separation study with various capillary electrophoresis (CE) modes and cation exchange chromatography (CEX) for the analysis of monoclonal antibodies. J. Pharm. Biomed. Anal. 2019, 174, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Ghasriani, H.; Hodgson, D.J.; Brinson, R.G.; McEwen, I.; Buhse, L.F.; Kozlowski, S.; Marino, J.P.; Aubin, Y.; A Keire, D. Precision and robustness of 2D-NMR for structure assessment of filgrastim biosimilars. Nat. Biotechnol. 2016, 34, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Poppe, L.; Jordan, J.B.; Lawson, K.; Jerums, M.; Apostol, I.; Schnier, P.D. Profiling Formulated Monoclonal Antibodies by 1H NMR Spectroscopy. Anal. Chem. 2013, 85, 9623–9629. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Patil, S.M.; Keire, D.A.; Chen, K. Chemical Structure and Composition of Major Glycans Covalently Linked to Therapeutic Monoclonal Antibodies by Middle-Down Nuclear Magnetic Resonance. Anal. Chem. 2018, 90, 11016–11024. [Google Scholar] [CrossRef]
- Arbogast, L.; Brinson, R.G.; Formolo, T.; Hoopes, J.T.; Marino, J.P. 2D 1HN, 15N Correlated NMR Methods at Natural Abundance for Obtaining Structural Maps and Statistical Comparability of Monoclonal Antibodies. Pharm. Res. 2015, 33, 462–475. [Google Scholar] [CrossRef]
- Arbogast, L.W.; Delaglio, F.; Schiel, J.E.; Marino, J.P. Multivariate Analysis of Two-Dimensional 1H, 13C Methyl NMR Spectra of Monoclonal Antibody Therapeutics to Facilitate Assessment of Higher Order Structure. Anal. Chem. 2017, 89, 11839–11845. [Google Scholar] [CrossRef]
- Brinson, R.G.; Marino, J.P.; Delaglio, F.; Arbogast, L.W.; Evans, R.M.; Kearsley, A.; Gingras, G.; Ghasriani, H.; Aubin, Y.; Pierens, G.K.; et al. Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics. In MAbs; Taylor & Francis: Oxford, UK, 2019; Volume 11, pp. 94–105. [Google Scholar]
- Tugarinov, V.; Hwang, P.M.; Ollerenshaw, J.E.; Kay, L.E. Cross-correlated relaxation enhanced 1H− 13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 2003, 125, 10420–10428. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Takeuchi, K.; Okude, J.; Ori, K.; Torizawa, T.; Shimada, I. Structural Fingerprints of an Intact Monoclonal Antibody Acquired under Formulated Storage Conditions via 15N Direct Detection Nuclear Magnetic Resonance. J. Med. Chem. 2020, 63, 5360–5366. [Google Scholar] [CrossRef]
- Lin, J.C.; Glover, Z.K.; Sreedhara, A. Assessing the utility of circular dichroism and FTIR spectroscopy in monoclonal-antibody comparability studies. J. Pharm. Sci. 2015, 104, 4459–4466. [Google Scholar] [CrossRef]
- Wiegandt, A.; Meyer, B. Unambiguous characterization of N-glycans of monoclonal antibody cetuximab by integration of LC-MS/MS and 1H NMR spectroscopy. Anal. Chem. 2014, 86, 4807–4814. [Google Scholar] [CrossRef] [PubMed]
- Nicolardi, S.; Deelder, A.M.; Palmblad, M.; van der Burgt, Y.E.M. Structural Analysis of an Intact Monoclonal Antibody by Online Electrochemical Reduction of Disulfide Bonds and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2014, 86, 5376–5382. [Google Scholar] [CrossRef] [PubMed]
- Tom, J. UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications. 2021. Available online: https://www.technologynetworks.com/analysis/articles/uv-vis-spectroscopy-principle-strengths-and-limitations-and-applications-349865 (accessed on 12 September 2022).
- Harris, D.C. Quantitative Chemical Analysis, 7th ed.; 3rd Printing; W. H. Freeman: New York, NY, USA, 2007. [Google Scholar]
- Bazin, C.; Vieillard, V.; Astier, A.; Paul, M. Reliable real-time analytical control of monoclonal antibodies chemotherapies preparations on Multispec automaton. Ann. Pharm. Fr. 2010, 68, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Zobel-Roos, S.; Mouellef, M.; Siemers, C.; Strube, J. Process Analytical Approach towards Quality Controlled Process Automation for the Downstream of Protein Mixtures by Inline Concentration Measurements Based on Ultraviolet/Visible Light (UV/VIS) Spectral Analysis. Antibodies 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.S.; Abernathy, M.; Richardson, D.D.; Rouse, J.C.; Sperry, J.B.; Swann, P.; Wypych, J.; Yu, C.; Zang, L.; Deshpande, R. A View on the Importance of “Multi-Attribute Method” for Measuring Purity of Biopharmaceuticals and Improving Overall Control Strategy. AAPS J. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J. Characterization and QC of biopharmaceuticals by MS-based “multi-attribute method”: Advantages and challenges. Bioanalysis 2017, 9, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Skeene, K.; Khatri, K.; Soloviev, Z.; Lapthorn, C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2021, 1869, 140697. [Google Scholar] [CrossRef]
- Fresnais, M.; Longuespée, R.; Sauter, M.; Schaller, T.; Arndt, M.; Krauss, J.; Blank, A.; Haefeli, W.E.; Burhenne, J. Development and Validation of an LC−MS-Based Quantification Assay for New Therapeutic Antibodies: Application to a Novel Therapy against Herpes Simplex Virus. ACS Omega 2020, 5, 24329–24339. [Google Scholar] [CrossRef]
- Ding, W.; Qiu, D.; Bolgar, M.; Miller, S.A. Improving Mass Spectral Quality of Monoclonal Antibody Middle- UPLC-MS Analysis by Shifting the Protein Charge State Distribution. Anal. Chem. 2018, 90, 1560–1565. [Google Scholar] [CrossRef]
- Zhao, J.; Peng, W.; Dong, X.; Mechref, Y. Analysis of NIST Monoclonal Antibody Reference Material Glycosylation Using the LC–MS/MS-Based Glycoproteomic Approach. J. Proteome Res. 2021, 20, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Duivelshof, B.L.; Murisier, A.; Camperi, J.; Fekete, S.; Beck, A.; Guillarme, D.; D’Atri, V. Therapeutic Fc-fusion proteins: Current analytical strategies. J. Sep. Sci. 2021, 44, 35–62. [Google Scholar] [CrossRef]
- Jones, C. Glycoconjugate vaccine batch consistency assessed by objective comparison of circular dichroism spectra. J. Pharm. Biomed. Anal. 2020, 191, 113571. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.V.; Balakrishnan, G.; Chennamsetty, N.; Meengs, B.; Meyer, J.; Bongers, J.; Ludwig, R.; Tao, L.; Das, T.K.; Leone, A.; et al. Enhanced Precision of Circular Dichroism Spectral Measurements Permits Detection of Subtle Higher Order Structural Changes in Therapeutic Proteins. J. Pharm. Sci. 2018, 107, 2559–2569. [Google Scholar] [CrossRef] [PubMed]
- Yao, H. Wynendaele E, Xu X, Kosgei A, Spiegeleer BD (2018) Circular dichroism in functional quality evaluation of medicines. J. Pharm. Biomed. Anal. 2018, 147, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.J.; Janes, R.W.; Wallace, B.A. Tools and methods for circular dichroism spectroscopy of proteins: A tutorial review. Chem. Soc. Rev. 2021, 50, 8400–8413. [Google Scholar] [CrossRef]
- Rahman, N.; Khan, S. Circular Dichroism Spectroscopy: A Facile Approach for Quantitative Analysis of Captopril and Study of Its Degradation. ACS Omega 2019, 4, 4252–4258. [Google Scholar] [CrossRef]
- Sousa, F.; Sarmento, B.; Neves-Petersen, M.T. Biophysical study of bevacizumab structure and bioactivity under thermal and pH-stresses. Eur. J. Pharm. Sci. 2017, 105, 127–136. [Google Scholar] [CrossRef]
- Pérez, L.M.; Taño, A.D.L.C.R.; Márquez, L.R.M.; Pérez, J.A.G.; Garay, A.V.; Santana, R.B. Conformational characterization of a novel anti-HER2 candidate antibody. PLoS ONE 2019, 14, e0215442. [Google Scholar]
- Miles, A.J.; Ramalli, S.G.; Wallace, B.A. DichroWeb, a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Sci. 2021, 31, 37–46. [Google Scholar] [CrossRef]
- Machini, W.B.S.; Marques, N.V.; Oliveira-Brett, A.M. In Situ Evaluation of Anticancer Monoclonal Antibody Nivolumab-DNA Interaction Using a DNA-Electrochemical Biosensor. Chemelectrochem 2019, 6, 4608–4616. [Google Scholar] [CrossRef]
- Thompson, N.J.; Rosati, S.; Rose, R.J.; Heck, A.J.R. The impact of mass spectrometry on the study of intact antibodies: From post-translational modifications to structural analysis. Chem. Commun. 2013, 49, 538–548. [Google Scholar] [CrossRef]
- Wang, A.; You, X.; Liu, H.; Zhou, J.; Chen, Y.; Zhang, C.; Ma, K.; Liu, Y.; Ding, P.; Qi, Y.; et al. Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin. Food Chem. 2022, 366, 130573. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, N.; Gu, H.; Qian, M.; Bai, J.; Zhang, W.; Jin, L. A monoclonal antibody-based immunosensor for detection of Sudan I using electrochemical impedance spectroscopy. Talanta 2011, 84, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Thevenot, D.R.; Tóth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Arya, S.K.; Estrela, P. Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. Sensors 2018, 18, 2010. [Google Scholar] [CrossRef]
- Babrak, L.; McGarvey, J.A.; Stanker, L.H.; Hnasko, R. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry. Mol. Immunol. 2017, 90, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Guo, Y.; Jiao, S.; Chang, Y.; Liu, Y.; Zou, R.; Liu, Y.; Chen, M.; Guo, Y.; Zhu, G. Characterization of Variable Region Genes and Discovery of Key Recognition Sites in the Complementarity Determining Regions of the Anti-Thiacloprid Monoclonal Antibody. Int. J. Mol. Sci. 2020, 21, 6857. [Google Scholar] [CrossRef]
- Castellanos, M.M.; Snyder, J.A.; Lee, M.; Chakravarthy, S.; Clark, N.J.; McAuley, A.; Curtis, J.E. Characterization of Monoclonal Antibody-Protein Antigen Complexes Using Small-Angle Scattering and Molecular Modeling. Antibodies 2017, 6, 25. [Google Scholar] [CrossRef]
- Tian, X.; Langkilde, A.E.; Thorolfsson, M.; Rasmussen, H.B.; Vestergaard, B. Small-Angle X-ray Scattering Screening Complements Conventional Biophysical Analysis: Comparative Structural and Biophysical Analysis of Monoclonal Antibodies IgG1, IgG2, and IgG4. J. Pharm. Sci. 2017, 103, 1701–1710. [Google Scholar] [CrossRef]
- Yearley, E.; Zarraga, I.; Shire, S.; Scherer, T.; Gokarn, Y.; Wagner, N.; Liu, Y. Small-Angle Neutron Scattering Characterization of Monoclonal Antibody Conformations and Interactions at High Concentrations. Biophys. J. 2013, 105, 720–731. [Google Scholar] [CrossRef]
- Castellanos, M.M.; Pathak, J.A.; Leach, W.; Bishop, S.M.; Colby, R.H. Explaining the non-Newtonian Character of Aggregating Monoclonal Antibody Solutions Using Small-Angle Neutron Scattering. Biophys. J. 2014, 107, 469–476. [Google Scholar] [CrossRef] [Green Version]
S. No. | Antibody Type | Analytical Technique | Reference |
---|---|---|---|
1. | Protease ClpP | 1H-1D NMR, TROSY CRINEPT | [49] |
2. | BrentuxiMAB vedotin | RPLC | [50] |
3. | BevacizuMAB | RP-HPLC | [51] |
4. | AdalimuMAB, atezolizuMAB, belimuMAB, bevacizuMAB, cetuxiMAB, dalatozuMAB, denosuMAB, eculizuMAB, elotuzuMAB, inflixiMAB, ipilimuMAB, ixekizuMAB, natalizuMAB, nivoluMAB, obinotuzuMAB, ofatumuMAB, panitumuMAB, pembrolizuMAB, pertuzuMAB, ramuciruMAB, reslizuMAB, rituxiMAB and trastuzuMAB | RPLC-MS | [52] |
5. | Six different IgG1, one IgG2, one bispecific | RP-UPLC-MALS | [53] |
6. | MAB oxidation variants | Mixed mode SEC | [54] |
7. | MABs sourced from Genentech Inc., South San Francisco, CA | SE-UHPLC | [55] |
8. | adalimuMAB, bevacizuMAB, cetuxiMAB, denosuMAB, natalizuMAB, ofatumuMAB palivizuMAB, panitumuMAB, rituxiMAB, trastuzuMAB | Cation exchange chromatography | [56] |
9. | Different MABs with varying charges | Cation exchange chromatography-MS | [57] |
10. | RituxiMAB, trastuzuMAB, bevacizuMAB, cetuxiMAB, inflixiMAB, and trastuzuMAB | Ion-Exchange Charge Variant Analysis | [58] |
11. | InflixiMAB | CE-MS | [59] |
12. | AdalimuMAB, atezolizuMAB, belimuMAB, bevacizuMAB, cetuxiMAB, denosuMAB, elotuzuMAB, ipilimuMAB, ixekizuMAB, nivoluMAB, obinituzuMAB, ofatumuMAB, palivizuMAB, pertuzuMAB, ramuciruMAB, rituxiMAB and trastuzuMAB | CZE | [60] |
13. | TrastuzuMAB, inflixiMAB, ustekinuMAB | CE-MS | [61] |
14. | MAB | CZE-MS | [62] |
15. | RituxiMAB, trastuzuMAB and bevacizuMAB | CE-ESI-MS | [63] |
16. | MAB | CZE | [64] |
17. | NIST suggested MABs | imaged CIEF | [65] |
18. | MABs | 1D 1H NMR 1H-1H NOESY 1H-13C or 1H-15N HSQC or HMQC | [66] |
19. | NISTMAB PS #8670 | 2D-NMR | [67] |
20. | MAB | 1D NMR with PROFOUND and NIPALS | [68] |
21. | MABs | 1D 1H NMR | [69] |
22. | MABs | 1D 1H NMR | [70] |
23. | RituxiMAB and InflixiMAB | FPLC NMR, CD, SEC MALS | [71] |
24. | Two IgG1 MABs (COE-03 and COE-19) and one bispecific IgG1MAB (COE-07) | 1D 1H NMR | [72] |
25. | MAB | 1D 1H and DOSY NMR | [73] |
26. | MAB | 2D NMR | [74] |
27. | MAB | 2D-NMR with 15N-detected CRINEPT | [75] |
28. | MAB | FTIR with CD | [76] |
29. | AdalimuMAB, Aflibercept, BevacizuMAB, CetuxiMAB, InflixiMAB, NatalizuMAB, NivoluMAB, OmalizuMAB, PanitumuMAB, PembrolizuMAB, PertuzuMAB, RamuciruMAB, RituxiMAB, TrastuzuMAB, TrastuzuMAB-emtasine | FTIR | [77] |
30. | MABs | FT-ICR-MS | [78] |
31. | TrastuzuMAB NIST MAB | MALDI ISD MS | [79] |
32. | Bispecific MAB | MALDI FT-ICR MS | [80] |
33. | InflixiMAB, RituxiMAB, BevacizuMAB | FIA and DAD | [81] |
34. | MABs | 2D-LC-MS 1D-LC-MS 1D-LC-UV | [82] |
35. | Anti-IMD (Imidacloprid), Antigen protein conjugate (BSA IMD) | SPCE (electrochemical detection on screen-printed carbon electrodes) | [83] |
36. | CetuxiMAB | CZE-MS | [84] |
37. | MABs | CZE | [85] |
38. | IgG1 manufactured by Merck & Co., Inc. (Kenilworth, NJ, USA) | Two-Dimensional Liquid Chromatography (IEC-SEC 2D-LC) | [86] |
39. | IgG1 | RP-HPLC-MS | [87] |
40. | TrastuzuMAB, rituxiMAB and palivizuMAB | CE-MS | [88] |
41. | AdalimuMAB, natalizuMAB, nivoluMAB, palivizuMAB, inflixiMAB, rituxiMAB and trastuzuMAB | CE-MS | [89] |
42. | FDA and EMA approved antibodies | SEC, IEX and hydrophobic interaction chromatography (HIC) | [90] |
43. | MAB | 2D-CZE-MS | [91] |
44. | National Institute of Standards and Technology (NIST) MAB | LC-UV-MS | [92] |
45. | Pfizer supplied MABs | CE | [93] |
46. | InflixiMAB | CZE-MS | [94] |
47. | IgG1 | LC-MS | [95] |
48. | MABs sourced from Genentech Inc., South San Francisco, CA | Multi-dimensional LC/MS | [96] |
Methods | Basic Principle | Advantage(s) | Disadvantage(s) | |
---|---|---|---|---|
Chromatographic | RPLC | Separation of the components based on their hydrophilicity/hydrophobicity | High resolving power and straightforward compatibility to mass spectrometry | RPLC-MS does not offer complete cover as small peptides are lost |
SEC | Common technique used to characterize size variants from biotherapeutic proteins | Good separation of large from small molecules; | Proteins with very comparable size cannot be resolved; any possibility of interaction between the stationary phase and the analyte leads to later elution leading to the inference of a smaller size analyte | |
IEX | Very powerful technique to separate charged heterogeneity in biopharmaceuticals | It is used to remove impurities (protein aggregates, host cell proteins (HCPs), DNA and endotoxins); MS compatible | Column stability and reproducibility is not assured after repeated use | |
Electrophoretic | CZE | Popular separation technique based on the ratio of charge to mass of analytes | Sensitive, MS compatible and high throughput technique | Adsorption of mAbs on the capillary wall and requirement of method optimization |
CGE | Conventional separation method based on charge to mass ratio; utilizes gel in capillaries instead of liquid (as in CZE) | Allows analyses of product size heterogeneity, stability, and purity of mAbs. | MS and CGE-SDS are incompatible so SDS removal approaches have to be employed | |
cIEF | Separation technique based on their isoelectric points | Analyzes charge heterogeneity, oxidation and deamidation analysis; MS compatible | Optimizing cIEF resolution and reproducibility can be challenging | |
Spectroscopic | 1D 1H NMR | Based on nuclear magnetic resonance to elucidate HOS of mAbs | The most suitable method for determining the chemical shift and structural elucidation of the protein therapeutics | Requirements of isotope labelling, larger molecular weight and the restraints imposed due to numerous formulations have led to its decreased acceptability |
1H-based Multidimensional NMR | Higher resolution than 1D 1H NMR; Used for the identification of quality attributes (QA) and HOS characterization of mAbs | Detects precise atomic-level fingerprint of the primary/secondary/tertiary and quaternary structures of therapeutic mAbs | Lesser adaptability for structure analysis due to short transverse relaxation times along with the slow molecular tumbling, high cost of instrumentation | |
FTIR | Absorption spectroscopy used to obtain information about the vibration bands (due to different functional groups such as N-H, C=O) | Non-destructive, high-resolution, fast technique | High cost and maintenance of instrument are undesirable features | |
UV-Vis and LC-MS | Absorption/reflectance spectroscopy based on ultraviolet and visual spectrum | UV-Vis is a simple and convenient technique for protein quantification and aggregation. Compatible with LC-MS. | Not suitable in conditions where antibody or drug is susceptible to UV | |
CD | Measures differences in the absorption of left- and right-handed circularly polarized light | Lesser sample quantity requirement, no harsh pre-treatment of the samples for revealing enantiomers and execution of analysis in aqueous solutions | Weak signals for the spectroscopic measurements | |
Electrochemical | Immunosensor | Based on specific antigen-antibody interaction followed by the conversion of the event to an electrical signal | Utilized for the characterization of the ligands of the mAbs, generally for the diagnostic purposes, portability, simple miniaturization, high sensitivity | Reproducibility; during the immunoreactions, changes in ion concentration, current, potential, and impedance can occur. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhazmi, H.A.; Albratty, M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals 2023, 16, 291. https://doi.org/10.3390/ph16020291
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals. 2023; 16(2):291. https://doi.org/10.3390/ph16020291
Chicago/Turabian StyleAlhazmi, Hassan A., and Mohammed Albratty. 2023. "Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies" Pharmaceuticals 16, no. 2: 291. https://doi.org/10.3390/ph16020291
APA StyleAlhazmi, H. A., & Albratty, M. (2023). Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals, 16(2), 291. https://doi.org/10.3390/ph16020291